
HAL Id: hal-03774328
https://hal.science/hal-03774328

Submitted on 12 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tales from the Code #2: A Detailed Assessment of
Code Refactoring’s Impact on Energy Consumption

Zakaria Ournani, Romain Rouvoy, Pierre Rust, Joel Penhoat

To cite this version:
Zakaria Ournani, Romain Rouvoy, Pierre Rust, Joel Penhoat. Tales from the Code #2: A Detailed
Assessment of Code Refactoring’s Impact on Energy Consumption. ICSOFT, Jul 2021, Virtual Event,
France. pp.94-116, �10.1007/978-3-031-11513-4�. �hal-03774328�

https://hal.science/hal-03774328
https://hal.archives-ouvertes.fr

Tales from the Code #2: A Detailed Assessment
of Code Refactoring’s Impact on Energy Consumption

Zakaria OURNANI1,2,3, Romain ROUVOY2,3, Pierre RUST1, and Joel PENHOAT1

1 Orange Labs, Rennes, France
2 INRIA Lille Nord-Europe, Lille, France

3 University of Lille, Lille, France
{zakaria.ournani,

romain.rouvoy}@inria.fr, {pierre.rust, joel.penhoat}@orange.com

Abstract. Energy consumption has been a prominent question in the last decade
that concerns both hardware and software dimensions. Source code refactoring is a
widespread activity among developers that includes a set of well-known changes to
improve the code quality without impacting the functional aspects. Hence, the concern
of the impact that may those changes induce on the software energy consumption
is legitimate, in order to identify whether and which refactorings have a significant
impact on the evolution of the energy consumption. In particular, while the state of the
art investigated the impact of some specific code refactorings on dedicated benchmarks,
we miss an assessment that those apply to more comprehensive and complex software.
To address this threat, this paper studies the evolution of the energy consumption of
7 open-source software developed for more than 5 years. Then, by focusing on the
impact on energy consumption of changes involving code refactorings, we intend to
assess the effects induced by computational code refactorings. For all these software
systems we studied, our empirical results report that the code refactorings we mined
do not substantially impact energy consumption. Interestingly, these results highlight
that i) structural code refactorings bring energy-preserving changes to the code, and ii)
major energy variations seem to be related to computational code refactorings and/or
functional changes.

Keywords: Software energy Consumption · Code refactoring · Energy consumption
evolution

1 INTRODUCTION

Software energy consumption has gained a substantial significance in the last decade, both for
research and industrial contexts [34, 27, 29, 5, 10]. Hence, many researchers and practitioners
started caring about the energy efficiency of software, beyond performance and hardware
concerns [6, 26, 19, 20]. Being integrated into mobile or cloud environments, software
systems are trying to minimize their resource consumption to reduce battery consumption
or operational cost. Source code refactoring is one of the most famous and used software
development techniques. It can be described as the application of acknowledged rules to
improve one or many aspects of a software system, such as its clarity, maintenance, code
smells, without impacting its functional behavior [14, 2].

Yet, code refactoring have also been considered as a mean to improve the performance
and/or energy efficiency in a more or less automated way [12, 3, 6, 21, 7, 4] Most of the

2 Z. Ournani et al.

works that investigated the impact of code refatoring on energy consumption [25, 12, 3, 18]
based their studies on predefined set of refactoring rules, design patterns, or code smells.

While this process may deliver interesting insights on the impact of specific code refactor-
ings on the energy consumption of a code snippet, there is still no guarantee that the identified
code refactorings are frequently applied during the lifespan of a software system. Some refac-
torings could be very advantageous but are rarely applied which limits their impact on the
energy efficiency of the software. Moreover, most of these works [22] reported on a very small
impact (usually less tan 5%) and concluded on the significance of those refactoring. However,
this is not always valid, especially for server-side/desktop applications where jobs’ energy
consumption may significantly vary (more than %10) even on the same node/device [23].

In this paper, we extend our previous study [24] that explores an alternative way to study
the impact of code refactorings on the energy efficiency of legacy software systems. We focus
on acknowledged refactoring rules mostly issued from Martin Fowler’s book [11], which
are mostly structure-oriented rules (such as Extract Method) dealing with code architecture
and organization for server-side applications. Instead of selecting a set of code refactorings
a priori and evaluate them against some dedicated benchmarks, we extract these code
refactorings from established open-source projects. More specifically, we mine the history
of code refactorings that have been applied to these projects in the past, and we measure
the impact of the commits that include acknowledged code refactorings on the overall energy
consumption. This approach aims to detect the code refactorings that have been broadly
applied, and their observable impact on energy efficiency in practice. By doing so, we
believe that mined code refactorings are most likely to reflect an effective impact of code
refactoring on energy consumption, compared to the study of a fixed set of refactoring
candidates. Moreover, we investigate the total evolution of these legacy software systems’
energy consumption to deduce the impact of structural code refactoring on this evolution.
We also asses the impact of some than implementation and computation refactoring (such
as Substitue Algorithm) to conclude on the impact of code refactoring on software energy
consumption. This study, therefore, aims to answer the following research questions:

RQ 1: How do structural code refactorings contribute to the evolution of software energy
consumption?

RQ 2: How does the energy consumption of software evolve over time?

The remainder of this paper is organized as follows. Section 2 introduces the experimental
protocol (hardware, projects, tools, and methodology) we adopted in this study. Section 3
analyzes several experiments we conducted to mine the code refactorings and evaluate
their impact on the energy consumption, as well as the results we observed during these
experiments. Section 5 discusses the related work about source code refactoring contributions
to reduce software energy consumption. Finally, Sections 6 and 7 cover the validity threats
and our conclusions, respectively.

2 EXPERIMENTAL PROTOCOL

This section describes our detailed experimental environment, encompassing the hardware
configuration, the studied projects/benchmarks and a detailed description of our experimental
methodology.

Title Suppressed Due to Excessive Length 3

2.1 Hardware Environment
For all of our experiments, we used a Core i7 machine (i7-6600U CPU @ 2.60GHz) with
a total of 4 processing units to measure the energy consumption and mine the refactor-
ing rules from the projects under study. The machine ran a 18.04.4 LTS Ubuntu, with a
4.15.0-88-generic Linux kernel. We also used OPENJDK, version 1.8.0 242, to run
most of our Java experiments—i.e., run both old and recent versions—except for the OkHttp
project where we had to use OPENJDK, version 11.0.6. By using the same machine to
conduct all the experiments, we guarantee the least energy consumption variation and
a controlled impact of the hardware configuration, as recommended in [23], especially
to measure small differences in energy consumption. Therefore, the machine has been
configured according to guidelines of [23] to mitigate the energy consumption variation
to the minimum and produce accurate results that can be faithfully compared.

2.2 Projects Under Study
Regarding the subjects of our study, our main criterion was to select established projects
with a considerable commit history, that have been existing for years, and with an active
community. This study exclusively focuses on Java projects to limit the search space and
unify our experimental setup, but also because code refactorings may differ from a lan-
guage/paradigm to another. We then tried to diversify our dataset by considering projects that
cover a large spectrum of features and operations including, JSON and XML conversions,
HTTP client, graph processing, data collections, etc. Because of the longitudinal nature
of our study, we considered projects that have a stable interface, and in which the main
functions are non-ambiguously identified, so we can run the same measurements across
different generations and versions of the studied projects.

