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Abstract

Tree matching techniques have been investigated in many fields, including
web data mining and extraction, as a key component to analyze the content
of web pages. However, when applied to existing web pages, traditional tree
matching approaches, covered by algorithms like Tree-Edit Distance (TED)
or XyDiff, either fail to scale beyond a few hundred nodes or exhibit a rela-
tively low accuracy.

In this article, we therefore propose a novel algorithm, named Similarity-
based Flexible Tree Matching (SFTM), which enables high accuracy tree
matching on real-life web pages, with practical computation times. We ap-
proach tree matching as an optimisation problem and leverage node labels
and local topology similarity in order to avoid any combinatorial explosion.
Our practical evaluation demonstrates that SFTM significantly improves the
state of the art in terms of accuracy, while allowing computation times sig-
nificantly lower than the most accurate solutions. By gaining on these two
dimensions, SFTM therefore offers an affordable solution to match complex
trees in practice.

Keywords: Web, Tree matching, Information Extraction

1. Introduction

The success of Internet has led to the publication and the delivery of
a deluge of structured content. Nowadays, web services and applications
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are heavily adopting tree-based documents to structure and transfer online
content. However, these web pages keep evolving over time and keeping
track of such changes remains a critical issue for the ecosystem and the
research community. Examples of usages that require to detect or track
changes in web pages include web extraction [20, 29, 30], web testing [3,
22], comparison of web service versions [7], web schema matching [8], and
automatic re-organization of websites [13].

To date, few solutions are specifically designed or tested to match and
compare two web pages. However, the more general question of tree matching
has been extensively studied by two families of solutions applicable to the
problem of web page matching: 1. Tree Edit Distance (TED) [24] and TED-
related solutions, and 2. XML differentiation (diff) solutions.

TED is the first and most widely known approach to match trees. The
matchings computed by TED solutions are optimal and there have been
much effort into developing openly available efficient implementations of the
algorithm [17, 18, 19]. Despite these efforts, TED remains costly to compute.
A recent study [1] theoretically showed that no algorithm could compute the
optimal TED in less than O(N3) worst time complexity. To address TED’s
limitations, several restrictions to TED have been developed. These TED-
related algorithms add constraints to the produced matching allowing to
trade accuracy for speed.

XMLdiff solutions aim to find the sequence of editions between two XML
trees. The approach is similar to TED, but solutions sometimes make use of
XML specificities. For example, the most widely-known XMLdiff solution—
XyDiff [4]—is extremely fast, but makes heavy use of XSD schemas and
XML primary keys, which cannot be assumed on for any web page. With-
out such an additional information, the algorithm unfortunately yields low-
accuracy results.

Overall, when matching two web pages, even the most efficient TED
implementation [19] offers far from optimal accuracy (69% of precision in
average in our empirical evaluation) for computation times often reaching
several seconds. The lack of accuracy may be due to the restrictions TED
solutions impose on the produced matching: ancestors and siblings order
must be preserved. However, such restrictions do not hold for web pages and
Figure 1 illustrates how TED can report biased matchings, even on simple
trees.

To address these restrictions when attempting to match two web doc-
uments, [7] extended TED with some additional move operations executed
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Figure 1: Example of matching biased by the TED (as computed by APTED).

a posteriori to address the ancestry restriction and [14, 13] developed her own
Flexible Tree Matching (FTM) algorithm to address the ancestry restriction
problem. Unfortunately, while FTM provides a truly restriction-free match-
ing, its high complexity does not allow FTM to scale beyond more than a few
dozens of nodes, which is far below the average size of real-life web pages.

In the line of the aforementioned work, this article therefore aims at en-
abling the fast and non-restricted comparison of complex web pages. In
particular, we propose an alternative to the state-of-the-art FTM algorithm,
named Similarity-based Flexible Tree Matching (SFTM), that leverages sim-
ilarity metrics to speed up the comparison of complex trees. SFTM shares
the properties of FTM to offer a non-restricted tree matching, while offer-
ing computation times much lower than FTM, even on restricted versions of
the problem. To match two web page trees, the approach taken by SFTM
strongly differs from traditional techniques. In particular, existing matching
algorithms are structure-centric: they leverage the structure of both trees to
select the nodes to visit and compare. SFTM instead relies on a label-centric
approach: it prunes the space of possible matchings using nodes’ label and
considers the tree topology a posteriori to propagate information contained
in the nodes.

We compared SFTM to other state-of-the-art solutions on a large dataset
of popular web pages. SFTM showed almost twice more efficiency than the
best existing solution. Overall, our algorithm SFTM allows to consistently
match real-life web pages with high precision (89% precision on average) in
reasonable time (182ms on average).
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The code for both SFTM and its benchmark is available openly.1
The remainder of this article is organized as follows. Section 2 and 3 cover

related work, with section 3 focusing in details on the Flexible Tree Matching
(FTM) original algorithm. Section 4 presents Similarity-based Flexible Tree
Matching (SFTM), our extension of FTM that leverages the node labels
and local topology similarity to guide the comparison. Section 5 thoroughly
evaluates our solution against the state of the art on a realistic dataset of web
documents. Section 6 discusses the threats to validity of our contribution.
Section 7 concludes and overviews some perspectives for this work.

2. Related Work

Tree Edit Distance (TED). Comparing two trees is a problem that has
been at the center of a significant amount of research. In 1979, Tai [24]
introduced the Tree Edit Distance (TED) as a generalization of the standard
edit distance problem applied to strings. Given two ordered labeled trees
T and T ′, the TED is defined as the minimal amount of node insertion,
removal or relabel to transform T into T ′, while different cost coefficients can
be assigned to each type of operation. By following an optimal sequence of
operations applied to T , it is possible to match the nodes between T and
T ′. This problem has been extensively studied since then to reduce the space
and time complexity of the algorithm that computes the TED. To the best of
our knowledge, the reference implementation available today is the All-Path
Tree Edit Distance (APTED) [17, 18, 19] with a complexity of O(n2) in space
and O(n3) in time in the worst case, where n is the total number of nodes
(n = |T1| + |T2|). In our work, we consider APTED as one of the baselines
to evaluate our contribution.

