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A notion of t-designs in the symmetric group on n letters was introduced by Godsil in 1988. In particular t-transitive sets of permutations form a t-design. We derive upper bounds on the covering radius of these designs, as a function of n and t and in terms of the largest zeros of Charlier polynomials.

Introduction

Packing codes in the symmetric group for the Hamming distance have been studied since the 1970s [START_REF] Blake | Coding with permutations[END_REF]. See [START_REF] Cameron | Permutation codes[END_REF] for a recent survey. Note that transitive sets of permutations are more abundant than t-transitive groups of permutations that only exist ( apart from trivial examples) for t ≤ 6 [START_REF] Blake | Coding with permutations[END_REF][START_REF] Cameron | Permutation codes[END_REF]. In [START_REF] Cameron | Covering radius for sets of permutations[END_REF] covering codes in the symmetric group are considered. In particular it is shown there that t-transitive groups in the symmetric group S n on n letters have covering radius for the Hamming distance at most n -t, and that this bound is tight.

In the present paper, we prove bounds of similar order for t-designs in S n in the sense of Godsil [6,[START_REF] Godsil | Algebraic Combinatorics[END_REF][START_REF] Godsil | Polynomial spaces[END_REF]. These objects are defined in the setting of polynomial spaces, a generalization of association schemes [START_REF] Bannai | Algebraic Combinatorics I : Association Schemes[END_REF][START_REF] Delsarte | An algebraic approach to the association schemes of Coding Theory[END_REF]. An alternative definition in the language of distance degree regular spaces can be found in [START_REF] Shi | Designs in finite metric spaces: a probabilistic approach, Graphs and Combinatorics[END_REF][START_REF] Shi | Designs, permutations, and transitive groups[END_REF]. It is known that t-transitive groups are t-designs, but the converse is not generally true. To derive these bounds we extend the method of [START_REF] Solé | Packing radius, covering radius and dual distance[END_REF] from the Hamming space to the space of permutations. This method is based on the polynomials orthogonal w.r.t. the weight distribution of the cosets of the code considered. If the dual distance of the code is large enough, these polynomials coincide with the celebrated Krawtchouk polynomials [START_REF] Szegö | Orthogonal polynomials[END_REF], and the zeros of these can be used to bound the extreme points of the distribution. In that coding analogy, Charlier polynomials and their zeros play the role of Krawtchouk polynomials. Charlier polynomials have already appeared implicitly in the study of permutation groups, in the work of Frobenius, who proved that the first k power moments of the statistics of fixed points coincide with that of a Poisson law up to order k [START_REF] Frobenius | Uber die characktere der mehrfach transitive gruppen[END_REF]. But we know that they are orthogonal wrt that distribution on the real line [START_REF] Koekkoek | The Askey scheme of hypergeometric orthogonal polynomials and its q-analogue[END_REF]. An important difference between these two families of orthogonal polynomials is that the integrality of the zeros of Charlier polynomials is easier to decide. This technical point simplifies the proofs of the bounds in comparison with the coding situation.

The note is arranged as follows. The next section collects notions and definitions needed for the other sections. Section 3 recalls the current results on t-designs of permutations. Section 4 contains the main results.

Background material 2.1 Permutations groups

A permutation group G acting on a set X of n elements is transitive if there is only one orbit on X.

It is t-transitive if it is transitive in its action on X t the set of distinct t-tuples from X. It is sharply t-transitive if this action is regular, concretely if |G| = n! (n-t)! .
We extend this terminology by relaxing the group hypothesis to a set of permutations action on X. It is well-known amongst geometers and group theorists that a set of sharply 2-transitive permutations on a set of size n is equivalent to the existence of a projective plane P G(2, n), that is to say a 2 -(n 2 + n + 1, n + 1, 1) design [START_REF] Cameron | Permutation codes[END_REF].