Based on the above criteria, Table 1 summarizes the projects that we considered for this
study, along with the number of commits at the time that this paper was written, and the
date of the first commit. Established projects with a higher number of commits increase the
chances to mine a representative set of commits including code refactorings. All the projects
we selected have been hosted on GitHub since at least 2015. We note that the Git creation
date only gives an overview of how long has the project been on GitHub and is different
from the project creation date. Some projects, such as Gson, exists on GitHub since March
2015, but we still can checkout commits from 2003.

Table 1: List of selected open-source projects
Project Description # commits 1st commit
OkHttp Java HTTP client 4,684 05-2011
JGraphT Graph objects and algorithms provider 3,158 07-2003
XStream XML↔ Java objects serialization 2,736 10-2003
JFlex Java lexical analyzer generator 1,741 02-2003
Gson JSON↔ Java objects serialization 1,485 08-2008
Eclipse-Collections Eclipse Java collections 1,374 12-2015
Google-Http Google HTTP client library for Java 868 05-2011

4 Z. Ournani et al.

2.3 Methodology & Tools
Our experimental methodology is a process that includes extraction, evaluation, and valida-
tion steps. Figure 2 depicts the main steps we followed to analyze each selected project. We
start our process by cloning the public repository of the project from GitHub. Then, for each
commit, we mine the code refactorings of the project using the REFACTORINGMINER tool
and we summarize them into a JSON file. REFACTORINGMINER is an open-source research
project [33, 32] that analyses a project commit by commit and extracts the type and count
of refactorings for each commit in a JSON format. It helps in detecting and visualizing 55
different types of refactoring in its version 2.0, which is the version we used in this study.4

Once we extract the code refactorings that have been applied per commit on the master
branch, we select the commits to be reproduced to measure their energy consumption. The
selection method takes into account the refactorings count and types in each commit. We
consider commits with at least 20 refactorings so we can expect a significant impact of the
refactorings on the energy consumption. Figure 1 depicts the cumulative distribution function
(CDF) that shows the frequency of commits per refactorings count (commits with more than
200 refactorings have been omitted for clarity). For most of the studied projects, one can
see that 20% of the commits have more than 20 refactorings. This ensures having a decent
number of the most relevant commits that can be reproduced and evaluated. The commits
that contain only one type of refactoring are very rare, we thus also consider commits with
a mix of code refactorings, and deduce the impact of each refactoring rule a posteriori.

0 25 50 75 100 125 150 175 200
Refactorings count

0.2

0.4

0.6

0.8

1.0

C
D

F

Gson
Okhttp
Ghttp
Xstream
Jgrapht
Jflex
Collections

Fig. 1: CDF of code refactorings per commit.

Then, we rebuild the project Java archive (JAR) for each of the previously selected
commits to be ready for the test/run phase. To be able to run and evaluate the compiled

4 https://github.com/tsantalis/RefactoringMiner

Title Suppressed Due to Excessive Length 5

JAR, we need to provide a task to execute for each project. We cannot trust running the tests
provided within projects as they can substantially change from a commit to another and
might include/exclude functionalities that appear/disappear between commits, which does
not constitute a fair comparison criterion. Instead, we wrote our own JMH benchmarks for
each project, which is a ”Java Microbenchmark Harness for building, running, and analyzing
nano/micro/milli/macro benchmarks written in Java and other languages targeting the
JVM”.5 The purpose of each benchmark is to test the main functionality of each project to
ensure the same measurement conditions for all commits. Hence, through JMH benchmark-
ing, we can deliver—for each project—experiments to compare the energy consumption
of commits, while testing the main functionalities of the project. The main test functionality
for Gson and XStream is JSON and XML to Java objects serialization and deserialization,
respectively. For both OkHttp and Google-Http projects, we consider the core HTTP verbs
(GET, POST, DELETE) with a local server to eliminate any network bias. For JGraphT, we
consider the operations of graph creation, shortest path computation, max-flow computa-
tion, and discarding random edges. We also tested JFlex with lexical analyzer generation,
and Eclipse-Collections with the core operations on the different mutable and immutable
collections (lists, maps, sets), inspired from [27, 31]. Using JMH for writing benchmarks
has many advantages, such as the easy management of run and warm-up iterations, and the
prevention of dead code removal from the JIT using the concept of blackhole [30].

Once the JMH benchmark was written , we compute the coverage of the project by the
benchmark using Jacoco (https://www.eclemma.org/jacoco).The purpose is not to cover
all of the project classes and methods, as we only want to test the main functionality of the
project. However, the coverage computation allows us to save all the classes and methods
that are covered by our benchmark. Thus, only the commits with refactoring on these classes
(given by RefactoringMiner) and methods are considered for the evaluation. Of course, this
operation requires applying more checks (using git diff) to ensure that the changes of the
commit x are limited to the extracted refactorings and nothing else susceptible to affect
the performance or the energy consumption. Hence, this step ensures that the selected
commits only contains refactoring that are being stressed by our benchmark.

The next step is to run the benchmarks for each of the JAR files compiled from relevant
commits. To highlight the effect that code refactorings may have on energy consumption, we
build and run the commit x that includes the code refactorings, but also the commit x-1 on the
main branch, so we can compare the energy consumption and infer the impact of refactorings.

The percentage of reproduced commits, which designates the ratio of successfully built
and ran commits in regards to the total count of selected commits (Gson: 95%, XStream:
80%, OkHttp V3 & V4: 90%, Google-Http: 15%, JGraphT: 25%, JFlex: 40%, Eclipse-
Collections: 50%). Most of the unsuccessful projects’ rebuilds are due to deprecated and
invalid references.

During the execution of the experiments, we use Intel RAPL to acquire the global en-
ergy consumption [15, 8], which is one of the most accurate available tools to report the
CPU/DRAM global energy consumption. We thus evaluate the energy consumption of every
commit x and we compare it to its x-1 commit. We run every JMH benchmark for multiple
iterations on a fixed amount of time (enough time to run the benchmark at least one), and
we extract between 100 and 1,000 energy measurements depending on the duration of each
iteration. Thus, different commits can run a different amount of iterations within the time
allowed to the JMH benchmark execution. This is why we consider the energy consumption

5 https://openjdk.java.net/projects/code-tools/jmh/

6 Z. Ournani et al.

of iterations rather than the whole benchmark, in order to have a correct estimation of the
energy consumption for that commit. Then, we use the bootstrap method [9] to randomly
build 100 subsets from the main set of measurements, and we compute the mean and standard
deviation of these subsets. We end-up with 100 measures of averages and we use the median
of these values for better accuracy and less bias.

The checked results are then used to build global statistics of the most efficient refactoring
rules across the selected commits of all projects. We also pay special attention to the commits
of each project that exhibit the most energy difference, when exceeding a threshold of 5%.
This threshold is computed from the minimum CPU energy consumption variation and the
computed standard deviation of the experiments [23].

This additional check of those commits consists of applying a more detailed git diff
analysis on the results of the previous step to understand every single occurrence of the
detected refactorings and project the results and that there is no other changes that may affect
the energy efficiency. Another check consists of an extra micro-benchmarking phase, where
we prepare and execute the extracted refactorings to confirm and validate the effect they
could have on the energy efficiency of the project/software. We also applied the Wilcoxon
rank sum test (or Student test when possible) to check the statistical significance of the
registered difference in the energy consumption between the commit x and the commit x-1,
with a null hypothesis of the energy consumption of the commit x and x-1 being equal with a
5% certainty. During our experiments, we were careful not to fall in the benchmarking crimes
described in [16], so we can conduct robust and reproducible experiments and evaluations
with a focus on energy consumption.