[1] showed that TED cannot be computed in worst-case complexity lower
than O(n3). In order to circumvent this limitation, several restricted ver-
sions of the TED problem have been formulated. The Constrained Edit
Distance [31, 32] is an edit distance where disjoint subtrees can only be
mapped to disjoint subtrees. The Tree Alignment Distance [9] is a TED
where all insertions must be performed before any deletion. The Top-Down
distance [21] is computable in O(|T |× |T ′|), but imposes as a restriction that
the parents of nodes in a mapping must be in the mapping. The Bottom-Up

1https://anonymous.4open.science/r/7ae57bd7-3b29-463a-88a4-d31c04ecfcd2/
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distance [25] between trees builds a mapping in linear time, but such map-
ping must respect the following constraint: if two nodes have been mapped,
their respective children must also be part of the mapping. [20] proposes a
variation of the Top-Down mapping, called Restricted Top-Down Mapping
(RTDM), where replacement operations are restricted to the leaves of the
trees, which delivers considerable speed gains, despite a theoretical worst
case time complexity still in O(N2). By definition TED already sets strong
restrictions on produced matchings: sibling order and ancestry relationships
must be preserved [31]. These restrictions are particularly problematic when
matching two full web pages together [13]. While above solutions improve
computation times, they answer a restricted version of the TED problem
leading to an even more restricted set of possible matchings.

XMLdiff. While TED-related approaches focus on computing a distance
between trees, another part of the scientific literature focuses on inferring the
set of edit operations between two XML documents. Most XMLdiff solutions
use an intermediary matching step in order to compute the diff. Computing
the set of diff from a given matching is quite straightforward, which means
that most works on the subject actually focus on the matching part. XyD-
iff [4] matches and computes the diff of two XML documents very quickly.
To do so, XyDiff hashes subtrees from both documents and prunes the
space of matching possibilities by matching subtrees with identical hashes.
The algorithm can also make use of id attributes and XSD schemas if they
exist. On the other end of the spectrum, X-Diff [28] favors accuracy over
speed and computes an optimal matching using hashings of path signatures.
XKeyDiff [6] builds on XyDiff and adds matching logic based on XML
primary keys, XML_SIM_CHANGE [26] and XREL_CHANGE_SQL [23] match XMLs
stored in relational databases using SQL. Phoenix [16] interestingly uses a
more flexible similarity metric between nodes (e.g., to compare the content
of two nodes, they use the Longest Common Sequence) and choose how to
match each subtree by recursively applying the Hungarian algorithm [12].
Unfortunately, Phoenix runs in O(n4) and yields less accurate results than
X-Diff. In our empirical evaluation, we evaluated our solution along with
XyDiff, which is widely known and used for XMLdiff, has an efficient im-
plementation openly available and runs in scalable computation times.

Flexible Tree Matching (FTM). In [13], TED is found to be unprac-
tical when applied on DOM, as the resulting matching enforces ancestry
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relationship—i.e., once two nodes n, n′ have been matched, the descendants
of n can only be matched with the descendants of n′, and vice versa. Conse-
quently, Kumar et al. [13, 14] introduced the notion of Flexible Tree Matching
(FTM), which relaxes the ancestry relationship constraint at the price of a
stronger complexity. It restricts its use to small HTML trees composed of
less than a hundred nodes, thus making it unpractical for modern web doc-
uments, often including more than a thousand nodes. Furthermore, to the
best of our knowledge, there is no public implementation of FTM that can
be considered for comparison.

We therefore aim at reducing the complexity of the FTM algorithm in or-
der to scale on complex web pages without enforcing restrictions on produced
tree-matching solutions. While all above contributions are structure-based,
we build on FTM’s approach and rather offer a flexible, label-based matching
where labels are used to match nodes and structure is only used a posteriori
to improve the matching.

Our contributions therefore read as follows:
1. we develop an algorithm inspired by FTM, coined as Similarity-based

Flexible Tree Matching (SFTM), by leveraging the notion of label simi-
larity, and similarity propagation to reduce the computation time, and

2. we apply mutations on real-life web documents to provide a thorough
evaluation of our implementation of SFTM, showing that it outper-
forms state-of-the-art approaches in terms of efficiency.

3. Flexible Tree Matching (FTM)

The Similarity-based Flexible Tree Matching (SFTM) we introduce in this
article can be considered as an extension of the Flexible Tree Matching (FTM)
algorithm. This section therefore introduces the FTM algorithm, as origi-
nally proposed by Kumar et al. [13]. We first describe the notations used
throughout the rest of the article, and then describe the main steps of the
algorithm.

3.1. FTM Notations and Overview
We define an ordered tree T as a directed graph (N,≺) where N is the

non-empty set of nodes and ≺ a total order relation that can relate a child
node c ∈ N to its parent p ∈ N , as c ≺ p, or siblings, as s ∈ N , as c ≺ s.
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Figure 2: Building a bipartite graph G representing the set of all possible matchings (left)
and then compute the optimal full matching (right).

In particular, we choose a total order rather than a partial one as the
order of siblings has a strong semantic value for a webpage (e.g. the order of
paragraphs).

In this article, we always considermatchings between two trees T = (N,≺
) and T ′ = (N ′,≺′).

Given two trees T and T ′, the FTM algorithm relies on the complete
bipartite graph G between N∗ = N ∪ Θ and N ′∗ = N ′ ∪ Θ′, where Θ and
Θ′ are no-match nodes. The fact that G is complete means that every nodes
of T ∗ shares exactly one edge with every nodes of T ′∗. Formally, we thus
have E(G) = N∗ ×N ′∗ where E(G) are the edges of the graph G. An edge
e = (n, n′) ∈ E(G) between n ∈ N∗ and n′ ∈ N ′∗ represents the matching of n
with n′. Each edge linking a tuple (n, n′) is called a match. So, intuitively, G
represents all possible matchings between nodes of T ∗ and T ′∗ (cf. Figure 2).

