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Finite-time tracking control of a nonlinear string to reference dynamics

This paper is concerned with the active control of a string. A nonlinear Kirchhoff-Carrier model of the transverse vibration of a string is considered (presenting a pitch glide at high excitation levels), controlled by a force in its domain. A finite-time tracking controller is designed for a point force, that controls one mode of the string to reference dynamics corresponding to a string with other physical parameters. We illustrate in a simulation how the controller can be used to modify the damping, resonance frequency or the presence of a pitch glide for the selected mode of vibration of the string.

Introduction Active vibration control

In a lot of engineering applications, vibration is unwanted as it leads to negative side-effects such as increased wear of components or time and quality loss in production processes. Therefore, numerous active vibration control methods have been developed [START_REF] Elliott | Active noise control[END_REF][START_REF] Fuller | Active control of vibration[END_REF], that aim at reducing parasitic vibration. If a system representation based on the vibration modes is considered, the term modal control is used.

Active control of musical instruments

Active control of musical instruments consists in adding a control loop to an existing acoustic musical instrument that is being played by a musician. The terms augmented or hybrid musical instruments are also used. In some cases, communication to other devices is included, and the term smart instruments is used [START_REF] Turchet | Smart instruments: towards an ecosystem of interoperable devices connecting performers and audiences[END_REF]. In terms of the actuator type, two classes of active vibration control are distinguished. In the case of acoustical active control, the control acts on a fluid medium. An example is the use of a loudspeaker to create destructive interference in order to cancel sound. In the case of structural acoustical control, the control acts on a solid. One can for example attach an actuator to the soundboard of a violin. In most cases of active control of musical instruments, the goal is not to reduce vibrations as much as possible, but to change frequencies or damping coefficients of the instrument's vibration, enabling the musician to enlarge his sound palette while keeping the ergonomics of the original instrument. One can mention for instance applications to the (xylophone) beam [START_REF] Boutin | Modifying the resonances of a xylophone bar using active control[END_REF], (clarinet) tube [START_REF] Meurisse | Experimental Demonstration of the Modification of the Resonances of a Simplified Self-Sustained Wind Instrument Through Modal Active Control[END_REF], (Chinese gong) metal plate [START_REF] Jossic | Modal active control of Chinese gongs[END_REF] and (tom) membrane [START_REF] Wijnand | Active control of the axisymmetric vibration modes of a tom-tom drum using a modal-based observer-regulator[END_REF]. Furthermore, active control of musical instruments can be invoked for the study of their dynamical behaviour [START_REF] Benacchio | Active control and sound synthesis-two different ways to investigate the influence of the modal parameters of a guitar on its sound[END_REF], or for the removal of unwanted phenomena such as the so-called wolf note of the cello [START_REF] Neubauer | An active-system approach for eliminating the wolf note on a cello[END_REF], or the bad playability of certain notes on the trombone when using a straight mute [START_REF] Meurisse | An active mute for the trombone[END_REF].

Active control of a string

There exists a considerable amount of results concerning the vibration suppression of the string, both in the linear case and using models with different kinds of nonlinearities. The string can be actuated at its boundaries or in its domain, sometimes taking into account ODE dynamics of systems coupled to the string. A broad variety of control design methods have been used, that have been tested in simulation and experimentally. In particular, tracking control has been used in [START_REF] Mounier | Tracking control of a vibrating string with an interior mass viewed as delay system[END_REF][START_REF] Rudolph | Flatness-based control without prediction: example of a vibrating string[END_REF] where a boundary control to a string is designed that lets a mass attached to it follow a reference position. In applications involving axially moving strings, axial velocity tracking has also been used [START_REF] Zhang | Velocity Tracking Control of an Axially Accelerating String and Actuator System[END_REF].