Most of our experimental setup is made available on GitHub, including all the used JMH
Benchmarks, JSON extraction results, micro-benchmarks, CSV of measurements, scripts,
etc.6

3 REFACTORING IMPACT ANALYSIS

In this section, we aim at answering our research questions with a clear conclusion on whether
refactoring has a substantial impact on the evolution of software energy consumption over
time. We, therefore, conducted a set of experiments and validations to investigate the effect
of structural refactoring on the evolution of software energy consumption.

4 Refactoring Rules Impact

To dive into the effective impact that code refactoring may have on software energy con-
sumption, we further tracked and analyzed the evolution of the energy consumption on
commits where code refactorings were detected. Thus, in our study, we consider the full
commit history of 7 open-source projects, and we analyze the impact on energy consumption
of commits including code refactorings, as described in Section 2.

Once we select commits with code refactorings and rebuild them, we run the JMH
benchmarks that have been prepared for each project to compare the energy consumption of a
commit x that came with the refactorings and the previous commit x-1 of the master branch.

Then, we report on global statistics from the raw measurements we obtained from each
project, thus establishing a summary of the most used code refactorings and their impact.

6 https://anonymous.4open.science/r/c3d38dca-1ab2-4814-ba07-b182120c5739

Title Suppressed Due to Excessive Length 7

Github
project

Clone project

Refactoring
global/detailed

impact
analyses

Extract
refactoring

Build a JAR for
every selected

commit

Write JMH
Benchmarks

Run
benchmarks

Evaluate the
effect of

refactoring

Final
results

Explore Git Diff
to validate the

results

Reproduce and
measure the
refactoring

through micro-
benchmarking

Fig. 2: Methodology of refactoring analysis

Global Code Refactoring Statistics The purpose of this step is to highlight the most
used/impactful code refactorings. While it is easy to identify the most used code refactorings
by counting the number of occurrences of each refactoring rule and the commits they appear
in, there is no consensus on how to measure the effective impact of code refactorings on energy
consumption, if any. The large majority of commits comes with a set of code refactorings of
many types, and even if these refactorings can impact the energy consumption, there is no triv-
ial way to isolate such an impact for each type of refactoring. Thus, we consider 3 indicators
to capture the energy impact of refactoring. The first indicator, Impact in Commits (IC), is the
ratio between the number of commits where the refactoring had a positive or negative impact—
i.e., the commit x containing this refactoring consume more or less energy than the previous
commit x-1—and the total number of commits containing this refactoring. Equation 1

8 Z. Ournani et al.

therefore computes IC for a rule r∈R by exploring all the commit historyC of a given project:

IC(r)=
∑c∈Ccount positive negative(c,r)

∑c∈Ccount(c,r)
(1)

This indicator can be then enhanced by taking into account the occurrences—or weights—
of each refactoring rule in a commit. In other words, considering the refactoring weight
consists of using the number of occurrences of each refactoring type within a commit rather
than only counting the commit as 1 if it contains at least a refactoring.

WIC(r)=
∑c∈Ccount positive negative(c,wr)

∑c∈Ccount(c,wr)
(2)

Nevertheless, this indicator is not enough to evaluate the energy impact of refactoring.
Indeed, including the weight of refactorings in commits supposes that all refactorings impact
energy consumption equally, which may not be true, as we assume that the occurrence of
a refactoring r1 can have a bigger impact than many occurrences of a refactoring r2.

The 2nd and 3rd indicators are δ% and δ|%| that indicate the mean of the energy con-
sumption of every commit x containing the refactoring minus the energy consumption of
commits x-1, and the mean of the absolute value of the energy consumption of every commit
x containing the refactoring minus the energy consumption of commits x-1, respectively,
∥Cr∥ being the commits in the commit history C where refactoring r occurred.

δ%(r)=
∑

Cr
x=1(Ex−Ex−1)

∥Cr∥
(3)

δ|%|(r)= ∑
Cr
x=1|Ex−Ex−1|

∥Cr∥
(4)

where Ex and Ex−1 represent the mean energy consumption of the commit x that includes at
least the refactoring r, and the energy consumption of the commit x-1, respectively. These
indicators are complementary to reflect the impact of the code refactorings on the energy
consumption. Therefore, we consider an aggregate indicator that combines the previous
indicators to capture the energy impact of refactorings across commits. This indicator, named
Refactoring Impact (RI) builds on the previous indicators: the higher WIC and δ|%|, the
most impactful the refactoring r is. However, if the difference δ|%|−δ% is high, it means
that the refactoring r has an unpredictable effect on the energy consumption and may affect
the energy consumption positively or negatively. This is a negative effect and could mean
that the refactoring does not have any impact at all. On the other hand, the more commits we
have with the refactoring r, the more certain we are of the effect that it could have. Thus, we
use the exponential function in Equation 5 so the denominator cannot be null.

RI(r)=
WIC(r)×δ|%|(r)

eδ|%|(r)−δ%(r)
×∥Cr∥ (5)

Table 2 shows the computed indicators for a total of 25 mined refactoring rules. We note that
the commits that could not be reproduced and those where the refactorings are parts of classes
that are not tested by our benchmark have already been discarded and not displayed in Table 2.
Before analyzing the results we excluded all the code refactorings with a low number of
occurrences and/or commits (less than 20 CountxCommits). For example, code refactorings
that occurred only a couple of times and/or only in one or two commits cannot be faithfully
studied due to insufficient data. Then, we highlight (in Cyan) the refactoring rules that have
the best values for the previous indicators, which are very likely the refactorings with the most
impact on energy consumption. The 4 refactoring rules with the most number of occurrences
and commits, with a minimal IC of 30%, are ”add method annotation”, ”rename parameter”,
”add class annotation”, and ”move class”. These refactoring rules are also those that exhibit

Title Suppressed Due to Excessive Length 9

the highest RI, and thus, are most likely to be the most impactful on energy consumption.
However, we still have to assess that these refactoring rules have an effective impact on the
evolution of energy consumption. Thus, we conducted a more detailed study on the commits
with the highest impact to validate the effect of code refactorings on energy consumption.

Table 2: The observed impact of mined refactoring rules
Refactoring Count CountxCommits IC WIC δ%(r) δ|%|(r) RI

