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Abstract—Consider a symmetric continuous time α stable 

process observed with an additive constant error. The 

objective of this paper is to give a non-parametric estimator 

of this error by using discrete observations.  As the time of 

process is continuous and the observations are discrete, we 

encountered the aliasing phenomenon.  Our process sample 

is taken in a way to circumvent the difficulty related to 

aliasing and we smoothed the periodogram by using Jackson 

Kernel. The rate of convergence of this estimator is studied 

when the spectral density is zero at origin. Few long memory 

processes are taken here as examples. We have applied our 

estimator to the concrete case of modeling noise of a bird 

captured under stress. 

Index Terms—spectral density, Jackson kernel, stable 

processes. 

I. INTRODUCTION

This work is interested in the class of symmetric alpha 

stable signals which are known for being infinite energy 

signals. These processes have been developed in recent 

decades by several authors, including [1]-[12] to name just 

a few.  

The Gaussian density distribution remains a particular 

cases of alpha-stable distribution (α =2). 

Alpha stable distribution can be considered as the best 

model for signals that are normlly impulsive. It is used for 

modeling many phenomena where the Gaussian is not a 

reasonable choice(when variance is very large). Signals in 

this class contain high-pitched bursts or occasional spikes. 

Symmetric alpha stable processes are used for modeling 

many phenomenons in several fields: physics, biology, 

electronic and electrical engineering, hydrology, 

economies, communications and radar applications and 

signal image processing,… see [13]-[24].  

In this work, we consider a symmetric 𝛼  stable 

harmonizable process 𝑍 = {𝑍𝑡: 𝑡 ∈ 𝑅} . Alternatively 𝑍
has the integral representation: 
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𝑍𝑡 = ∫
∞

−∞

exp[𝑖(𝑡𝜆)]𝑑𝜉(𝜆)

where 1 < 𝛼 < 2

 

and 𝜉

 

is a complex valued symmetric 

𝛼 -stable random measure on 𝑅 with independent and 

isotropic increments. The paper [4] defined the measure 

𝑚(𝐴) = |𝜉(𝐴)|𝛼
𝛼   called "control" measure or spectral 

measure. Suppose that this measure is absolutely 

continuous with respect to Lebegue measure: 𝑚𝑑(𝑥) =
𝜙(𝑥)𝑑𝑥. The function 𝜙

 

is called the spectral

 

density. The 

estimations of the spectral density are given: in [4] when 

the time of the process is continuous, in [25] when the time 

of the process is discrete and in [26] when the time of the 

process is p-adic.

 

 

This paper considers a case frenquently encountred in 

event where we can not directly observe the process Z but 

we observe such process with

 

an unknown additional 

constant error. The

 

observed process is 𝑋𝑡 = 𝑎 + 𝑍𝑡

 

instead of the process 𝑍

 

alone.

 

The objective of this work is to give an estimator of this 

constant 𝑎, in the specific case when the spectral measure 

is  mixed : the sum of an absolutely continuous measure 

and a discrete measure: 

 

𝑑𝜇(𝜆) = 𝜙(𝑥)𝑑𝑥 + ∑

𝑞

𝑖=1

𝑐𝑖𝛿𝑤𝑖

where 𝛿 is a Dirac measure, 𝜙 is nonnegative integrable 

and bounded function. 𝑐𝑖 is unknown positive real number

and 𝑤𝑖

 

is unknown real number. Assume that 𝑤𝑖 ≠ 0. [27]

 

gives the estimation of the error “a” when the time of the 

process is discrete. In this paper, we consider that the time 

of the process is continuous.We can not use the same 

estimator given for discrete time because we will enconter 

aliasing phenomenon. Our objective is to propose a 

nonparametric estimator of the error “a” after discrete 

sampling of the process 𝑋(𝑡). This work is motived by the 

fact that  it is pratically  impossible to observe the process 

over a continuous time interval. However, we sampled the 

process at equidistant times, i.e. 𝑡𝑛 = 𝑛𝜏 , 𝜏 > 0 .
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known that aliasing phenomenon occurs. For more details 

about aliasing phenomenon, see [28]. We assume that the 

spectral density 𝜙  is null for |𝜆| > Ω  where Ω  is a 

nonnegative real number. Moreover this assumption is 

verified for the alpha stable density. We give an estimate 

of the addive error and  study the convergence rate where 

the spectral density is zero at origin, particularly at 𝜙(𝜆) =

sin2𝑘𝛼 (
𝜆

2
) 𝑔(𝜆)  and 𝜙(𝜆) = |𝜆|𝛽𝑔(𝜆) . We proove that 

the of convergence rate is improuved following the value 

of 𝛽. 