Active control of a musical string

In a musical context, the goal of active control is to influence the vibration of strings present in violins, pianos, guitars, etc. and that are made of a variety of materials such as nylon and metal. Used string displacement sensors can be electromagnetic [START_REF] Paiva | Acoustics and modeling of pickups[END_REF], piezoelectric [START_REF] Freed | Musical Applications of New, Multi-axis Guitar String Sensors[END_REF] or optical (for example [START_REF] Weinreich | Digital and analog bows: hybrid mechanical-electrical systems[END_REF][START_REF] Leroy | Reflective Optical Pickup For Violin[END_REF]). As string actuator, one can use an electromagnetic actuation (for example with the commercially available EBow [START_REF] Heet | String instrument vibration initiator and sustainer[END_REF] or the alternative [START_REF] Berdahl | If I had a Hammer: Design and Theory of an Electromagnetically-prepared Piano[END_REF] in the case of metal strings, or the use of a magnet attached to a nonmagnetic string [START_REF] Weinreich | Digital and analog bows: hybrid mechanical-electrical systems[END_REF]), or a piezoelectric actuator [START_REF] Donovan | Travelling Wave Control of Stringed Musical Instruments[END_REF]. Concerning the control of an isolated string, following results have been reported. In [START_REF] Berdahl | Feedback control of acoustic musical instruments: Collocated control using physical analogs[END_REF], the principles of a PID control of a string are discussed, using a collocated sensor and actuator, and enabling to modify resonance frequency and damping. Furthermore, several experimental setups for string control have been considered. In [START_REF] Berdahl | Active damping of a vibrating string[END_REF], a metal guitar string of length 24 cm tuned to 248 Hz was damped using an optical sensor and an electromagnetic actuator [START_REF] Berdahl | If I had a Hammer: Design and Theory of an Electromagnetically-prepared Piano[END_REF]. In [START_REF] Cheekati | A negative imaginary approach to the actuation of a guitar string[END_REF], the first five modes of a guitar string were damped using a feedback measuring string displacement with a laser, and an electromagnetic actuation. In [START_REF] Donovan | Travelling Wave Control of Stringed Musical Instruments[END_REF], the setup consisted of a metal guitar string of 50 cm tuned to 220 Hz, an optical string displacement sensor and a piezoelectric actuator at one end of the string. Based on traveling wave control concepts, active damping is achieved, and nonlinearities can be injected, leading to timbral effects. Active control of other instrument parts coupled to the vibrating string is also possible, such as the violin bridge [START_REF] Boutin | Physical parameters of the violin bridge changed by active control[END_REF] and the soundboard of a monochord, acoustical guitar and cello [START_REF] Benacchio | Contrôle actif modal appliqué aux instruments de musique à cordes[END_REF]. In [START_REF] Mcpherson | The Magnetic Resonator Piano: Electronic Augmentation of an Acoustic Grand Piano[END_REF], the construction of a piano with active control is reported, with a piezoelectric sensor on the soundboard and electromagnets over the 88 sets of strings actuators. It is possible to generate infinite sustain, crescendo on a note and different timbral effects. Finally, an embedded control system using multiple sensors and actuators can be found in some commercially available instruments such as the Sensus Smart Guitar (MIND Music Labs, [START_REF] Turchet | Smart instruments: towards an ecosystem of interoperable devices connecting performers and audiences[END_REF]) and the Smart Acoustic Guitar (HyVibe, [START_REF] Hyvibe | Smart Acoustic Guitar[END_REF]).

Aim and structure of the present paper

This contribution is concerned with the control of a selected mode of the nonlinear Kirchhoff-Carrier string model by a point force for which a finite-time tracking control law is developed. First, the nonlinear string model is recalled, recast as a Port-Hamiltonian System, and projected on the modes of the linearized system. Next, the finite-time tracking controller for a chosen mode is developed, enabling to track a reference trajectory representing a mode with modified physical parameters. Finally, the effect of the control law is illustrated by a simulation.