add method annotation 10120 80960 30.77% 43.41% 1.13% 2.14% 7.34

change variable type 101 606 16.67% 14.95% 0.24% 1.32% 1.17

rename parameter 45 180 33.33% 71.69% -0.07% 1.82% 5.12

change parameter type 42 168 11.76% 17.07% -0.03% 1.20% 0.81

change attribute type 26 130 16.67% 9.39% 0.12% 1.35% 0.63

add class annotation 63 216 33.33% 63.53% 1.30% 2.20% 2.77

move class 40 120 30.00% 54.28% 0.77% 2.21% 3.55

change return type 28 112 14.81% 19.93% 0.14% 1.11% 0.88

move method 33 99 21.43% 19.10% 0.59% 1.76% 1.00

rename variable 21 84 25.00% 18.24% 0.46% 1.44% 1.04

move attribute 18 54 25.00% 18.81% -0.07% 1.92% 1.06

extract method 37 37 20.00% 71.87% 0.08% 1.24% 0.88

pull up method 32 32 33.33% 38.90% 0.03% 1.97% 0.75

rename class 6 24 25.00% 13.71% 1.14% 1.51% 0.82

add attribute annotation 8 16 20.00% 15.12% 0.64% 1.14% 0.34

rename attribute 5 15 30.00% 8.77% 0.55% 1.62% 0.42

add parameter 6 12 16.67% 6.55% 0.82% 1.47% 0.19

merge parameter 6 6 100.00% 100.00% 6.00% 6.00% 6.00

extract class 2 4 33.33% 11.14% 0.72% 2.62% 0.57

extract variable 3 3 11.11% 10.52% 0.49% 0.91% 0.10

remove method annotation 1 1 11.11% 0.77% 0.71% 1.40% 0.01

rename method 1 1 11.11% 2.20% 0.32% 1.10% 0.02

modify method annotation 1 1 33.33% 7.99% 2.50% 2.50% 0.20

move & rename method 1 1 20.00% 13.17% -0.32% 2.32% 0.30

merge attribute 1 1 100.00% 100.00% 6.00% 6.00% 6.00

Diving Into the Most Impactful Commits With the most impactful commits, we refer
to commits where we observed the most substantial energy differences between the commits
x and commit x-1. To select these commits, we fix a threshold of 5% in energy consumption
difference. This threshold was fixed based on the CPU energy consumption variation [23]
and the standard deviation of the many executions we ran on the same test, which is often
around 4% to 5%. A total of 7 commits have been retrieved from the projects Gson, JFlex,
Eclipse-Collections and JGraphT (no other refactoring commit with a minimal impact of

10 Z. Ournani et al.

5% has been observed among the other projects). We note that our experimental setup would
highlight any effect that these refactoring could have caused on energy consumption. Indeed,
the execution of a JMH code, which uses the compiled JAR for the commit x, is composed
of numerous warmup and standard iterations. Each iteration itself consists of running the
benchmark many thousands of times for several seconds, so the effect that difference between
the commits x and x-1 could be noticed, if any.

Table 3 reports on the most impactful commits including code refactorings. For each
commit, we can see the type and number of refactorings extracted using REFACTORING-
MINER [33, 32], the measured energy consumption difference, a short description of the
refactoring-related changes that have been observed within the commits, and the computed
p-value of the Wilcoxon test.

Table 3: A deeper look into the most impactful commits
Project Commit ID EC diff Refactoring Count Git diff p-value

Gson
#82771f 5.5%

add method annotation 23 Adding @SuppressWarnings("unused") and
@SuppressWarnings("unchecked") to methods, classes
and variables that appear in the call trace of the JMH code with
no other changes that might impact the energy consumption.

0.018add class annotation 3

modify method annotation 1

add attribute annotation 1

#45bf2d 6.8% add method annotation 3 Adding @SuppressWarnings("unchecked") to methods
and moving classes (project reorganization) that appear in the
call trace of the JMH code.

0.000
move class 30

JGraphT

#033164 6%

merge attribute 1

Some code restructuring, reorganization and class movement
that that appear in the call trace of the JMH code. No other
changes suspected of impacting the energy consumption were
detected

0.056

change parameter type 1

rename parameter 9

move method 22

rename class 1

extract class 1

move attribute 15

move class 8

merge parameter 6

change variable type 19

change attribute type 1

#f1074b 5%

add method annotation 1
Adding @Override annotation and the renaming of some
attributes/parameters. However these changes does not appear
in the call trace of the JMH code.

0.2add class annotation 60

rename class 2

rename attribute 1

change variable type 16

rename parameter 4

JFlex #b34361 5%
add method annotation 53 Adding @Override annotation to methods that appear in the

call trace of the JMH code with no other changes that might
impact the energy consumption.

0.054
move & rename method 1

rename class 1

Eclipse Collections
#b9dfbc 6% add method annotation 9944 Adding @override annotation to methods that appear in the

call trace of the JMH code with no other changes. 0.4

#298b7a 5% add method annotation 73
Adding @override annotation to methods that appear in the
call trace of the JMH code, but too many changes unrelated to
refactoring were found.

0.01

Title Suppressed Due to Excessive Length 11

First, the commit ID is the first 6 digits of the git hash that can be used to access the commit
and reproduce our experiments/results. The energy consumption (EC) difference represents
the percentage of differences between the average measure of commits x and x-1 (after
applying the bootstrapping as we compute the average of multiple subsets built from the main
set of values). The next 2 columns contain the extraction results of the REFACTORINGMINER
tool. They include the type and count of each refactoring the tool was able to extract. We
notice that the rules that we identified as most impactful in the previous phase (add method
annotation, rename parameter, add class annotation, and move class) are—most of the time—
part of the extracted rules in theses commits that have shown the highest differences in energy
consumption, with add annotation and move class being the most common. Sometimes,
they are the only detected code refactorings, that we could suspect to be responsible for the
energy consumption variation, as in commit #b9dfbc of Eclipse Collections.

We apply 3 different validation measures to confirm whether the impact is effectively
caused by the refactoring. The first validation is through detailed git diff checks of the 7
selected commits to assess that the refactorings have been faithfully applied. We remind
that we already made sure that these refactorings only concerns classes and methods that
are being stressed by the JMH benchmarks, and do not contain other changes that can be
responsible for the energy consumption difference. For example, we do not suspect adding
some code documentation to alter the energy consumption, yet we do suspect changing a
data structure, a loop, or a code snippet to do so.

In the second validation step, we conduct a statistical validation through Wilcoxon rank
sum test (as Student test could not be applied due to variables not following a Gaussian
distribution) to compare the commits x and x-1 averages. With a risk of 5%, we reject the null
hypothesis of the means of the executions of commits x and x-1 being equal. For the p-value
commit #f1074b being higher than 0.05, we cannot reject the possibility that the average is
equal in both commits. The same goes for the commits #033164, #b34361, #b9dfbc where
we cannot accept that the means of the commits x and x-1 are statistically different.

The remaining commits—being #827717, #45bf2d, and #298b7a—mainly contain the
add annotation and move class refactorings. We thus achieve our third validation step through
dedicated micro-benchmarking. We first build a micro-benchmark to check the effect that ev-
ery encountered annotation may have(@override, @SuppressWarnings("unchecked"),
@SuppressWarnings("unused")) and ran hundreds of millions times each, on classes,
methods and variables to check whether it has an effect on the energy consumption. The
results—as expected—did not have any effect (about 1% difference that we cannot consider
due to CPU energy variations [23]) on energy consumption, as annotations are not supposed to
have a substantial impact on the generated bytecode that would be executed by the JVM. This
would invalidate the fact that the observed energy consumption difference is mainly related to
the add annotation refactoring in the commits that only contain this type of refactoring, such as
#827717, #b9dfbc, and #298b7a. The second micro-benchmark concerns the move class
refactoring, where we measured the energy consumption for several scenarios, after moving
some classes/interfaces around and reorganizing the structure of the micro-benchmark. The
results showed a difference in energy consumption of up to 8%, with an average standard de-
viation of 5%. The move class refactoring—which is often accompanied with the rename
refactorings—indicates a code reorganization that might have an impact. While the observed
impact through the JMH experiments or with micro-benchmarking might not be substantial, it
would be beneficial to be aware that restructuring/reorganizing a project could have an impact
on energy consumption, and thus compare the before/after energy consumptions to track that
effect. Unfortunately, we could not detect any specific pattern or guidelines on when the code

12 Z. Ournani et al.

reorganization or restructuring would impact positively or negatively the energy consump-
tion. Hence, we can only faithfully retain the commit #45bf2d of the Gson project among
the commits of Table 3, where the 30 move class refactoring could have been responsible
of 2% of energy consumption difference as the standard deviation of the measures is 5%.