This paper is organized as follows: The second section 

gives some definitions and proprieties of symmetric stable 

processes and an estimator of the constant 𝑎 that we show 

to be converging in probability to 𝑎 and to be converging 

in 𝐿𝑝 (𝑝 < 𝛼) to replace the convergence in mean square 

because the second moment of the processes is infinite. In 

third section, we improve the rate of convergence when the 

spectral density of 𝑍  is assumed zero at origin 

precisely𝜙(𝜆) = |𝜆|𝛽𝑔(𝜆). The fourth section, is devoted 

to numerical studies. The last section, deals with the 

conclusion and perspective of the work. 

II. THE ESTIMATE OF THE CONSTANT ERROR 

Starting with the introduction of some basic notations 

and properties of alpha stable distribution and process. A 

random variable X is symmetric α-stable (SαS), 0 < 𝛼 <
2, if its characteristic function is defined by:  

𝜙𝑋(𝜃) = 𝑒−𝜎𝛼|𝜃|𝛼
 

where 𝛼  is the characteristic exponent and 𝜎  is the 

dispersion of the distribution. When 𝛼 takes the values 1 

and 2, we obtain two important special cases of (S𝛼S) 

distribution, namely Cauchy distribution and Gaussian 

distribution. 

The random variables 𝑋1, … , 𝑋𝑑  are jointly (S𝛼 S) if 

there is a single positive measure Γ𝑋(𝑑) on 𝑆𝑑, unit sphere 

of 𝑅𝑑, where its characteristic function is of the form:  

𝜙𝑋(𝜃1, … , 𝜃𝑑) = exp {− ∫
𝑆𝑑

|𝜃1𝑠1 + ⋯

+ 𝜃𝑑𝑠𝑑|𝛼𝑑Γ𝑋(𝑑)(𝑠1, … , 𝑠𝑑)}. 

When 𝑋1  and 𝑋2  are jointly (S𝛼S), the covariation of 

(𝑋1, 𝑋2) is defined in [1] by  

[𝑋1, 𝑋2]𝛼 = ∫
𝑆2

𝑠1. (𝑠2)<𝛼−1>𝑑Γ𝑋1,𝑋2
(𝑠1, 𝑠2) 

where  𝑠<𝛽> =  𝑠𝑖𝑔𝑛 (𝑠). |𝑠|𝛽 . Since the moment of 

second order is infinity, The covariation plays the same 

role as the covariance.  

From the definition of the covariation, [8] defined the 

following norm on the linear space of (S 𝛼 S) random 

variables:  

|𝑋|𝛼 = [𝑋, 𝑋]𝛼
1/𝛼

 

The process 𝜉 = (𝜉𝑡 , 𝑡 ∈ 𝑅) is symmetric 𝛼-stable if all 

linear combinations ∑𝑛
𝑖=1 𝜆𝑖𝜉𝑡𝑖

 are (S𝛼S) variables.  

This paper considers a (S𝛼S) process where its spectral 

representation is  

𝑍𝑡 = ∫
∞

−∞

𝑒𝑖𝑡𝜆𝑑𝜉(𝜆), 

where 𝜉  is a isotropic symmetric 𝛼 -stable with 

independent increments. The measure defined by: 

𝜇(]𝑠, 𝑡]) = |𝜉(𝑡) − 𝜉(𝑠)|𝛼
𝛼  is Lebesgue-Stiel measure 

called the spectral measure (see [1] and [4]). When 𝜇 is 

absolutely continuous 𝑑𝜇(𝑥) = 𝑓(𝑥)𝑑𝑥, the function 𝑓 is 

called the spectral density of the process 𝑍. 