Formally, we callmatching and noteM ⊂ E(G), a subset of edges selected
from G. A matching M is said to be full iff each node in N has exactly one
edge in M that links it to a node in N ′∗ and, inversely, each node in N ′

has exactly one edge in M that links it to a node in N∗. Since matchings
need to be full, the auxiliary no-match nodes Θ1,Θ2 are required to cope
with insertion and deletion operations. The set of possible full matchings
is restricted to the set of matchings satisfying that every node in N ∪ N ′ is
covered by exactly one edge. No-match nodes are the only nodes allowed to
be involved in multiple edges.

Given an edge e = (n, n′) ∈ E(G) linking n to n′, FTM defines the cost
c(e) to quantify how different n and n′ are, considering both their labels and
the topology of the tree. Starting from the bipartite graph G describing all
possible matchings, the idea behind FTM is to compute the costs c(e) of
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Figure 3: Steps to compute a full matching between two trees T and T ′. Upper part covers
FTM, while lower part is SFTM.

each edge e ∈ E(G) and to find the optimal matching with respect to these
estimated costs—i.e., to select the set of edges M ⊂ E(G), such that M is
full and c(M) is minimal (where c(M) =

∑
e∈M c(e)).

The upper part of Figure 3 describes the main steps involved in computing
the final full matching between T and T ′.

3.2. Cost Estimation
As FTM provides a wide flexibility regarding possible matchings, the de-

sign of the cost function c is a key parameter in order to obtain a matching
that takes into account both the labels and the topology of the trees. Typi-
cally, the cost c(e) of an edge e between two nodes n and n′ is estimated by
FTM as follows:

c(e) =

{
wn if n or n′ ∈ {Θ,Θ′}
wrcr(e) + waca(e) + wscs(e) otherwise

(1)

where Θ,Θ′ are no-match nodes, wn is the penalty when failing to match one
of the edge ends, cr(e), ca(e) and cs(e) are the cost of relabeling, violating
ancestry relationship and violating sibling group, respectively, and wr, wr
and wr their associated weight in the cost function. wn, wr, cr, wa and ws are
parameters of the cost function that depend on the kind of matching the user
requires. By extension, we note c(M) =

∑
e∈M c(e) the cost of a matching

M .
Given e = (n, n′), the ancestry and sibling costs, ca(e) and cs(e), model

the changes in topology that matching n with n′ entails. Unfortunately, we
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can only estimate the costs ca and cs if we have access to a full matching, as
both costs require a knowledge on how other nodes in the tree were matched
(e.g., ca involves counting the number of children of n matched with nodes
that are not children of n′). In order to circumvent the problem, FTM rather
considers the approximate costs ĉa, ĉs that can be estimated from bounds on
the different components of the cost c. Practically, in order to generate one
possible full matching, FTM iteratively selects edges in G and, each time
an edge is selected, the bounds of c are tightened (we can approximate c
more precisely), which means that the costs ĉa, ĉs keep being re-estimated
along iterations (cf. upper part of Figure 3). The need to re-estimate the
approximated costs after each edge selection actually imposes some critical
limitations on the scalability of the algorithm.

3.3. Metropolis Algorithm
Finding the optimal matching, given the graph G and the cost function

c is a challenging problem, the authors even proved in [14] that this problem
is NP-hard. Consequently, the authors described how to use the Metropo-
lis algorithm [15] to approximate the optimal matching. The Metropolis
algorithm provides a way to explore a probability distribution by random
walking through samples. FTM uses this algorithm to random walk through
several full matchings, and select the least costly. The Metropolis algo-
rithm requires to be configured with:

1. An initial sample (full matching) M0,
2. A suggestion function (alternative matching) Mt 7→Mt+1,
3. An objective function to maximize: f : M 7→ quality of M ,
4. The number of random walks before returning the best value.
Kumar et al. defines the objective function f by:

fFTM(M) = exp(−β c(M)) (2)

In order to suggest a matchingMt+1 from a previously accepted oneMt, FTM
selects a random number of edges from Mt to keep, sorts remaining edges by
increasing costs and iterate through the ordered edges with a probability γ
to select it. Once an edge e = (n, n′) is selected, all edges connected to n and
n′ are removed from G, and approximate costs need to be re-estimated for all
remaining edges, and then sorted so we can select another edge. The process
is repeated until an alternative full matching is obtained. Therefore, de-
spite using the Metropolis algorithm to reduce the time complexity of the
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problem, the overall algorithm remains prohibitively costly to compute (cf.
Section 5), notably due to the continuous re-estimation of the approximated
costs at each step of the full matching generation.

3.4. Complexity Analysis
The original FTM article [14] does not report on the complexity nor the

computation time of the algorithm. We, therefore, provide an analysis of
FTM’s theoretical complexity in order to compare it to the one of SFTM (cf.
Section 4.3).

When discussing complexity, to simplify the notations, we consider the
matching of two trees with the same number of nodes and we note N the
number of nodes of both trees.

Complete bipartite graph G. Building the complete bipartite graph requires
matching each node from T to one node from T ′, which requires O(N2)
operations.