Permutation codes

Consider the symmetric group on n letters S n with metric

d S (σ, θ) = n -F (σθ -1 ),
where F (ν) denotes the number of fixed points of ν. The space (S n , d S ) is a metric space. Let w k denote the numbers of permutations on n letters with k fixed points. A generating function for these numbers (sometimes called rencontres numbers) is

n k=0 w k u k = n! n j=0 (u -1) j j! , as per [19]. It is clear that d S is not a shortest path distance since d S (σ, θ) = 1 is impossible.
Codes in (S n , d S ) were studied in [START_REF] Tarnanen | Upper bounds on permutation codes via linear programming[END_REF] by using the conjugacy scheme of the group S n . For next paragraph, define

E i = {(x, y) ∈ S 2 n | d S (x, y) = i}
for all i ∈ {0, 1, . . . , n}. In that range of i, write

v i = |E i |/n!. Note that v i = w n-i . If Y ⊆ S n
is any set of permutations its covering radius ρ(Y ) is defined as

ρ(Y ) = max{min{d S (x, y) | y ∈ Y } | x ∈ S n }.

Permutation designs

If D is any non void subset of S n we define its frequencies as

∀i ∈ [0..n], f i = |D 2 ∩ E i | |D| 2 .
Thus f 0 = 1 |D| , and

n i=0 f i = 1. Note also that if D = S n , then f i = v i n! . Definition 1. The set D ⊆ X is a t-design for some integer t if n j=0 f j j i = n j=0 v j n! j i .
for i = 1, . . . , t.

(Note that trivially n j=0 f j j 0 = 1 so that we do not consider i = 0.) Thus, distances in t-designs are very regularly distributed. For a 2-design, for instance, the average and variance of the distance coincide with that of the whole space.

Remark: Our notion of design is a special case of designs in polynomial spaces of [START_REF] Godsil | Algebraic Combinatorics[END_REF].

Orthogonal polynomials

Definition 2. We define a scalar product on R[x] attached to D by the relation

f, g D = n i=0 f i f (i)g(i).
Thus, in the special case of D = S n we have

f, g Sn = 1 n! n i=0 v i f (i)g(i).
We require the so-called Charlier polynomials.

Let

C k (x) = (-1) k + k i=1 (-1) k-i k i x(x -1) • • • (x -i + 1).
An exponential generating function is given in [13, (1.12.11)] as:

e t (1 -t) x = ∞ n=0 C n (x) t n n! .
Thus, for concreteness,

C 0 (x) = 1, C 1 (x) = x -1, C 2 (x) = x 2 -3x + 1.
The scalar product attached to the space (S n , d S ) is then

f, g Sn = 1 n! n k=0 w n-k f (k)g(k).
It is remarkable that the following orthogonality relation is not found in the classical treatises [START_REF] Koekkoek | The Askey scheme of hypergeometric orthogonal polynomials and its q-analogue[END_REF][START_REF] Szegö | Orthogonal polynomials[END_REF] on orthogonal polynomials. See [15, Lemma 1] for a proof. Proof. Define P s (x) = C s (x)/(n -x -x(s)). Since P s is a polynomial of degree < s, we have, by orthogonality C s , P s Sn = 1, C s P s Sn = 0.

The degree of C s P s is s + s -1 ≤ t, we have by definition of a t-design

1, C s P s D = 1, C s P s Sn = 0.
Since, for a given σ ∈ S n , the translate σD is also a t-design, we can write

1, C s P s σD = 0 = n i=0 f i C s P s (i),
where the f i 's are the frequencies of σD. Note that the sign of

C s P s = C s (x) 2 (n -x -x(s))
is that of n -x -x(s). If we assume, looking for a contradiction, that ρ(D) ≥ n -x(s) we see that all terms in the above sum being nonnegative, must be zero. Hence all distances of σ to D must be roots of C s , which is impossible for s > 1, by Lemma 4.