As in [29], [12] and [25], we give the definition of the 

Jackson polynomial kernel: Let 𝑍1, … , 𝑍𝑁 N observations 

of the process, where 𝑁 satisfies: 

𝑁 − 1 = 2𝑘(𝑛 − 1) with 𝑛 ∈ 𝑁, 𝑘 ∈ 𝑁 ∪ {
1

2
} 

if 𝑘 =
1

2
     then     𝑛 = 2𝑛1 − 1, 𝑛1 ∈ 𝑁. 

The Jackson’s polynomial kernel is defined by: 

  |𝐻𝑁(𝜆)|𝛼 = |𝐴𝑁𝐻(𝑁)(𝜆)|
𝛼

   where  

  

𝐻(𝑁)(𝜆) =
1

𝑞𝑘,𝑛
(

sin (
𝑛𝜆
2

)

sin (
𝜆
2

)
)

2𝑘

     with     

 𝑞𝑘,𝑛 =
1

2𝜋
∫

𝜋

−𝜋

(
sin (

𝑛𝜆
2

)

sin (
𝜆
2

)
)

2𝑘

𝑑𝜆. 

In addition, we have 𝐴𝑁 = (𝐵𝛼,𝑁)−1𝛼  with 𝐵𝛼,𝑁 =

∫
𝜋

−𝜋
|𝐻(𝑁)(𝜆)|

𝛼
𝑑𝜆.  

 We give the following lemmas proved in [25] [29], 

which are used in the reminder of this paper.  

Lemma 1. 

 There is a nonnegative function ℎ𝑘 such as:  

𝐻(𝑁)(𝜆) = ∑ ℎ𝑘 (
𝑚

𝑛
) cos(𝑚𝜆)

𝑘(𝑛−1)

𝑚=−𝑘(𝑛−1)

 

Lemma 2. 

Let 𝐵′
𝛼,𝑁 = ∫ |(

𝑠𝑖𝑛(
𝑛𝜆

2
)

𝑠𝑖𝑛(
𝜆

2
)

)|

2𝑘𝛼𝜋

−𝜋

𝑑𝜆 𝑎𝑛𝑑  𝐽𝑁,𝛼 =

∫ |𝑢|𝛾|𝐻𝑁(𝜆)|𝛼𝜋

−𝜋
𝑑𝜆, where 𝛾 ∈]0,2].  

Then               

𝐵′
𝛼,𝑁 ≥ (2/𝜋)2𝑘𝛼𝑛2𝑘𝛼−1   𝑖𝑓  0 < 𝛼 < 2 

𝐵′
𝛼,𝑁 ≤

4𝜋𝑘𝛼

2𝑘𝛼 − 1
 𝑛2𝑘𝛼−1  𝑖𝑓 

1

2𝑘
< 𝛼 < 2 

 𝑎𝑛𝑑 

 𝐽𝑁,𝛼 ≤
𝜋𝛾+2𝑘𝛼

22𝑘𝛼(𝛾 − 2𝑘𝛼 + 1)
 

1

𝑛2𝑘𝛼−1
  𝑖𝑓  

1

2𝑘
< 𝛼 <

𝛾 + 1

2𝑘
 

𝐽𝑁,𝛼 ≤
2𝑘𝛼𝜋𝛾+2𝑘𝛼

22𝑘𝛼(𝛾 + 1)(2𝑘𝛼 − 𝛾 − 1)
 

1 

𝑛𝛾
     𝑖𝑓  

𝛾 + 1

2𝑘
< 𝛼

< 2 

In this paper, we propose an estimate of the constant 

error 𝑎 defined by:  

�̂� =
𝜏𝐴𝑁

𝐻𝑁(0)
∑𝑘((𝑛−1)

𝑛′=−𝑘(𝑛−1) ℎ𝑘 (
𝑛′

𝑛
) 𝑋(𝜏𝑛′ + 𝜏𝑘(𝑛 − 1)).    (1) 
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Theorem 3. 