We finally conclude that structure-oriented refactoring has no substantial impact on the
energy consumption of the main functionality of 7 projects that have been existing for at
least 5 years with a total of 16,046 commits. We argue that it could be applied to improve the
code quality with no negative impact on software energy consumption. Although, comparing
the energy consumption before and after the changes is always a good practice to keep track
of its evolution.

To answer RQ1, we conclude that code refactoring rules are mostly ”safe” opera-
tions that have no substantial impact on software energy consumption. Developers
should not fear structure-oriented refactorings, especially regarding how little is the
impact they could have compared to the real energy consumption evolution of projects,
registered while answering RQ1.

4.1 Software Energy Consumption Evolution

The first step is to investigate the evolution of software energy consumption over time.
Figure 3 depicts the evolution of energy consumption for the projects Google-Http, XStream,
JGraphT, and Eclipse Collections, for which we run the main releases and report on the
energy consumption measured over time, by focusing on the main functions stressed by our
JMH benchmarks.

Except for JGraphT, one can observe that energy consumption tends to decrease over time
for most of the projects. One can mention a 10% decrease in 12 months for the Google-Http
project (cf. Figure 3a), a 10% decrease in 4 years for the Eclipse Collections project (cf.
Figure 3c), and a very substantial decrease of 50% in 6 years for the XStream project (cf.
Figure 3d).

Then, to have a more concrete look on the evolution of energy consumption per commit,
we select the Gson project to reproduce the evolution of its energy consumption along the
full commit history. Given the large number of involved commits, we consider the full set of
commits of the Gson project (12 years) with a span of 25—i.e., we build, run, and measure
the energy consumption every 25th commits. Figure 4 depicts the evolution of energy
consumption for the Gson project with a total of 57 successfully reproduced commits, out
of 60. The line plot validates and confirms the results shown in Figure 3. Most notably, one
can observe a reduction of 82% from the highest to the lowest consumption commit within
12 years of the project’s lifespan—i.e., the energy consumption became 5 times lower.

One can also see a more sudden energy consumption reduction between commits 600 and
850. To investigate this, we thus run a similar experiment to measure the energy consumption
of a all commits between 600 and 850 depicted in Figure 5. The results clearly show that the
decrease in energy consumption of the Gson project is not linear across commits, but is rather
due to some specific commits. In fact, two specific commits are responsible of dropping the
energy consumption of the Gson project tested funtionnality. These two commits (626 and
691) decrease the energy consumption from 4.5 J to 3.0 J and from 3.0 J to 2.0 J respectively.

In order to understand the kind of changes that can be responsible of such reduction in
energy consumption, we meticulously analyzed one of the two previous commits (commit
691 for-which the test consumed 2686 KJ) and compared it to the previous commit (commit

Title Suppressed Due to Excessive Length 13

20
19

-01
-11

20
19

-03
-25

20
19

-06
-04

20
19

-09
-11

20
19

-12
-17

Releases

22.0

22.5

23.0

23.5

24.0

En
er

gy
 c

on
su

m
pt

io
n

(J)

Energy

(a)
Google-Http energy consumption over 11 months

20
18

-0
5-

16

20
18

-1
1-

12

20
19

-0
6-

03

20
20

-0
2-

21

20
20

-0
6-

15

Releases

20

22

24

26

28

30

32

34

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

Energy

(b) JGraphT energy consumption over 2 years

20
16

-0
4-

08

20
17

-0
3-

06

20
17

-1
2-

31

20
18

-0
5-

18

20
19

-0
7-

12

20
20

-0
2-

11

20
20

-0
8-

20

Releases

24.5

25.0

25.5

26.0

26.5

27.0

27.5

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

Energy

(c) Eclipse
Collections energy consumption over 4 years

20
14

-0
2-

08

20
15

-0
2-

18

20
16

-0
3-

16

20
17

-0
5-

23

20
18

-1
0-

22

20
20

-0
9-

06

Releases

3.0

3.5

4.0

4.5

5.0

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

Energy

(d) XStream energy consumption over 6 years

Fig. 3: Energy consumption evolution of Google-Http, XStream, JGrapht, and Eclipse
Collections.

690 for-which the test consumed 3563 KJ). Hence, we analyzed the Git diff of the commit
691 to spot the main changes. The analysis results showed that the changes are mainly related
to the serialization Jsonwriter method, called in the TypdeAdapter class as shown ??.
Concretely, the 690th commit uses a parser that is responsible for handling a buffer of objects
and recursively (for arrays and complex objects) parse them as string to be written, while the
691st commit uses a more straightforward Jsonwriter and JsonElementWritermethods
with a call to the Stringwriter method, to write objects one-bye-one with a simple cast
to Json primitive Types.

To prove the impact of this change on the Jsonwriter on the energy consumption of
the Gson serialization, we use an asynchronous code profiler.7 The purpose of the profiler
is to frequently sample the Java execution stack to collect stack traces and to track memory
allocation. The expected result is thus to see the Jsonwriter method executed much longer

7 https://github.com/jvm-profiling-tools/async-profiler

14 Z. Ournani et al.

0 200 400 600 800 1000 1200
Commit number

1

2

3

4

5

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

Fig. 4: Gson energy consumption across for every 25th commit.

600 650 700 750 800 850
Commit number

2.0

2.5

3.0

3.5

4.0

4.5

En
er

gy
 c

on
su

m
pt

io
n

(J)

Fig. 5: Gson energy consumption for commits between 600 and 850

Title Suppressed Due to Excessive Length 15

Fig. 6: Git diff main changes of the Gson commit 691

with the 690th commit compared to the 691st as it is the only section that has been modified
between commits to achieve 25% reduction in energy consumption.

We thus draw two flame-graphs to illustrate and compares the stack traces of the 690th

and 691st commits tests, shown in Figure 7a and Figure 7b respectively.
One can see that the Jsonwriter method lasted 7 times more in the commit 690 than 691

(in blue in both flame-graphs). In fact, the profiler recorded 138 samples of Jsonwriter
method against using the Gson Commit 690, and only 20 samples for tr commit 691. The
Jsonwriter was thus responsible of 30% of the energy consumption for the commit 690
against only 6% for the commit 691. The flame-graphs prove that the changes on the
Jsonwriter method are responsible for about 25% of extra energy consumption on the
commit 690 compared to 691st commit.

This kind of code changes are not structure-oriented refactoring but computational refac-
torings such as algorithm/method substitution. In the previous example, we recorded 25%
reduction in energy consumption by substituting the logic to write the Json data. To showcase
this, we run another experiment with Javax.Crypto library 8 to decrypt a 1.5 GB file using
different read methods issued from multiple classes (IOStream: java.io.InputStreamReader,
Channel: java.nio.FileChannel, FileReader: java.io.FileReader,
BIOStream: java.io.BufferedInputStream and NIOF: java.nio.Files). The results in Figure 8
clearly show that substituting different read methods can result in up to 100% in energy
consumption to read the same data. Computational refactoring can thus have a substantial
impact on the energy consumption of software, and should be wisely monitored. In fact,
such changes should be either validated and widely adopted (to extract changes pattern that
can be applied to other code portions within the software of other software) or seriously
questioned if they decrease or increase software energy consumption respectively.