Nonlinear string model

The Kirchhoff-Carrier string model is recalled. This PDE is subsequently recast as a Port-Hamiltonian system, to which an order reduction by modal projection and truncation is applied. Thus, each mode is represented by a coupled nonlinear ODE.

PDE model

The nonlinear Kirchhoff-Carrier model for the transverse vibrations w(z, t) [m] of a string of length L [m] is considered [START_REF] Kirchhoff | Vorlesungen über mathematische Physik: Mechanik[END_REF][START_REF] Carrier | On the non-linear vibration problem of the elastic string[END_REF]: 

ρA∂ tt w(z, t) + ρAµ∂ t w(z, t) -T 0 + EA 2L Ω (∂ z w(z, t)) 2 dz ∂ zz w(z, t) = 1 L u(z, t), (1) 
∈ Ω × R + , Ω = [0, L].
The nonlinearity is due to the variation of tension expressed by the integral term EA 2L Ω (∂ z w(z, t)) 2 dz (with EA T 0 , [START_REF] Bilbao | Numerical sound synthesis: finite difference schemes and simulation in musical acoustics[END_REF]Ch. 8]), leading to the pitch-glide phenomenon (illustrated in the Simulation Section). The string is fixed at its ends (Dirichlet boundary condition) and initially at rest:

w(z = 0, t) = 0 w(z = L, t) = 0 ∀t ∈ R + w(z, t = 0) = 0 w(z, t = 0) = 0 ∀z ∈ Ω.
This setup is depicted in Fig. 1.

z w(z, t) 0 L u(z, t)
Figure 1: Setup of the PDE model for a string that is initially at rest (w(z, t) = 0) and subjected to a distributed force u(z, t)

Port-Hamiltonian system model

Components of an open physical system can (1) exchange energy inside the system; (2) dissipate energy; (3) exchange energy with the exterior of the system through ports. The power balance of the system is satisfied at all time. This is taken into account in the Port-Hamiltonian framework [START_REF] Maschke | Port-controlled Hamiltonian systems: modelling origins and systemtheoretic properties[END_REF].

An infinite-dimensional Port-Hamiltonian system (PHS) can be defined as [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF][START_REF] Villegas | A Port-Hamiltonian Approach to Distributed Parameter Systems[END_REF] 

∂ t x = (J -R)δ x H(x) + Gu y = G δ x H(x),
where

• the state x belongs to the energy state space X;

• a scalar product •, • X and norm • X are defined;

• the Hamiltonian function is defined as H(x) 1 2 x 2 X ; • the operator δ x is the variational derivative [START_REF] Villegas | A Port-Hamiltonian Approach to Distributed Parameter Systems[END_REF];

• the interconnection operator J is formally skew-symmetric and the dissipation operator R is non-negative symmetric, w.r.t. the scalar product;

• the product of the input u and its associated output y represents the power applied to the system via the ports;

• G * represents the adjoint operator of the operator G.

In the finite-dimensional case (x ∈ R n ), the operators become matrices and δ x is replaced by the gradient ∇ x [START_REF] Maschke | Port-controlled Hamiltonian systems: modelling origins and systemtheoretic properties[END_REF]. We refer the reader to [START_REF] Lopes | Explicit second-order accurate method for the passive guaranteed simulation of port-Hamiltonian systems[END_REF][START_REF] Wijnand | Contrôle des vibrations d'un oscillateur passif : stabilisation en temps fini et par remodelage d'énergie[END_REF] where the example of a (non)linear mass-spring-damper system is treated.

Next to modeling physical systems, the PHS formalism provides a framework for the development of stable simulation [START_REF] Falaize | Passive Guaranteed Simulation of Analog Audio Circuits: A Port-Hamiltonian Approach[END_REF] and control [START_REF] Ortega | Interconnection and damping assignment passivity-based control of portcontrolled Hamiltonian systems[END_REF] methods.