Let p a real number such that 0 < 𝑝 < 𝛼. Then  

|�̂� − 𝑎|𝑝 = 𝑂 (𝑛−
𝑝
𝛼) 

Proof 

From the spectral representation of the process, the 

estimator proposed becomes  

�̂� =
𝜏𝐴𝑁

𝐻𝑁(0)
∑ 𝑊(𝑛′)

𝑘((𝑛−1)

𝑛′=−𝑘(𝑛−1)
+ 𝑎, where 

W(n’) = [ℎ𝑘 (
𝑛′

𝑛
) ∫ 𝑒𝑥𝑝[𝑖([𝜏𝑛′ + 𝜏𝑘(𝑛 − 1)]𝜆)]𝑑𝜉(𝜆)

∞

−∞
] 

Using [1], the characteristic function of (�̂� − 𝑎) can be 

written as:  

𝐸exp[𝑖ℜ𝑒𝑟(�̂� − 𝑎)]

= exp [−𝐶𝛼|𝑟|𝛼) |

 

∫
∞

−∞

𝜏
1
𝛼𝐴𝑁 

𝐻𝑁(0)
W(n′)|

𝛼

𝑑𝜉(𝜆)]. 

where 𝑟 = 𝑟1 + 𝑖𝑟2. It is easy to show that:  

𝐸exp[𝑖ℜ𝑒𝑟(�̂� − 𝑎)] = exp(−𝐶𝛼|𝑟|𝛼𝜓𝑁), 

where 𝜓𝑁 = 𝜓𝑁,1 + 𝜓𝑁,2 with 

 𝜓𝑁,1 = 𝜏 ∫
∞

−∞
 
 |𝐻𝑁(𝜏𝜆)|𝛼

|𝐻𝑁(0)|𝛼 𝜙(𝜆)𝑑𝜆 and 

𝜓𝑛,2 = 𝜏 ∑
𝑞

𝑖=1
𝑐𝑖

|𝐻𝑁(𝜏𝑤𝑖)|𝛼

|𝐻𝑁(0)|𝛼
  

Putting 𝜏𝜆 = 𝑥, we have 

 𝜓𝑁,1 = ∫
∞

−∞

 |𝐻𝑁(𝑥)|𝛼

|𝐻𝑁(0)|𝛼 𝜙 (
𝑥

𝜏
) 𝑑𝑥. On the other hand,  

𝜓𝑁,1 = ∑

𝑗∈𝑍

∫
2𝑗+1)𝜋

(2𝑗−1)𝜋

 |𝐻𝑁(𝑥)|𝛼

|𝐻𝑁(0)|𝛼
𝜙 (

𝑥

𝜏
) 𝑑𝑥 

𝐻𝑁 is 2𝜋-periodic, we get  

𝜓𝑁,1 = ∑

𝑗∈𝑍

∫
𝜋

−𝜋

 |𝐻𝑁(𝑥)|𝛼

|𝐻𝑁(0)|𝛼
𝜙𝑗 (

𝑥

𝜏
) 𝑑𝑥 

where 𝜙𝑗(𝑥) = 𝜙 (
𝑥−2𝜋𝑗

𝜏
). Let j be an integer such that 

−Ω <
𝑥−2𝜋𝑗

𝜏
< Ω. Since 𝜏Ω < 𝜋 and |𝑥| < 𝜋, we get |𝑗| <

𝜏Ω

2𝜋
+

1

2
< 1 and then  

𝑗 = 0 . Therefore  

𝜓𝑁,1 = ∫
𝜋

−𝜋

 |𝐻𝑁(𝑥)|𝛼

|𝐻𝑁(0)|𝛼  𝜙 (
𝑥

𝜏
) 𝑑𝑥.                      (2) 

The function 𝜙 being bounded on [−𝜋, 𝜋] and |𝐻𝑁(. )|𝛼 

being a kernel, it can be shown that ∫
𝜋

−𝜋
|𝐻𝑁(𝜆)|𝛼𝜙(𝜆)𝑑𝜆 

is converging to 𝜙(0). On the other hand, from lemma 2, 

we have:  

1

|𝐻𝑁(0)|𝛼
= 𝐵′𝛼,𝑁𝑛2𝑘𝛼 = 𝑂 (

1

𝑛
) 

Therefore 𝜓𝑁,1 converges to 0.  