Metropolis algorithm. For each iteration of the Metropolis algorithm,
FTM has to suggest a new matching. In the worst case, the algorithm should
choose among all N2 edges. Each time an edge between e1 and e2 is selected,
all other edges connected to e1 and e2 are pruned and remaining costs requires
to be re-estimated. It means that costs have to be re-estimated and sorted for
N2 edges, then (N − 1)2 edges (after selection and pruning) and so on, until
all edges have been selected or pruned. This implies that the total number
of times the costs are re-estimated and sorted is in O(

∑N
n=0 n

2) = O(N3).
Estimating the cost for a given edge linking e1 and e2 involves counting the
number of potential ancestry and sibling violations, which requires going
through all edges connected to siblings and children of e1 and e2. Even if
we assume the number of siblings and children is independent from N , it
still means that estimating the cost of one edge requires O(N) operations.
Thus, in the worst case, the amount of operations required by FTM for each
iteration of the Metropolis algorithm is in O(

∑N
n=0 n

3) = O(N4) (using
Faulhaber’s Formula).

Overall, the Metropolis step is the one with highest complexity, which
means that the complexity of the FTM algorithm is in O(N4) where N is
the number of nodes to match.
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4. Similarity-based FTM (SFTM)

Based on the above complexity analysis, Similarity-based Flexible Tree
Matching (SFTM) replaces the cost system of FTM by a similarity-based
cost that can be computed once a priori (cf. Figure 3). This approach
drastically improves computation times and rather exposes a parameter that
can be tuned to find the desired trade-off between computation time and
matching accuracy (cf. Section 5).

Given two trees T = (N,≺) and T ′ = (N ′,≺′), SFTM relies on the specifi-
cation of a similarity metric between nodes n ∈ N and n′ ∈ N ′. We compute
this similarity metric for all pairs of nodes (n, n′) using i) inverted indices
for labels and ii) label propagation and some penalization heuristics for the
topology. We build a bipartite graph G between nodes of T and T ′ using this
similarity metric to compute the costs and apply the Metropolis algorithm to
approximate the optimal full matching from G. This new similarity measure
allows SFTM to improve the FTM algorithm in two key aspects:

1. when building G, we do not create all |N | × |N ′| possible edges. We
only consider edges linking two nodes with a non-null similarity; and

2. when generating a full matching, costs do not need to be updated as
these costs solely depend on our similarity measure.

In this section, we therefore (a) introduce our new similarity metric, and
(b) describe how we leverage it to approximate the optimal full matching.

4.1. Overview of Similarity-based Matching
The similarity metric between nodes N and N ′ is computed in two main

steps: 1. we compute s0, the initial similarity function using only labels of
the trees individually, and then 2. we transform s0 to take into account
the topology of the tree and compute our final similarity function s. The
computation of s0 leverages inverted index techniques traditionally used to
query text in a large document database. In our case, the documents we query
against are N , while queries are extracted from N ′. Figure 3 illustrates the
different steps described in this section.

4.1.1. Initial Similarity (step 1)
To compute the initial similarity s0 between N and N ′ (cf. step 1 in

Figure 3), we independently compare the labels of N and N ′ using the Term
Frequency-Inverse Document Frequency (TF-IDF). The resulting initial node
similarity s0 does not take the topology of the trees into account.

11



In order to take into account relabeling cost between nodes, some exist-
ing solutions (e.g., APTED) allow the user to input a pairwise comparison
function label(n), label(m) 7→ similarity score. However, computing this
similarity score for all the pairs of nodes requires O(N2) operations. Thus,
to reduce the number of operations, SFTM uses—instead—inverted indices:
given a tokenize function tokenize : n 7→ token list, SFTM 1. decomposes
each node n from N into a set of tokens (as defined by the tokenize function),
and then 2. iterates through tokens of nodes n′ from N ′ to increase the value
of s0(n, n′) for each token n and n′ have in common. Section 4.2.2 provides
a detailed description of the function tokenize we use in our evaluation.

Decomposing nodes from N into tokens allows SFTM to build an inverted
index TM (Token Map), which maps every token tk with the list of nodes
of N that contains tk. The idea behind the inverted index TM is to use the
information that a node n ∈ N contains a token as a differentiating feature
of n allowing to quickly compare it to nodes in N ′. If a token tk appears in
all nodes N , this token has no differentiating power. In general, the rarest
a token, the more differentiating it is. This idea is very common in Natural
Language Processing (NLP) and a common tool to measure how rare is a
token in TF-IDF [10] and more precisely, the Inverted Document Frequency
(IDF) part of the formula. Applying TF-IDF to our similarity yields the
following definition:

IDF (tk) = log(|N |/|TM [tk]|) (3)

s0(n, n
′) =

∑
tk∈TK

IDF (tk) (4)

Where TK = tokens(n)∩ tokens(n′). The function IDF is a measure of how
rare a token is, |TM [tk]| is the number of nodes containing the token tk and
tokens refers to the user input tokenize function. Intuitively, we retrieve the
tokens shared between nodes n and n′ and, for each common token tk, we
increase s(n, n′) by a high value if tk is rare and a low value if tk is common.
In Section 4.2, we provide a detailed implementation of how to compute the
initial similarity s0.

Tokens that appear in many nodes have little impact on the final score—
i.e., low IDF—yet have a very negative impact on the computation time. In
our algorithm, we expose the sublinear threshold function f : N 7→ f(N) <
N as a parameter of the algorithm. We use f to filter out all the tokens
appearing in more than f(N) nodes. Therefore, f provides a balance be-
tween computation time and matching quality: when N − f(N) decreases,
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computation times and matching quality increase. In Section 4.3, we discuss
how f(N) influences the worst-case theoretical complexity.

4.1.2. Local Topology (step 2)
s0 represents the similarity between node labels, but does not take into

account the topology of the trees. To weight in local topology similarities,
we propagate the score of each node pair to their offspring and siblings.
This idea of propagation is inspired by recent Graph Convolutional Network
(GCN) techniques [11].

The original FTM algorithm includes two terms in the cost function, ca
(ancestry cost) and cs (sibling cost), which reflect the topology of the trees.
Since we do not use these terms (as they require too much computation time),
we need our similarity score to reflect both the similarity of node labels and
the similarity of the local topology. Therefore, we first compute the score
matrix s0, based on the label similarity we described above, and then we
update this score to take into account the matching score of the parents of n
and n′. By doing so, n has a higher similarity score with n′ if their respective
parents or children are also similar.