Port-Hamiltonian string model

As shown in [START_REF] Hélie | Corde non linéaire amortie : formulation hamiltonienne à ports, réduction d'ordre exacte et simulation à passivité garantie[END_REF], the nonlinear string (1) can be recast as an infinite-dimensional Port-Hamiltonian System with state x T (z, t) q(z, t) p(z, t) ∂ z w(z, t) ∂ t w(z, t) , and nonquadratic Hamiltonian function [START_REF] Bilbao | Numerical sound synthesis: finite difference schemes and simulation in musical acoustics[END_REF]Ch. 8]

H(x(z, t)) = ρA 2 Ω p 2 (z, t) dz + 1 2 T 0 + EA 4L Ω q 2 (z, t) dz Ω q 2 (z, t) dz, (2) 
leading to the following infinite-dimensional PHS formulation:

         d dt q p = 0 1 ρA ∂ z 1 ρA ∂ z 0 - 0 0 0 1 ρA µ δ q H δ p H + 0 1 ρAL u y = 0 1 ρAL δ q H δ p H , (3) 
with the variational derivative of the Hamiltonian function (2) equal to

δ x H(x(z, t)) = δ q H(x(z, t)) δ p H(x(z, t)) = T 0 + EA 2L L 0 q 2 (z, t) dz q(z, t) ρA p(z, t)
.

The input u(z, t) being the force applied to the string, and the output y(z, t) = (1/L)∂ t w(z, t) with ∂ t w(z, t) the transverse velocity, the expression Ω u(z, t)y(z, t) dz [W] represents the instantaneous external power transferred to the string.

Modal projection and order reduction

The infinite-dimensional PHS model ( 3) is projected on the N first eigenmodes of the linear string (Eq. ( 1) without the term EA 2L Ω (∂ z w(z, t)) 2 dz), that are given by e n (z) = 2 L sin nπ L z , n > 0 (Fig. 2): Then, defining

w(z, t) ≈ N n=1 e n (z)W n (t).
x(z, t) = d dz e 1 (z) . . . d dz e N (z) O 1×N O 1×N e 1 (z) . . . e N (z) W (t) d dt W (t) = Φ (z)X(t), (4) 
the Hamiltonian function

H(x(z, t)) = 1 2 1 0 x (z, t)M(z, t)x(z, t) dz (2) becomes H(X(t)) = 1 2 1 0 X (t)Φ(z)M(z, t)Φ (z)X(t) dz = 1 2 X (t)M N (t)X(t), with M N (t) = D 2 N T 0 + EA 4L X (t)N N X(t) O N ×N O N ×N ρAI N ×N , N N = D 2 N O N ×N O N ×N O N ×N , D 2 N = π 2 L 2 diag(1, 2 2 , . . . , N 2 ).
Next, premultiplying the first equation of the PHS (3) by Φ(z), integrating it w.r.t. z ∈ Ω, substituting (4) and using the localized controller setup (7) that will be defined below, one obtains following finite-dimensional PHS:

                       d dt X(t) = 1 ρA O N ×N I N ×N -I N ×N O N ×N - µ ρA O N ×N O N ×N O N ×N I N ×N D 2 N (T 0 + EA 2L X (t)N N X(t)) O N ×N O N ×N ρAI N ×N X(t) + 1 ρAL      O N ×1 ϕ 1 . . . ϕ N      U (t) y(z, t) = 0 1 L Φ (z)X(t), (5) 
with ϕ n e n ( ), and and U (t) will be defined by [START_REF] Jossic | Modal active control of Chinese gongs[END_REF]. The (N + n) th line of the dynamics for X(t) gives

Ẅn (t) = - 1 ρA n 2 π 2 L 2 T 0 + EA 2L Σ(t) W n (t) -µ Ẇn (t) + ϕ n ρAL U (t), (6) 
where

Σ(t) N n=1 n 2 π 2 L 2 W 2 n (t).
Each mode n is a nonlinear oscillator with a coupling to the other modes due to the term Σ(t), and that is controlled by U (t).