𝜓𝑛,2 ≤ ∑

𝑞

𝑖=1

𝑐𝑖

𝐵′𝛼,𝑁

1

|sin [
1
2

𝜏𝑤𝑖]|
2𝑘𝛼

𝐵′𝛼,𝑁

𝑛2𝑘𝛼
. 

Therefore  

𝜓𝑁,2 = 𝑂 (
1

𝑛2𝑘𝛼
). 

As 2𝑘𝜆 > 1, we obtain  

                       𝜓𝑁 = 𝑂 (
1

𝑛
).                                     (3) 

Consequently, the characteristic function of �̂� − 𝑎 

converges to 1 when 𝑁  tends to infinity. Hence �̂� 

converges in probability of to 𝑎. 

We study now the convergence of �̂� to 𝑎 in 𝐿𝑝 where 

0 < 𝑝 < 𝛼 , which replaces the convergence in mean 

square, because the second order moment of 𝑋 is infinity.  

 Let  

𝐷𝑝 = ℜ𝑒 ∫
∞

−∞

∫
𝜋/24

−𝜋/4

1 − 𝑒𝑖𝑟cos𝜃

|𝑟|1+𝑝
𝑑𝑟𝑑𝜃. 

𝐷𝑝𝐸|�̂� − 𝑎|𝑝 = (
𝜋

2
) ∫

∞

−∞

1 − 𝑒−𝐶𝛼|𝑡|𝛼𝜓𝑁

|𝑡|1+𝑝
𝑑𝑡. 

Let 𝑢 = 𝑡[𝜓𝑁]
1

𝛼 and using (3), we obtain  

2

𝜋
𝐶𝑝,𝛼𝐸|�̂� − 𝑎|𝑝 = (𝜓𝑁)

𝑝

𝛼 = 𝑂 (
1

𝑛
𝑝
𝛼

).                      (4) 

where  

𝐶𝑝,𝛼 = 𝑅𝑝𝐹𝑝,𝛼
−1(𝐶𝛼)−

𝑝
𝛼 

with  

𝑅𝑝 = ∫
(1 − cos(𝑢)) 

|𝑢|1+𝑝
 𝑑𝑢    

and          𝐹𝑝,𝛼 = ∫
1−𝑒−|𝑢|𝛼

|𝑢|
1+𝑝

𝛼

𝑑𝑢. 

III. THE IMPROVEMENT OF THE RATE OF 

CONVERGENCE  

In order to improve the convergence rate of the 

estimator �̂�,  we consider the cases where the spectral 

density is zero at the origin.  

Theorem 4.Assume that the spectral density is satisfying:  

𝜙(𝜆) = |𝜆|𝛽𝑔(𝜆) 

where ∈]0,2𝑘𝛼 − 1[,  𝜆 ∈ [−𝜋, 𝜋] , 𝜏𝑤𝑖 ∉ 2𝜋𝑍  and 𝑔(𝜆) 

is a bounded function on [−𝜋, 𝜋] , continuous in 

neighborhood of 0 and 𝑔(0) ≠ 0. Then  

24𝑘𝑝

𝜏𝛽
𝐿 ≤ 𝑙𝑖𝑚

𝑁→∞
𝑛

𝑝(𝛽+1)
𝛼 𝐸|�̂� − 𝑎|𝑝 ≤

24𝑘𝑝

𝜏𝛽
𝐿, 

where 𝐿 is the following constant:  

𝐿 =
𝜋

2𝐶𝑝,𝛼
[𝑔(0) ∫

∞

−∞

|sin
𝑢
2

|
2𝑘𝛼

|𝑢|2𝑘𝛼−𝛽
𝑑𝑢]

𝑝𝛼

. 