Beginning at s0, at each step i and for all pairs that have a non-null initial
score {(n, n′) ∈ N ×N ′|s0 6= 0}, we first compute:

si(n, n
′)← si−1(n, n

′) + wi × si−1(p(n), p(n′)) (5)

where p(n) ∈ N refers to the parent of node n.
Similarly, we then increase the score of the parents of n, n′:

si(p(n), p(m))← si−1(p(n), p(n′)) + vi × si−1(n, n′) (6)

where w0, w1 . . . wP and v0, v1...vP are topology weights. We repeat the pro-
cess P times (P for propagation) where P is a parameter of SFTM. The
resulting function sP then reflects both label similarity and local topology
similarity.

Intuitively, at each iteration, we propagate information further up in the
tree. This is why, the weight sequences w and v should be decreasing so that
close kinship among nodes prevails. From our experiments, we advice the
following values for the P = 3 weights: w0 = 0.4, w1 = 0.04, w2 = 0.004 and
w0 = 0.8, w1 = 0.08, w2 = 0.008. These values were used and unchanged for
all results presented in the empirical evaluation 5, leading to high accuracy
on a large variety of web documents.
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4.1.3. Penalization (step 3)
There are two main drawbacks to the way we propagate the scores in

step 2: 1. the scores are still almost exclusively based on labels, 2. nodes with
many children may get an unfair score boost from the propagation.

While (2) can be fixed by normalizing the propagation according to the
number of children, the normalization would also potentially remove valuable
information. Instead, for each pair (n, n′), we rather apply a penalization
proportional to the difference between the number of children of n and n′:

s(n, n′) = sP × (1− penalty(n, n′)) (7)

where penalty(n, n′) 7→ [0, 1] is the children penalization defined by:

penalty(n, n′) =
|(|children(n)| − |children(n′)|)|
max(|children(n)|, |children(n′)|)

(8)

where |ch(n)| is the number of children nodes of n. This step yields the final
score function s, defined for each couple (n, n′).

4.1.4. Building the bipartite graph G (step 4)
Using our final score function s, we can now build the bipartite graph

G: we iterate over all nodes n ∈ N and we create an edge e = (n, n′) for
each pair of nodes such that sP (n, n′) 6= 0 and associate it with the cost
c(n, n′) = 1/(1 + sP (n, n′)). Our resulting cost function is thus defined as
follows:

cSFTM(e) =

{
wn, if n or n′ is a no-match node

1
1+sp(n,n′)

, otherwise
(9)

Importantly, unlike the bipartite graph built in the FTM algorithm, the
resulting bipartite graph GSFTM is not complete as only edges, such that
sp(n, n

′) 6= 0 are considered. This is one of the key differences allowing
SFTM to drastically improve computation times.

4.2. Implementation Details
In the previous section, we introduced the SFTM algorithm and described

how it compares to FTM. In this section, we describe more precisely how we
implement the different steps of SFTM.
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Figure 4: Creating the bipartite graph G from two example DOMs T, T ′. (1a,b) are the
input DOMs, (2a,b) the extracted tokens, (3) the inverted index TM , (4) the neighbours
dictionaries, and (5) the resulting bipartite graph G. For simplicity, the figure shows a
matching where IDF (tk) = 1, P = 0 and no-match nodes are not displayed.

4.2.1. Node Similarity (step 1, 2 and 3)
Let us consider two trees T and T ′. We first build the dictionary TM , an

inverted index—i.e., each entry of TM is a tuple (token, nodes) where token
is a token (usually a string) and nodes is a set of all n ∈ N that contains
token. Figure 4 (2a,b) depicts two examples of inverted index. We note
TMmap[key] the set of nodes whose key in TM is key. In Section 4.2.2, we
further describe how we sort HTML nodes into tokens.

Given the inverted index TM , we define the function IDF : tk 7→
log(|N |/|TM [tk]|). In order to limit the complexity of our algorithm, we
remove every token tk ∈ TM that is contained by more than f(N) =

√
N

nodes, where f is the chosen sub-linear threshold function. This is equivalent
to putting a threshold on IDF to only keep tokens {tk ∈ TM |IDF (tk) >
log(
√
N)}. Removing the most common tokens has a limited impact on

matching quality, since these are exactly the tokens that provide the least
information on the nodes they appear in.

Input:
n’: a node in N
TM : token map, dictionary of nodes from T per token
Result: neighbors: a dictionary of scores per node in T
neighbors← new Dictionary()
foreach tk in tokens(n’) do

foreach n in TM [tk] do
neighbors[n]+ = IDF (tk)

end
end
return neighbors

Algorithm 1: For a given node n′ ∈ N ′, compute similarity score
s0(n, n

′) with all n ∈ N , such that s0 > 0

Once we have the token index TM and the function IDF , we apply
Algorithm 1 on each node n′ ∈ N ′. In Algorithm 1, we first compute the
tokens of node n′ and, for each token tk, we use TM to retrieve the nodes n ∈
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N that contain the token tk. Each node n thus retrieved is considered as a
neighbor of n′—i.e., s0(n, n′) 6= 0. Finally, for each neighbour n of n′, we add
IDF (tk) to the current score s0(n, n′). At this point, we have a neighbors(n′)
dictionary for each node n′ ∈ N ′. Each neighbors(n′) dictionary contains
all non-null matching scores: ∀n ∈ keys(neighbors(n′)), neighbors(n′)[n] =
s0(n, n

′). Using the Equation 5, we can now easily compute sp and s.