8 https://docs.oracle.com/javase/7/docs/api/javax/crypto/package-summary.html

16 Z. Ournani et al.

all
App.main

com/google/gson/Gson.f..
com/google/gson/Gson.f..
com/google/gson/inter..
com/google/gson/inte..
com/google/gson/inte..
com/google/gso..
com..
com..

com/..
com/..
com/..
com/..
com/..
com..
com..
co..

co..
co..
co..

com/google/gson/Gson.toJson
com/google/gson/Gson.toJson
com/google/gson/Gson.toJson
com/google/gson/Gson.toJson
com/google/gson/internal/Streams.write
com/google/gson/internal/Streams.write
com/google/gson/internal/Streams.write
com/google/..
co..
co..

com..
co..
j..

com/google/gson/stream/JsonWriter.v..
com/google/gson/stream/JsonWriter..

java/io/O..
sun/nio/c..
sun/nio/c..
sun/nio/..
j..
j..
j..
j..

jav..
sun..
su..

java/io/Writer...
java/io/OutputS..
sun/nio/cs/Stre..
sun/nio/cs/Str..

s..

com/google/gs..
com/google/g..
jav..
sun..
sun..
sun..
j..
s..

java/..
java/..
sun/n..
sun/..

com/google/gson/Gson.toJsonTree
com/google/gson/internal/bind/TypeAdapter.toJson..
com/google/g..
com/google/g..
com/google/g..
com/goog..

com/..
com/..
com/..
com/..
co..

com/google/gson/internal/bind/Arr..
com/google/gson/internal/bind/Typ..
com/google/gson/internal/bind/Ref..
com/google/gson/internal/b..
com/google/gson/internal/..
com/go..
com/go..
com/g..
com..

com/google/gson..
com/google/gson..
com/google/gson..
com/google/gson..

java/io/W..
java/io/O..
sun/nio/c..
sun/nio/c..
sun/nio/c..
java/.. j..

com..
co..

start_thread
/usr/lib/jvm/jav..
/usr/lib/jvm/jav..
/usr/lib/jvm/jav..
/usr/lib/jvm/jav..

/usr/lib/j..
/u..

(a) Stack trace flame-graphs of the test execution on commit 690

all
App.main

E..
j..

com/google/gson/Gson.fromJson
com/google/gson/Gson.fromJson
com/google/gson/internal/bind..
com/google/gson/internal/bind..
com/google/gson/internal/bind..
com/google/gson/in..

com/g..
com/g..
com..
com..

com/goo..
com/goo..
com/go..
com/go..
com/go..
com/go..
com/go..
com/..

j..
j..
j..
j..
s..
s..

com/g..
com/g..
com/g..

com..
c..

com/google/gson/Gson.toJson
com/google/gson/Gson.toJson
com/google/gson/Gson.toJson
com/google/gson/Gson.toJson
com/google/gson/internal/Streams.write
com/google/gson/internal/Streams.write
com/google/gson/internal/Streams.write
com/google/gso..
co..
co..

com/go..
com/g..
ja..
su..
su..

com/google/gson/stream/JsonWriter.value
com/google/gson/stream/JsonWriter.string
java/io/OutputStreamWriter.write
sun/nio/cs/StreamEncoder.write

sun/nio/cs/StreamEncoder.write
sun/nio/cs/StreamEnco..
java/nio..

pa..
do..
__..

java/nio/..
sun/nio..
sun/ni..

com/google/gso..
com/google/g..
java/io/O..
sun/nio/c..
sun/nio/..

sun..
j..
s..
s..

com/goog..
com/goo..
com/goo..
com/goo..
com/goo..
com/go..
com/go..
c..
c..
c..

start_thread
/usr/lib/jvm/java..
/usr/lib/jvm/java..
/usr/lib/jvm/java..
/usr/lib/jvm/java..

/usr/lib/..
/..

(b) Stack trace flame-graphs of the test execution on commit 691

Fig. 7: Stack trace flame-graphs of the test execution on commits 690 and 691

Title Suppressed Due to Excessive Length 17

IOStream Channel FileReader BIOStream NIOF
Crypto file reading method

60

80

100

120

140
En

er
gy

 c
on

su
m

pt
io

n
(j)

Fig. 8: Energy
consumption of the Java Crypto library to decrypt a 1.5GB file using different I/O methods

To answer RQ1, we can conclude that software energy consumption can evolve dras-
tically over time. For the analyzed target systems, in spite of fluctuations, the energy
consumption has decreased non-negligibly for 4 systems and grown for one.

Moreover, computational refactoring can have a substantial impact on energy con-
sumption. Monitoring the energy consumption after such changes is very important
to spot any increase or decrease in software energy consumption.

Given the previous results reported by the literature, the remainder of this paper aims to
closely study and assess the impact of code refactoring on such observed evolutions.

5 RELATED WORK

In this section, we review the state of the art of green software design efforts related to code
refactorings.

Desktop applications. Achieving software energy efficiency through refactorings has
been studied for desktop applications and server-side applications. Pinto et al. discuss 12
contributions taken from the state of the art on the refactoring that can be applied to improve
software energy efficiency [28]. This literature review was conducted on the papers that
were published in 8 of the top software engineering conferences prior to 2015. It summarizes
some interesting information and practices relating to CPU offloading, HTTP requests, I/O
operations, DVFS techniques, etc. Sahin et al. also studied the impact of 6 refactoring rules
on a total of 197 selections found in 9 Java applications. Their results showed that the impact
of applying the refactoring could be statically significant, but is not very consistent across the
software and platform versions. They suggested that knowledge on the energy consumption

18 Z. Ournani et al.

impact of refactoring rules could be integrated within IDEs to help developers building less
energy-bleeding software.

In a more detailed study of the impact of only one refactoring rule ”inline method” on 3
Java applications, [35] reported that the impact on the execution time and energy consumption
that was expected to be positive, was not always true.

Rather than looking for green refactoring rules reducing software energy consumption,
some practitioners chose to conduct wider studies that apply on a much larger set of refac-
torings to capture a subset of ”green” rules. This is exactly what the authors of [13] pursued:
They prepared C++ micro-benchmarks of 63 refactoring techniques/design patterns sug-
gested by Martin Fowler [1], then ran experiments and isolated a set of green refactoring
rules based on the micro-benchmarks for C++.

The authors of [17] focused on investigating the impact of Java coding practices, which in-
clude primitive data types, operations on strings, usage of exceptions, loops, and arrays. Using
RAPL [15], they measure the energy consumption of code snippets and micro-benchmarks
and presented some minor observations, such as string concatenation consuming less than
StringBuilder and StringBuffer, static variables consume 60% more energy compared
to instance variables, etc.

Mobile applications. In another context, the reduction of software energy consumption
through refactoring actions has also been explored in the context of mobile applications.
EARMO proposes a multi-objective refactoring approach to automatically improve the
architecture of mobile applications [21]. The authors conducted an empirical study to
measure the negative impact of 8 anti-patterns on 20 open-source applications. They then
used a multi-objective search-based approach, called EARMO, to correct up-to 84% of the
anti-patterns on the tested applications and increase the battery lifespan by up-to 29 minutes.
However, their statistical analyses with a significance level of 5% only showed that half
of the rules can impact energy efficiency in some cases. Moreover, the CPU/chip energy
variation has not been taken into account for the significance level.