Finite-time tracking control

Hypotheses concerning the control layout are made and the control goal is stated. Then, an existing finite-time control law is applied to obtain the tracking controller that will control one mode of the nonlinear string (5) to chosen reference dynamics.

Controller setup

Following hypotheses are made.

(Point force)

We use a single actuator that is able to deliver a localized force U (t) [N]:

u(z, t) δ(z -)U (t), (7) 
with δ(z -) the Dirac delta distribution that activates the control law U (t) at the position z = (cf. Fig. 3).

Furthermore, we suppose here that the application of a force at z = does not modify the eigenmodes e n (z). Then, one can write

u(z, t) = N n=1 u(z, t), e n (z) • e n (z) = N n=1 e n ( )U (t) • e n (z) N n=1 ϕ n U (t) • e n (z).
Because of this hypothesis, the force ϕ n U (t) is applied to each mode n. Therefore, only one mode can be controlled at a time. 2. (Known state) It is supposed that the entire state X(t) of the projected PHS model ( 5) is known from the measured system output1 y meas (z, t), possibly after using an observer.

Control goal

A system {S} described by [START_REF] Boutin | Modifying the resonances of a xylophone bar using active control[END_REF] represents the dynamics of the first N modes of the nonlinear string with physical parameters (ρ, T 0 , µ, E). Following Hypothesis 1, our goal is to construct a controller {C} that lets one mode of the real system {S} track the dynamics of a virtual reference system {S * } with desired physical parameters (ρ * , T * 0 , µ * , E * ), for an excitation by the same initial conditions (Fig. 4). To this means, a finite-time tracking controller will be designed. 

S

Finite-time control

Finite-time control [START_REF] Haimo | Finite time controllers[END_REF] is a nonlinear control method enabling to reach an equilibrium point in a finite time. This finite settling time is a stronger property than in the case of asymptotic or exponential control. Finite-time control has useful properties for time-constraint and robust control [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF]. Finite-time stability of an ODE with state x(t) ∈ R n is defined as follows.

Definition 1 (Finite-time stability [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF]) Let ẋ = F (x) represent a closed-loop system, with F (x) continuous and F (0) = 0. Let Ψ t (x 0 ) be the time evolution of the state for a given initial state x 0 . The origin is a finite-time stable equilibrium if there exists an open neighborhood U ⊂ R n of the origin, where following statements hold:

1. Finite-time convergence. There exists a settling-time function T : U \{0} → R ≥0 such that for each x 0 ∈ U \{0}, the evolution Ψ t (x 0 ) is defined and unique on t ∈ [0, T (x 0 )[ and lim t→T (x0) Ψ t (x 0 ) = 0.

Lyapunov stability.

There exists a monotonically increasing function δ(•), δ(0) = 0, such that for each x 0 ∈ U , Ψ t (x 0 ) ≤ δ( x 0 ) for each t ≥ 0.

Furthermore, if U = R n , the origin is globally finite-time stable.

Several finite-time control laws have been designed for different kinds of ODE systems. They necessarily are non Lipschitz continuous at the equilibrium point [START_REF] Haimo | Finite time controllers[END_REF]. For ODE systems of dimension n = 2, following law can be used.

Lemma 1 (Finite-time stabilisation of the double integrator [START_REF] Bernuau | Robust finite-time output feedback stabilisation of the double integrator[END_REF]) The origin of the double integrator

ż1 (t) = z 2 (t) ż2 (t) = v(t) (8) 
is finite-time stable for the control law

v(t) = -κ 1 z 1 (t) α 2-α -κ 2 z 2 (t) α ,
where κ 1 , κ 2 > 0, α ∈ ]0, 1[ and z α sign(x)|x| α .