4.2.2. Building the Token Vector
The actual labels are never directly used by SFTM. The algorithm only

leverages the tokens extracted from these labels. The way we choose to
extract the tokens contained in a node n thus strongly influences the quality
of our similarity score. We implemented the following function tokens to
report all the tokens of a node n. Given n, an HTML node representing a
tag:

<tag att_1="val_1" ... att_2="val_2">
CONTENT

</tag>

where l is the number of attributes, (atti, vali), i ∈ [1, l] are the attribute/-
value pairs of n and the absolute XPath of n is xPath(n). We decompose n
into the following tokens:

tokens(n) = {xPath(n), tag, att1..al, tok(val1)..tok(vall)} (10)

where tok is a standard string tokenizing function that takes a string and
splits it into a list of tokens on each non Latin character. The absolute XPath
of a node n in a tree is the full path from the root to the element where ranks
of the nodes are indicated when necessary—e.g., html/body/div[2]/p.

SFTM does not include the text content of the nodes in the extracted
token vectors. This decision allow to match pages in different languages or
containing different content (e.g. news website) in a robust way.

4.2.3. Building G (step 4)
Using Equation 9, we compute the cost c(n, n′) for each couple (n, n′)

where sp(n, n′) 6= 0. Then, for each node n′ ∈ N ′, we add one edge for all
nodes values(neighbours(n′)) ⊂ N .
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4.2.4. Metropolis Algorithm (step 5)
Once we built the graph G with its associated costs, we need to find the

set of edgesM in G that represents the best full matching between T and T ′.
In order to do so, we apply the Metropolis algorithm in a different way
than FTM does: 1. we adopt an alternative objective function, and 2. SFTM
matching suggestion function is faster to compute, as costs never need to be
re-estimated.

Typically, FTM uses the objective function fFTM(M) = exp(−β c(M)).
In the original FTM article, the authors noted that the parameter β seemed
to depend on |M |. In order to avoid this dependency, we therefore normalize
the total cost:

fSFTM(M) = exp(−β c(M)

|M |
) (11)

The function suggestMatching : Mi 7→ Mi+1 takes a full matching Mi and
returns a full matching Mi+1 related to Mi. In Algorithm 2,

1. selectEdgeFrom(edges) loops through edges (in order) and, at each
iteration j, has a probability γ ∈ [0, 1] to stop and return edges[j],

2. connectedEdges(edge), where edge connects u and v, returns the set
E of all edges connected to u or v (note that edge ∈ E).

In practice, we first compute all the connected nodes and edges before
storing them as dictionaries, so that the function connectedEdges in Algo-
rithm 2 can be computed in O(1) time. It is worth noting that, to allow
fast removal, the list remainingEdges is implemented as a double-linked
list. The parameter γ defines a trade-off between exploration (low γ) and
exploitation (high γ). For the Metropolis related parameters, we used mostly
the values advised in the original FTM article [14]: γ = 0.8, β = 2.5 and a
number of iterations of 10.

4.3. Complexity Analysis
We are interested in evaluating the time complexity of the algorithm

with respect to the size of both trees N . In our analysis, we consider that
Ntk = max(|tokens(n)|, n ∈ nodes(T )), the maximum number of tokens per
node is a constant since it does not evolve with N .

When building G, we first compute the inverted index TM , which re-
quires to iterate through the tokens of all the nodes in T , and thus implies a
complexity in O(N ·Ntk) = O(N).

To find the neighbours of nodes from T ′ using TM , we iterate through
all the nodes in T ′, while each node in T ′ has Ntk tokens. The number of
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Data: G : The bipartite graph
Input: Mi: A full matching
Result: Mi+1: the suggested full matching
Mi+1 ← []
remainingEdges← sortedEdges(g)
toKeep← randomInt(0, |Mi|)
for j = 0 ... toKeep do

edge ← remainingEdges.first
Mi+1.add(edge)
remainingEdges.removeAll(connectedEdges(edge))

end
while remainingEdges is not empty do

edge← selectEdgeFrom(remainingEdges)
Mi+1.add(edge)
remainingEdges.removeAll(connectedEdges(edge))

end
return Mt+1

Algorithm 2: Suggest a new matching

nodes containing a token is artificially limited to f(N). Thus, building the
similarity function s0 takes O(N · f(N)) time.

For each node n′ in T ′, we create an edge for each neighbor n of T . Each
token tk ∈ tokens(n′) adds up to f(N) neighbors. It means that the total
number of edges is in O(N ·Ntk · f(N)) = O(N · f(N)).

Before executing the Metropolis algorithm on G, we sort all the edges
by cost, which takes O(N · f(N) · log(N · f(N))) = O(N · f(N) · log(N)) (as
f(N) ≤ N). Finally, at each step of the Metropolis algorithm, we run the
suggestMatching function, which prunes a maximum of O(f(N)) neighbors
for each one of the N edges it selects.

Overall, sorting all edges requires the highest theoretical complexity:
O(N · f(N) · log(N)). If no threshold is set—i.e., f(N) = N—then the
worst-case overall complexity of SFTM is O(N2 · log(N)), which keeps out-
performing TED (O(N3)) and FTM (O(N4)).

In this evaluation, we used f(N) =
√
N , which leads to a theoretical

worst-case complexity in O(N ·
√
N · log(N)).
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5. Empirical Evaluation

The objective of this evaluation is to assess that:
1. the quality of the matchings reported by SFTM compares with the

baselines we selected—APTED and XyDiff—and
2. SFTM offers practical computation times on real-life web pages.

5.1. Input Web Document Dataset
We need to assess the ability of SFTM to match the nodes between two

slightly different web pages d and d′. To measure and compare the accuracy
of all studied solutions, we must have access to the ground truth matching
between d and d′—i.e., for each node n in d, what is the true matching node
n′ in d′.

To the best of our knowledge, there is no established and public bench-
mark that include such pairs of trees, along with the ground truth match-
ing of their nodes. Creating such a benchmark is challenging. Existing
matching solutions usually do not provide any qualitative empirical bench-
mark [2, 5, 9, 25, 27, 31] and challenging matching problems involve thou-
sands of nodes, which makes manual labeling error prone for humans (both
trees could not even be rendered on the same screen). Therefore, we built a
a semi-synthetic dataset built from mutations applied to real-life web pages,
thus obtaining a large-scale dataset in which the ground truth is known.