Proof: 
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From the definition of 𝐻𝑁 and (2), the function 𝜓𝑁 can 

be written as:  

𝜓𝑁 = 𝑛−2𝑘𝛼 ∫
𝜋

−𝜋

|
sin

𝑛𝜆
2

sin
𝜆
2

|

2𝑘𝛼

|
𝜆

𝜏
|

𝛽

𝑔 (
𝜆

𝜏
) 𝑑𝜆

+ 𝑛−2𝑘𝛼 ∑

𝑞

𝑖=1

𝑐𝑖 |
sin [

𝑛𝜏𝑤𝑖

2
]

sin [
𝜏𝑤𝑖

2
]

|

2𝑘𝛼

 

Using the following inequality:  

 |sin
𝑥

2
| ≥

𝑥

𝜋
        0 ≤ 𝑥 ≤ 𝜋,                       (5) 

we maximize 𝜓𝑁 as follows:  

𝜓𝑁 ≤
𝜋4𝑘𝛼𝑛−2𝑘𝛼

𝜏𝛽
∫

𝜋

−𝜋

|sin
𝑛𝜆
2

|
2𝑘𝛼

|𝜆|2𝑘𝛼−𝛽
𝑔 (

𝜆

𝜏
) 𝑑𝜆

+ 𝑛−2𝑘𝛼 ∑

𝑞

𝑖=1

𝑐𝑖 |
1

sin [
𝜏𝑤𝑖

2
]
|

2𝑘𝛼

. 

Putting 𝑛𝜆 = 𝑢, we have  

𝜓𝑁 ≤
𝜋4𝑘𝛼𝑛−1−𝛽

𝜏𝛽
[∫

∞

−∞

|sin
𝑢
2

|
2𝑘𝛼

|𝑢|2𝑘𝛼−𝛽
𝑔 (

𝑢

𝜏𝑛
) 𝑑𝑢

+
𝑛−2𝑘𝛼+1+𝛽

𝜋4𝑘𝛼
∑

𝑞

𝑖=1

𝑐𝑖 |
1

sin [
𝜏𝑤𝑖

2
]
|

2𝑘𝛼

]. 

On the other hand, using Lebesgue’s dominated 

convergence theorem, we show that:  

lim
𝑁→∞

∫
∞

−∞

|sin
𝑢

2
|
2𝑘𝛼

|𝑢|2𝑘𝛼−𝛽
𝑔 (

𝑢

𝜏𝑛
) 𝑑𝑢 +

𝑛−2𝑘𝛼+1+𝛽

𝜋4𝑘𝛼
∑𝑞

𝑖=1 𝑐𝑖 |
1

sin[
𝜏𝑤𝑖

2
]
|

2𝑘𝛼

=

𝑔(0) ∫
∞

−∞

|sin
𝑢

2
|
2𝑘𝛼

|𝑢|2𝑘𝛼−𝛽
𝑑𝑢.                                              (6) 

 Lemma 2 gives:  

lim
𝑁→∞

𝑛
p(𝛽+1)

𝛼 (𝜓𝑁)
𝑝

𝛼 ≤
𝜋4𝑘𝑝

𝜏𝛽 (𝑔(0) ∫
∞

−∞

|sin
𝑢

2
|
2𝑘𝛼

|𝑢|2𝑘𝛼−𝛽 𝑑𝑢)

𝑝

𝛼

. 

Thus 𝜓𝑁  converges to zero. Using the following 

inequality  

|sin𝑥| ≤ |𝑥|        ∀𝑥 ∈ [−𝜋, 𝜋],              (7) 

we obtain:  

𝜓𝑁 ≥
24𝑘𝛼𝑛−2𝑘𝛼

𝜏𝛽
∫

𝜋

−𝜋

|sin
𝑢
2

|
2𝑘𝛼

|𝑢|2𝑘𝛼−𝛽
𝑔 (

𝑢

𝜏
) 𝑑𝑢

+ 𝑛−2𝑘𝛼 ∑

𝑞

𝑖=1

𝑐𝑖 |
sin [

𝑛𝜏𝑤𝑖

2
]

sin [
𝜏𝑤𝑖

2
]

|

2𝑘𝛼

. 