Example 1. Computing the roots of C k (x) using Wolfram online yields

• If t = 2 then s = 1 and ρ(D) < n -1, hence ρ(D) ≤ n -2, since x(1) = 1.
• If t = 3 or t = 4 then s = 2 and ρ(D) ≤ n -3, since x(2) ≈ 2.616.

• If t = 5 or t = 6 then s = 3 and ρ(D) ≤ n -5, since x(3) ≈ 4.115.

• If t = 7 or t = 8 then s = 4 and ρ(D) ≤ n -6, since x(4) ≈ 5.544.

In the cases t = 3, 5 our bound coincides with that of [START_REF] Cameron | Covering radius for sets of permutations[END_REF]. For t = 2, 4, 6, 7 it is weaker by one unit.

In general it is known that x(k) ≤ k + 2 √ k + 1. See [START_REF] Krasikov | Bounds for zeros of the Charlier polynomials[END_REF]Th. 4]. It can be shown that x(k) = Ω( √ k) by [1, Theorem 3.1], combined with estimates on the largest zero of Hermite polynomials [START_REF] Dimitrov | Sharp bounds for the extreme zeros of classical orthogonal polynomials[END_REF].

If the strength is small, a direct power moment method is often more effective.

Theorem 3. If D is a 1-design of S n then ρ(D) ≤ n -1.
Proof. By Lemma 2, we know that the average distance in the shifted design σD is n -1. hence d(σ, D) ≤ n -1. Since σ is arbitrary in S n , the result follows.

Thus, for t = 1 also, our bound coincides with that of [START_REF] Cameron | Covering radius for sets of permutations[END_REF].

Conclusion

In this note, we have studied the covering radius of permutation designs. We have obtained a general upper bound (Theorem 1) on that quantity, dependent on the largest zero x(t) of the Charlier polynomial of degree t. In order to compare Theorem 1 with the bound of [START_REF] Cameron | Covering radius for sets of permutations[END_REF], we would need an asymptotic equivalent of x(t) when t → ∞. We could not find any such result in the literature of orthogonal polynomials [START_REF] Area | Zeros of classical orthogonal polynomial of a discrete variable[END_REF][START_REF] Krasikov | Bounds for zeros of the Charlier polynomials[END_REF][START_REF] Koekkoek | The Askey scheme of hypergeometric orthogonal polynomials and its q-analogue[END_REF][START_REF] Szegö | Orthogonal polynomials[END_REF]. This is the main open problem.

Lemma 1 .

 1 For a given n ≥ 1, the reversed Charlier polynomials C k (x) = C k (n -x) satisfy the orthogonality relation C r , C s Sn = r!δ rs , for r, s ≤ n/2, where δ denotes the Kronecker symbol.
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Structure theorems

The following result is derived in [START_REF] Conder | of Combinatorial and Graph-Theoretical Problems in Linear Algebra[END_REF], and in a different language in [START_REF] Shi | Designs, permutations, and transitive groups[END_REF]. Theorem 1. If D ⊆ S n is a t-transitive permutation group then it is a t-design in (S n , d S ). If D ⊆ S n is a t-design that is a subgroup of S n , then it is a t-transitive permutation group.

We require the following characterization of 1-designs from [START_REF] Shi | Designs, permutations, and transitive groups[END_REF].

this condition is satisfied if we have n permutations at pairwise distance n when

Main result

We begin with two Lemmas on the zeros of Charlier polynomials.

Lemma 3. The polynomial C k has exactly k real zeros in (0, ∞).

Proof. Direct application of Theorem 3.3.1 of [START_REF] Szegö | Orthogonal polynomials[END_REF] to the Charlier polynomials which are orthogonal wrt the probability measure of a Poisson law of parameter one [17, p.34].

In the following, we will denote by x(k) the largest zero of C k . This definition makes sense by Lemma 3.

Define the half-strength of a t-design as s = t+1

2 . The next result, which motivates this note, derives an upper bound on the covering radius of a design of given half-strength. Theorem 2. If D is a design of S n of half-strength s > 1, then ρ(D) < n -x(s).