DOM mutation. To build a grounded dataset of (d, d′) pairs—i.e., where the
ground truth (perfect matching) is known—we developed a mutation-based
tool that operates as follows:

1. we construct the DOM d from an input web document,
2. for each element of d, we generate a unique signature attribute,
3. for each original DOM d, we randomly generate a set of mutated ver-

sions: the mutants. Each mutant d′ is stored along with the precisely
described set of mutations that was applied to d to obtain d′. Impor-
tantly, the signature tags of the elements in d are transferred to d′,
which constitutes the perfect matching between d and d′. These signa-
tures are obviously ignored when applying the matching algorithms.

In our tool, most attention has been dedicated to the choice of relevant
mutations to apply. We therefore relied on the expertise of web developers to
identify the most common changes that can apply to DOM. Their feedback
led to the identification of the following list of mutation operations:
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Category Mutation Operators
Structure Remove, duplicate, wrap, unwrap, swap
Attribute Remove, remove words
Content Replace, remove, remove words, change letters

where Structure: remove removes an element and its children (recursively),
duplicate duplicates a subtree, applies mutate to duplicated subtree and in-
sert the subtree anywhere in the tree, wrap wraps an element within a new
div container, unwrap removes an element e and attach the children of e to
the parent of e, swap swaps the position of two sibling elements, Attribute:
remove removes an attribute with its value, Attribute: remove words removes
a random number of tokens from the value of an attribute, Content: replace
replaces the content of an element with a random text whose size is close to
the original, Content: change letters replaces a few letters in the content of
an element, Content: remove removes the content of an element, Content:
remove words removes random tokens from the content of an element.

We believe that the above mutations are representative of a wide range of
changes that apply in web pages, although they may not perfectly cover all
the cases encountered in practice. In particular, the distribution of these mu-
tations might not be uniform in real life—i.e. some mutations might happen
more than others. Yet, this evaluation intends to compare the sensitivity of
studied matching algorithms to common mutations, which remains a relevant
context to estimate and compare their quality.

Input document sample. We fed our mutation tool with the home pages of
the Top 1K Alexa websites.2 Alexa provides a list of websites ordered by
popularity, thus providing a representative list of web pages of variable com-
plexities. For each original DOM d, we created 10 mutants d′0 . . . d′9 with a
ratio of mutated nodes ranging from 0 to 50% of the total number of nodes
on the page, |nodes(d)|.

Overall, we obtained a dataset composed of 6, 276 document pairs d, d′n
that could be correctly processed by the algorithms under study. Figure 5
reports on the size distribution, in number of nodes, of original and mutated
web documents included in this dataset.

2https://www.alexa.com/topsites

20



0 500 1000 1500 2000 2500 3000
# Nodes

0

200

400

600

800

1000

1200

1400

Co
un

t

Figure 5: Distribution of DOM sizes (in terms of nodes) in the dataset.

5.2. Baseline algorithms
Given no implementation of the original FTM algorithm is available, we

implemented and evaluated it, but the computation times and space com-
plexity of this implementation were too high to run the algorithm on real-life
web documents (e.g. for a tree of 58 nodes, the computation took 1 hour).

We thus mainly compare SFTM to APTED and XyDiff. APTED is
the reference implementation of TED that reports on the best performance
so far. The implementation of APTED used for this evaluation is the one
provided by the authors of [19, 18]. Since APTED yields the optimal solution
to the TED problem, TED is theoretically superior in accuracy to all more
restricted solutions (see Section 2).

XyDiff is the most widely-known and used algorithm to efficiently match
XML documents. Unlike APTED, XyDiff does not return an optimal result,
it instead focuses on speed which makes it a complementary candidate to
APTED as a baseline. In order to use XyDiff on HTML pages we had
to convert the HTML into XHTML, which mostly means closing unclosed
tags (e.g., input tags). We used an existing open source implementation of
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XyDiff.3 We consider the pairs (d, d′) taken from the above input dataset,
and we systematically ran SFTM, APTED, and XyDiff algorithms with
each pair to match d with d′ on the same machine.

Ground truth. When building the dataset, we keep track of nodes’ signature
so that we always know which nodes from d should match with nodes from
d′. This ground truth is hidden from the evaluated algorithms, but is used
a posteriori to measure and compare the quality of the matchings computed
by the algorithms under evaluation.

5.3. Experimental Results
All the results in this section have been obtained by running all three algo-

rithms on the same server containing 252GB of RAM and an Intel(R) Xeon(R)
CPU E5-2660 v3 @ 2.60GHz.

Matching quality. The signature tags injected in nodes from d and d′ allow
us to assess the quality of the matchings by comparing to the ideal matching
Mideal. For the qualitative analysis, we model the tree matching algorithm as
a binary classification problem: Given two trees T and T ′ containing the set
of nodes N and N ′ respectively, N×N ′ is the set of all possible matches. We
consider the matching Ma ⊂ N × N ′ produced by a tree matching solution
a. Then, a match e = (n, n′) ∈ M is classified as positive by a if e ∈ Ma.
All matches that should be positive are in the ideal matching Mideal. All
possibilities are summarized in the following confusion matrix:

e ∈Mideal e /∈Mideal

e ∈Ma True Positive False Positive
e /∈Ma False Positive True Negative

Using the above confusion matrix, we can compute the precision, recall,
metrics and the F1 score, which are very commonly considered for binary
classification problems.