Other works also considered energy efficient refactoring for mobile applications [12].
In particular, the authors of [29] presented some early experiments on different micro-
benchmarks and discussed many coding aspects with a focus on implementation techniques,
such as how to iterate on a matrix, avoid operations with immutable data types, evaluating
strings, or the use the more specific numeric data types to save battery life. Anwar et al. [3]
also gave concrete examples on how to save some battery time through refactoring. They
achieved a maximum of 10% of energy savings by refactoring the DuplicatedCode and
TypeChecking code smells.

Cruz et al. [7] studied the effect of 8 of the best performance-based practices on the
energy efficiency of 6 Android applications. The results of the experiments showed that some
patterns, such as ViewHolder, DrawAllocation, WakeLock, ObseleteLayoutParam need to be
taken into account for a better design of energy-efficient applications, with a reported impact
of 4.5% for the Writeily Pro app. The authors also proposed the LEAFACTOR tool to improve
the energy efficiency of Android applications by automatically refactoring the source code to
fix the above patterns [6]. The process was applied on a set of 140 open-source Android ap-
plications and yielded a total of 222 refactorings, which were submitted as pull requests, with
16 successfully merged pull requests. Unfortunately, the paper does not discuss any further
energy enhancements of the applied LEAFACTOR refactorings on the original applications.
While the reported impact is still relatively small, most of the covered patterns are related to
screen/sensors usage that are very specific to mobile applications and cannot be generalized.

Title Suppressed Due to Excessive Length 19

6 THREATS TO VALIDITY

There are a couple of issues that can impact the accuracy of our results. First, our analysis
highly depends on the REFACTORINGMINER tool and its ability to extract every single
occurrence of each of the 55 refactorings it supports. Moreover, there are some other refac-
torings, not listed among the 55, that have not been extracted and thus considered in our
study, especially those related to implementation and computation details and those that
cannot be discovered automatically. During our experiments, we use Intel RAPL to measure
energy consumption. It is one of most accurate tools to measure CPU and DRAM energy
consumption [8], but only reports on the global energy consumption, which includes the OS
and the other processes running with the software system under study. We thus conducted
experiments on a minimal OS setup and disabled all optional daemons and services, along
with other guidelines and best practices in order to reduce the error margin and the CPU
energy variation to the minimum [23].

We also focused on running benchmarks that last for many seconds (around 150 sec
for Gson, 450 sec for XStream, 330 sec for OkHttp, 290 sec for Google-Http, 780 sec for
JGraphT, 720 sec for JFlex, and 600 sec for Eclipse Collections), so we can obtain trustful
and robust evaluations of the potential impact of changes between commits with an overall
continuous execution time of experiments that exceeded 100 hours.

The manual steps in our study remain the design of the JMH benchmarks and some checks
of the git diffs. In the first case, we tried to write benchmarks that stress the main purpose or
functionality of each project, so we can ensure that the comparison is based on the same func-
tionalities that are available on all commits and versions. While this is moderately easy for
some projects, such as Gson or XStream, it is much more complicated for other projects, such
as Eclipse Collections where many collections and operations are available and can change.
We tried in this case to cover many functionalities that are available in most commits, even
if it requires some adjustments and adaptation when projects are restructured / reorganized
between versions. Regarding git diff, we gave the major importance to the commits with the
most impact, as it is not possible to meticulously check all the changes on all the selected com-
mits. Another threat may be related to our selection of the commits with the most refactoring
to have a reasonable execution time. Even if selected commits are most likely to be the most
impactful. It results in a low number of selected commits among the global set of commits.

7 CONCLUSION

This paper describes an investigation of the effective impact of code refactoring on software
energy consumption. We analysed 7 open-source Java projects and extracted 55 possible
types of refactorings over all the commits, with more than 10k commits. We then selected
the commits with the most refactorings and evaluated the impact that could had those
refactorings on the energy consumption. This process ensures the evaluation of the effective
impact that refactoring has for established projects that have existed for at least 5 years.

Overall, our results showed that structure-oriented refactorings have no substantial impact
on the energy consumption on Java server-side software. This means that structure-oriented
code refactorings can be safely applied to improve the maintainability and readability of
source code with no significant penalty on the energy consumption of Java projects. On
the other hand, functional and computational oriented code refactoring showed to have a
substantial impact on software energy consumption. We argue that developers’ efforts should

20 Z. Ournani et al.

be directed these refactorings (such as data structures, used algorithms, I/O methods, etc)
rather than structure-oriented refactorings to reduce energy consumption.

We believe that our approach can also be used to study/discover other refactoring rules,
and extend our results to alternative projects, maybe for other languages than Java. Most
importantly, this should motivate future works to validate that refactorings can be safely
applied with no side effect on energy consumption, yet investigate the commits and the
nature of code changes that increase/decrease energy consumption.

References

1. Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman Publishing
Co., Inc., USA (1999)

2. Abid, C., Alizadeh, V., Kessentini, M., do Nascimento Ferreira, T., Dig, D.: 30 years of
software refactoring research: A systematic literature review. CoRR abs/2007.02194 (2020),
https://arxiv.org/abs/2007.02194

3. Anwar, H., Pfahl, D., Srirama, S.N.: Evaluating the Impact of Code Smell Refactoring on the
Energy Consumption of Android Applications. In: 2019 45th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). pp. 82–86. IEEE, Kallithea-Chalkidiki, Greece
(Aug 2019). https://doi.org/10.1109/SEAA.2019.00021

4. Bree, D.C., Cinnéide, M.Ó.: Inheritance versus delegation: which is more energy ef-
ficient? In: ICSE ’20: 42nd International Conference on Software Engineering, Work-
shops, Seoul, Republic of Korea, 27 June - 19 July, 2020. pp. 323–329. ACM (2020).
https://doi.org/10.1145/3387940.3392192, https://doi.org/10.1145/3387940.3392192

5. Chowdhury, S.A., Hindle, A., Kazman, R., Shuto, T., Matsui, K., Kamei, Y.: Greenbundle:
an empirical study on the energy impact of bundled processing. In: Atlee, J.M., Bultan, T.,
Whittle, J. (eds.) Proceedings of the 41st International Conference on Software Engineering,
ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. pp. 1107–1118. IEEE / ACM (2019).
https://doi.org/10.1109/ICSE.2019.00114, https://doi.org/10.1109/ICSE.2019.00114

6. Cruz, L., Abreu, R., Rouvignac, J.: Leafactor: Improving Energy Efficiency of Android
Apps via Automatic Refactoring. In: 2017 IEEE/ACM 4th International Conference on
Mobile Software Engineering and Systems (MOBILESoft). pp. 205–206 (May 2017).
https://doi.org/10.1109/MOBILESoft.2017.21

7. Cruz, L., Abreu, R.: Performance-based guidelines for energy efficient mobile applications.
In: 4th IEEE/ACM International Conference on Mobile Software Engineering and Systems,
MOBILESoft@ICSE 2017, Buenos Aires, Argentina, May 22-23, 2017. pp. 46–57. IEEE (2017).
https://doi.org/10.1109/MOBILESoft.2017.19, https://doi.org/10.1109/MOBILESoft.2017.19

8. Desrochers, S., Paradis, C., Weaver, V.M.: A validation of dram rapl power measurements.
In: Proceedings of the Second International Symposium on Memory Systems. p. 455–470.
MEMSYS ’16, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2989081.2989088, https://doi.org/10.1145/2989081.2989088

9. Efron, B.: The bootstrap and modern statistics. Journal of the American Statistical Association
95(452) (2000)

10. Fonseca, A., Kazman, R., Lago, P.: A manifesto for energy-aware software. IEEE Softw. 36(6), 79–
82 (2019). https://doi.org/10.1109/MS.2019.2924498, https://doi.org/10.1109/MS.2019.2924498

11. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston, MA,
USA (1999)

12. Gottschalk, M., Jelschen, J., Winter, A.: Energy-Efficient Code by Refactoring. Softwaretechnik-
Trends 33(2), 23–24 (May 2013). https://doi.org/10.1007/s40568-013-0030-4

13. Jae-Jin Park, Jang-Eui Hong, Sang-Ho Lee: Investigation for Software Power Consumption
of Code Refactoring Techniques. In: SEKE (2014)

14. Kerievsky, J.: Refactoring to Patterns. Pearson Higher Education (2004)

Title Suppressed Due to Excessive Length 21

15. Khan, K.N., Hirki, M., Niemi, T., Nurminen, J.K., Ou, Z.: Rapl in action: Experiences in using
rapl for power measurements. ACM Trans. Model. Perform. Eval. Comput. Syst. 3(2) (Mar 2018)

16. van der Kouwe, E., Andriesse, D., Bos, H., Giuffrida, C., Heiser, G.: Benchmarking Crimes:
An Emerging Threat in Systems Security. CoRR abs/1801.02381 (2018)

17. Kumar, M., Li, Y., Shi, W.: Energy consumption in Java: An early experience. In: 2017 Eighth
International Green and Sustainable Computing Conference (IGSC). pp. 1–8. IEEE, Orlando,
FL (Oct 2017). https://doi.org/10.1109/IGCC.2017.8323579

18. Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Oliveto, R., Di Penta, M., Poshyvanyk, D.:
Mining energy-greedy API usage patterns in Android apps: An empirical study. In: Proceedings
of the 11th Working Conference on Mining Software Repositories - MSR 2014. pp. 2–11. ACM
Press, Hyderabad, India (2014). https://doi.org/10.1145/2597073.2597085

19. Manotas, I., Bird, C., Zhang, R., Shepherd, D., Jaspan, C., Sadowski, C., Pollock, L., Clause, J.:
An empirical study of practitioners’ perspectives on green software engineering. In: Proceedings
of the 38th International Conference on Software Engineering - ICSE ’16. pp. 237–248. ACM
Press, Austin, Texas (2016). https://doi.org/10.1145/2884781.2884810

20. Manotas, I., Sahin, C., Clause, J., Pollock, L., Winbladh, K.: Investigating the impacts of web
servers on web application energy usage. In: 2013 2nd International Workshop on Green and
Sustainable Software (GREENS). pp. 16–23. IEEE, San Francisco, CA, USA (May 2013).
https://doi.org/10.1109/GREENS.2013.6606417

21. Morales, R., Saborido, R., Khomh, F., Chicano, F., Antoniol, G.: EARMO: an energy-aware
refactoring approach for mobile apps. IEEE Trans. Software Eng. 44(12), 1176–1206 (2018).
https://doi.org/10.1109/TSE.2017.2757486, https://doi.org/10.1109/TSE.2017.2757486

22. Moreira, E., Correia, F.F., Bispo, J.: Overviewing the liveness of refactoring for energy
efficiency. In: Conference Companion of the 4th International Conference on Art, Sci-
ence, and Engineering of Programming. pp. 211–212. ACM, Porto Portugal (Mar 2020).
https://doi.org/10.1145/3397537.3397538

23. Ournani, Z., Belgaid, M.C., Rouvoy, R., Rust, P., Penhoat, J., Seinturier, L.: Taming energy
consumption variations in systems benchmarking. In: Proceedings of the ACM/SPEC
International Conference on Performance Engineering. p. 36–47. ICPE ’20, Association for
Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3358960.3379142,
https://doi.org/10.1145/3358960.3379142

24. Ournani, Z., Rouvoy, R., Rust, P., Penhoat, J.: Tales from the code #1: The effective
impact of code refactorings on software energy consumption. In: Fill, H., van Sinderen,
M., Maciaszek, L.A. (eds.) Proceedings of the 16th International Conference on Software
Technologies, ICSOFT 2021, Online Streaming, July 6-8, 2021. pp. 34–46. SCITEPRESS (2021).
https://doi.org/10.5220/0010517900340046, https://doi.org/10.5220/0010517900340046

25. Palomba, F., Nucci, D.D., Panichella, A., Zaidman, A., Lucia, A.D.: On the impact of code
smells on the energy consumption of mobile applications. Inf. Softw. Technol. 105, 43–55 (2019).
https://doi.org/10.1016/j.infsof.2018.08.004, https://doi.org/10.1016/j.infsof.2018.08.004

26. Pinto, G., Castor, F., Liu, Y.D.: Understanding energy behaviors of thread management constructs.
In: Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications - OOPSLA ’14. pp. 345–360. ACM Press, Portland, Oregon,
USA (2014). https://doi.org/10.1145/2660193.2660235

27. Pinto, G., Liu, K., Castor, F., Liu, Y.D.: A Comprehensive Study on the Energy Efficiency
of Java’s Thread-Safe Collections. In: 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME). pp. 20–31. IEEE, Raleigh, NC, USA (Oct 2016).
https://doi.org/10.1109/ICSME.2016.34

28. Pinto, G., Soares-Neto, F., Castor, F.: Refactoring for Energy Efficiency: A Reflection on the State
of the Art. In: 2015 IEEE/ACM 4th International Workshop on Green and Sustainable Software.
pp. 29–35. IEEE, Florence, Italy (May 2015). https://doi.org/10.1109/GREENS.2015.12

29. Rodriguez, A.: Reducing Energy Consumption of Resource-Intensive Scientific Mobile
Applications via Code Refactoring. In: 2017 IEEE/ACM 39th International Conference on

22 Z. Ournani et al.

Software Engineering Companion (ICSE-C). pp. 475–476. IEEE, Buenos Aires, Argentina (May
2017). https://doi.org/10.1109/ICSE-C.2017.33

30. Rodriguez-Cancio, M., Combemale, B., Baudry, B.: Automatic microbenchmark generation to
prevent dead code elimination and constant folding. In: Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering. p. 132–143. ASE 2016, Association for
Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2970276.2970346,
https://doi.org/10.1145/2970276.2970346

31. Samir Hasan, Rachary King, Munawar Hafiz: Energy Profiles of Java Collections Classes. In:
ICSE (2016)

32. Tsantalis, N., Ketkar, A., Dig, D.: Refactoringminer 2.0. IEEE Transactions on Software
Engineering (2020). https://doi.org/10.1109/TSE.2020.3007722

33. Tsantalis, N., Mansouri, M., Eshkevari, L.M., Mazinanian, D., Dig, D.: Accurate and efficient
refactoring detection in commit history. In: Proceedings of the 40th International Conference
on Software Engineering. pp. 483–494. ICSE ’18, ACM, New York, NY, USA (2018).
https://doi.org/10.1145/3180155.3180206, http://doi.acm.org/10.1145/3180155.3180206

34. Verdecchia, R., Procaccianti, G., Malavolta, I., Lago, P., Koedijk, J.: Estimating energy impact
of software releases and deployment strategies: The kpmg case study. In: 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM). pp.
257–266 (2017). https://doi.org/10.1109/ESEM.2017.39

35. W G P Silva, Lisane Brisolara, Corrêa, U.B., Carro, L.: Evaluation of the impact of code refactoring
on embedded software efficiency. Unpublished (2010). https://doi.org/10.13140/2.1.1481.8249