No explicit expression for the dependence of the settling-time on the control parameters (κ 1 , κ 2 , α) is known. Therefore, these parameters have to be tuned numerically. We refer the reader to [START_REF] Wijnand | Contrôle des vibrations d'un oscillateur passif : stabilisation en temps fini et par remodelage d'énergie[END_REF] for an application of this law to a (non)linear mass-spring-damper system.

X * (t)

Finite-time tracking control applied to the nonlinear string A finite-time tracking controller is developed for a chosen mode M ∈ 1, . . . , N by imposing the dynamics of ( 

(t) = ė(t) -κ 1 e(t) α 2-α -κ 2 ė(t) α . (9) 
After substituting the expression (6) for the real (W M (t)) and desired (W * M (t)) oscillators, one solves (9) for the control law U (t), which corresponds to

U (t) = 1 ϕ M -ρAL κ 1 W M -W * M α 2-α + κ 2 ẆM -Ẇ * M α +M 2 π 2 L T 0 W M - ρ ρ * T * 0 W * M + A 2L EΣW M - ρ ρ * E * Σ * W * M + ρAL µ ẆM -µ * Ẇ * M . (10) 
Applying this finite-time tracking control law to the system S will control its M th mode to the M th mode of the reference system S . As previously mentioned, because of Hypothesis 1, we do not have additional degrees of freedom to act on the other modes n = M . The design of the control parameters (κ 1 , κ 2 > 0, α ∈ ]0, 1[) present in the tracking controller has to ensure that it has faster dynamics than the dynamics of the nonlinear string (by Tikhonov's theorem, see for instance [START_REF] Canudas De Wit | Theory of Robot Control[END_REF]Theorem A.11]).

Their values have to be assessed by a simulation, that is presented in the next session.

Simulation

A system {S} is considered, with physical parameters from [45, Table 1] representing a steel string with fundamental

frequency f = 1 2L T0 ρA = 55 Hz: L = 1,8 m, A = π • (1,5 mm) 2 , ρ = 7800 kg m 3 , E = 2 • 10 11 Pa, µ = 3 1 s , T 0 = 2161 N.
The string is excited by an initial velocity localized at z = l (Fig. 3):

ẇ(z, 0) = V 0 m s • δ(z -l),
whose projection on mode e n (z) yields the initial conditions Ẇn (0) = V 0 2 L sin nπ L l , n ∈ 1, . . . , N . The controlled system {S&C} using control law [START_REF] Neubauer | An active-system approach for eliminating the wolf note on a cello[END_REF] is simulated for two cases: 1 a reference system {S * } where the parameters (T 0 , ρ, µ) of the linearized string model are modified for the mode M = 2, leading to a change in frequency and damping, 2 a reference system {S * } where the parameter E of the nonlinear string model is modified for the mode M = 1, leading to a modification of the pitch-glide effect.

The simulations are performed using the backwards Euler method [START_REF] Moré | User guide for MINPACK-1[END_REF] with time step δt = 10 -5 s, using N = 10 modes and initial conditions with V 0 = 50 m s . Excitation location l and control location will be set in function of the shape of the chosen controlled mode M (cf. Fig. 2, and [22, §II.C]).

Example 1 : frequency and damping modification

Modifying the tension T 0 and/or mass density ρ, one can change the frequency of the M th mode:

f * M = M 2L T * 0 ρ * A
, whereas modifying the damping coefficient µ enables to damp the string quicker (active damping) or less quick (infinite sustain). We consider the case where the string is excited at l = 1 4 L and controlled at = 3 4 L. The mode M = 2 is controlled to a reference trajectory with T * 0 = 1.12T 0 and ρ * = 0.88ρ (corresponding to f * 2 = 124 Hz > f 2 = 110 Hz), µ * = 1.5µ (increased damping), E * = E (no pitch-glide modification). Control parameters κ i = 0.5 • 10 11 and α = 0.95 were used. A tracking of the reference signal W * 2 (t) is achieved by W 2 (t) under the action of the control law U (t) (Fig. 5). The spectral content of the second mode (Fig. 7) confirms that its frequency was increased to f * 2 , and that the signal is damped more quickly. One can observe the effects of the control law U (t) on the other modes n = 2, such as the appearance of low-amplitude harmonics in the higher-order modes, that cannot be influenced in the current control setup. Furthermore, we note that the 4 th mode is not excited by the initial conditions nor by the control law U (t), as both are located at a node of this mode ( Ẇ4 (0) = 0, ϕ 4 = 0; cf. Fig. 2). 