Figure 6 reports on the precision, recall and F1 score of the 3 tree match-
ing solutions we compared, namely SFTM, APTED, and XyDiff. As ex-
pected, the accuracy of all solutions decreases when the mutation ratio in-
creases. However, for all the reported metrics, SFTM clearly outperforms
both XyDiff and APTED. For both APTED and XyDiff, we believe the

3https://github.com/fdintino/xydiff

22



lack of accuracy stems from the lack of flexibility when matching labels. Xy-
Diff relies entirely on hashing subtrees of the document and match subtrees
with identical hash. While this approach might be robust to small structural
mutations, it is naturally very sensitive to large amounts of mutations when
both structures and labels are mutated. Similarly, TED compares the labels
of most pairs of nodes and generate an associated cost of 1 when the labels
are identical and 0 when they are different (no gradual costs if the labels are
similar).

Completion time. For each couple (d, d′) retrieved from the dataset, we mea-
sured the time taken by SFTM, APTED, and XyDiff to compute a full
matching. Figure 7 reports on the average time to match DOM couples of
increasing size (in terms of number of nodes) for all three solutions. XyDiff
exhibits very fast computation speed and despite its numerous optimizations,
APTED’s computation times increases exponentially large web documents.
SFTM is not as fast as XyDiff, but seems to show reasonable growth when
the size of web documents increases. Interestingly, APTED computation
time varies greatly, which is due to the multiple heuristics used by this im-
plementation to optimize the computation in certain situations.

Overall, one can observe that SFTM offers an interesting trade-off be-
tween two classes of tree matching algorithms: the ones maximizing accuracy
at the cost of time, like APTED, and those minimizing the completion time
at the cost of reduced accuracy, like XyDiff.

Matching efficiency. The matching efficiency measures how fast a given so-
lution can produce accurate results. The efficiency is a way to combine both
accuracy and speed metrics into one that can be used to compare all solu-
tions. In our case, we already showed that SFTM outperforms APTED in
both accuracy and computation time. This efficiency measure is thus par-
ticularly interesting to compare SFTM to XyDiff, as SFTM outperforms
XyDiff in terms of accuracy, but remains slower when it comes to speed.
To compute this matching efficiency, we consider the same metric as [16]—
i.e., the number of good matches produced per millisecond. Figure 8 reports
on the matching efficiency of all three matching solutions. One can observe
that SFTM produces 7.7 good matches per millisecond on average, which is
far above APTED and XyDiff that produce 3.6 and 2.4 good matches per
millisecond, respectively.
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Parameter sensitivity. Since we aim at improving the performances of FTM
in term of computation times, we study the sensitivity of the sub-linear
threshold function f , which is a parameter that directly influences the com-
putation time of the algorithm.

Figure 9, therefore, reports on the evolution of SFTM performances when
f varies. To study the sensitivity of f , we choose to use the power function
f(N) = Nα as a threshold and display how the computation times and
matching accuracy evolve with α.

For this experiment, as we are interested in studying the sensitivity of
the parameter α on the performances of SFTM, we therefore consider a
subset of 243 pairs from the complete dataset used in previous sections (cf.
Section 5.3), which represents a 6% error margin with 95% confidence.

As expected, when α increases, the quality of the matching and the com-
putation times increase. However, beyond a certain value of α, the increase of
computation time is superior to the gain in accuracy: increasing α from 0.5 to
0.8 entails more than 10 times longer computation times for 8% gain in accu-
racy. Intuitively, this is because tokens contained in most nodes provide few
relevant information (low IDF), but increase the complexity quadratically.
In this article, we thus adopted α = 0.5 (i.e., f(N) =

√
N) as this value
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achieves good enough performances to demonstrate that SFTM can match
two real-life web pages in practical time, with a minimum of compromise on
quality.

6. Threats to Validity

The absolute values of completion times depend on the machine on which
the algorithms were executed. As computations took time, we had to run
both SFTM, APTED and XyDiff on a server, which is shared among sev-
eral users. Although we paid a careful attention to isolate our benchmarks,
the available resources of the server might have varied along execution thus
impacting our results.

Our dataset contains the homepages of the Top 1k Alexa websites. The
fact that our qualitative evaluation has only been conducted on homepages
might have biased the results, as such pages might not be fully representa-
tive of the complexity of online documents. Yet, one can observe that the
distribution of page sizes in our datasets offers a good diversity of situations.

The parameters used for SFTM and, in particular, the weights for the
propagation may not be optimal. However, our evaluation shows that the
adopted values succeed to report tree matchings that compete with the state-
of-the-art accuracy in reasonable times and on a very large variety of web
pages, which means the values we provided for the parameters do not require
to be tuned for most web pages matching cases.

7. Conclusion & Perspectives

Comparing modern real-life web pages is a challenge for which traditional
Tree Edit Distance (TED) and XyDiff solutions are too restricted and com-
putationally expensive. [14] introduced Flexible Tree Matching (FTM) to
offer a restriction-free matching, but at the cost of prohibitive computational
times.

This article thus introduced Similarity-based Flexible Tree Matching (SFTM),
the first implementation of an advanced Flexible Tree Matching (FTM) al-
gorithm with scalable computation times. We evaluated our solution using
mutations on real-life web pages and we showed that SFTM outperforms
XyDiff qualitatively and compares to TED, while significantly improving
the computation time of the latter. Our proof of concept demonstrates that
accurate matching of real-life web pages in practical time is possible.
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Our label-centric approach to matching is significantly different than pre-
vious structure-centric techniques. In addition to providing a competitive
solution to match web pages, we hope that our solution will encourage the
development of solutions based on similar approaches. We also believe that
having a robust algorithm to efficiently compare web pages will open up new
perspectives within the web community.

In future work, we will further investigate how to improve the quality
of the tree matchings by analyzing which situations cause SFTM to report
mismatches and to establish guidelines to adjust the exposed parameters.

Finally, whether our work might be applicable to other trees than web
DOMs remains to be demonstrated. Indeed, SFTM strongly relies on the fact
that node labels in DOMs are highly differentiating (many specific attributes
on each element), which is not the case for all kinds of trees.
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