EA 2L Ω (∂ z w(z, t)) 2 dz
in (1). This phenomenon was visible in Example 1 (Fig. 7).

In this second example, we consider the case where the string is excited at l = 0.4L and controlled at = 0.5L. The mode M = 1 is controlled to a reference trajectory with T * 0 = T 0 and ρ * = ρ (no frequency modification), µ * = µ (no damping modification) and E * = 0.3E (pitch-glide attenuation2 ). Control parameters κ i = 1 • 10 10 and α = 0.95 were used. A tracking of the reference signal W * 1 (t) is achieved by W 1 (t) under the action of the control law U (t) (Fig. 6). The spectral content of the first mode (Fig. 8) confirms that the pitch-glide phenomenon is attenuated. Again, one can observe the effects of the control law U (t) on the other modes n = 1, that cannot be influenced in the current control setup. In particular, the pitch-glide effect is increased for the second mode (and higher modes, although their amplitude is smaller), and harmonics appear in the higher-order modes. [m] 

W 1 (t) uncontrolled W * 1 (t) W 1 (t) controlled

Conclusions and perspectives

A tracking controller was designed, that is able to modify physical model parameters of a chosen mode of a truncated modal model of a nonlinear Kirchhoff-Carrier string taking into account the pitch-glide phenomenon. Two use cases were illustrated in simulation, where frequency, damping and the pitch glide-phenomenon were modified, and the effect on the other modes was observed. Future works include the consideration of a more realistic sensor and actuator setup taking into account their placement [22, §II.C] and the development of an observer in order to reconstruct the state. Furthermore, robustness of the controller against measurement noise or bad parameter estimation can be assessed. 
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 12 Figure 2: First 6 eigenmodes e n (z) of the linear string of length L. The nodes (stationary points) are indicated by dots.

Figure 3 :

 3 Figure 3: String that is initially at rest, subjected to a point force at z = , and with an initial velocity applied at z = l (see Simulation)

Figure 4 :

 4 Figure 4: Tracking control layout (i.c.: initial conditions). The dashed arrow represents the reference trajectory X * (t) corresponding to the reference system {S * } that is in reality simulated inside the controller {C}.

Figure 5 :

 5 Figure 5: Example 1 : controlled mode 2 and control law Example 2 : pitch-glide attenuation A pitch glide is the nonlinear phenomenon where the frequency increases with increasing amplitude of the transverse vibration w(z, t) of the string, because of the tension modulation expressed by the term

Figure 6 :

 6 Figure 6: Example 2 : controlled mode 1 and control law

Figure 7 :Figure 8 :

 78 Figure 7: Example 1 : time evolution and spectral content of the first 6 modes. The FFT is calculated using a Hann window and the same logarithmic color scale is used for the (un)controlled cases of a given mode. Red dashed lines indicate the asymptotic values of the frequencies (corresponding to the linearized string model) for mode 2 in the (un)controlled cases.

In general, the measured output ymeas(z, t) differs from the PHS output y(z, t) defined as the conjugated variables with respect to the system input variables u(z, t), in the sense that Ω u(z, t)y(z, t) dz represents the instantaneous power applied to the PHS.

A reference stiffness of E * = 0 would correspond to a pitch-glide removal, but requires unrealistic force levels of

kN for U (t). This control goal was used in the preliminary simulation shown in[1, §8.4]. An analysis of the required control power as in [22, Appendix B] is not performed here.
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