𝜓𝑁 ≥
24𝑘𝛼𝑛−𝛽−1

𝜏𝛽
[∫

𝜋

−𝜋

|sin
𝑢
2

|
2𝑘𝛼

|𝑢|2𝑘𝛼−𝛽
𝑔(

𝑢

𝜏𝑛
)𝑑𝑢 + 𝑅𝑛], 

where 𝑅𝑛 =
𝑛−2𝑘𝛼+𝛽+1

24𝑘𝛼
∑𝑞

𝑖=1 𝑐𝑖 |
sin[

𝑛𝜏𝑤𝑖
2

]

sin[
𝜏𝑤𝑖

2
]

|

2𝑘𝛼

. Since 𝑅𝑛 

converges to zero, the equality (5) gives:  

lim
𝑁→∞

𝑛
p(𝛽+1)

𝛼 (𝜓𝑁)
𝑝
𝛼 ≥ 

24𝑘𝑝

𝜏𝛽
(𝑔(0) ∫

+∞

−∞

|sin
𝑢
2

|
2𝑘𝛼

|𝑢|2𝑘𝛼−𝛽
𝑑𝑢)

𝑝𝛼

. 

The first equality of (4) reaches the result of this 

theorem. 

Theoem 5.  Assuming that the spectral density satisfies:  

𝜙(𝜆) = 𝑠𝑖𝑛2𝑘𝛼 (
𝜆

2
) 𝑔(𝜆) 

where the function 𝑔 is integrable on [−𝜋, 𝜋] and 𝑔(0) ≠
0. Then  

𝑐𝑡𝑒
𝜋

2𝐶𝑝,𝛼
(∫

𝜋

−𝜋

𝑔 (
𝜆

𝜏
) 𝑑𝜆)

𝑝
𝛼

≤ lim
𝑁→∞

𝑛2𝑝𝑘𝐸|�̂� − 𝑎|𝑝 ≤ 

𝜋

2𝐶𝑝,𝛼
(∫

𝜋

−𝜋

𝑔(𝜆)𝑑𝜆 + ∑

𝑞

𝑖=1

𝑐𝑖 |
1

sin [
𝜏𝑤𝑖

2
]
|

2𝑘𝛼

)

𝑝
𝛼

. 

Proof: From the definition of 𝜓𝑁 and (2), we have  

𝜓𝑁 = 𝑛−2𝑘𝛼 ∫
𝜋

−𝜋

|sin
𝑛𝜆

2
|

2𝑘𝛼

|
sin

𝜆
2𝜏

sin
𝜆
2

|

2𝑘𝛼

𝑔 (
𝜆

𝜏𝑛
) 𝑑𝜆

+ 𝑛−2𝑘𝛼 ∑

𝑞

𝑖=1

𝑐𝑖 |
sin [

𝑛𝜏𝑤𝑖

2
]

sin [
𝜏𝑤𝑖

2
]

|

2𝑘𝛼

. 

As 1 ≤ 𝑘𝛼  and the sinus function is increasing in 

[𝜋/2, 𝜋/2], the next expression is bounded by  

𝜓𝑁 ≤ 𝑛−2𝑘𝛼 ∫
𝜋

−𝜋

|sin
𝜆𝑛

2
|

2

𝑔 (
𝜆

𝑛𝜏
) 𝑑𝜆

+ 𝑛−2𝑘𝛼 ∑

𝑞

𝑖=1

𝑐𝑖 |
sin [

𝑛𝑤𝑖

2
]

sin [
𝑤𝑖

2
]

|

2𝑘𝛼

 

𝜓𝑁 ≤ 𝑛−2𝑘𝛼 [∫
𝜋

−𝜋

𝑔(𝜆)𝑑𝜆 + ∑

𝑞

𝑖=1

𝑐𝑖 |
sin [

𝑛𝜏𝑤𝑖

2
]

sin [
𝜏𝑤𝑖

2
]

|

2𝑘𝛼

]. 

So, from lemma 2, we have:  

lim
𝑁→∞

𝜓𝑁𝑛2𝑘𝛼 ≤ ∫
𝜋

−𝜋

𝑔(𝜆)𝑑𝜆 + ∑

𝑞

𝑖=1

𝑐𝑖 |
1

sin [
𝑤𝑖

2
]
|

2𝑘𝛼

. 
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Using the fact that the sinus function is between −1 and 

1  and that 𝑘𝛼 < [𝑘𝛼] + 1  where [𝑘𝛼]  represents the 

integer part of 𝑘𝛼, we obtain  

𝜓𝑁 ≥ 𝑛−2𝑘𝛼 ∫
𝜋

−𝜋

[(sin
𝑛𝜆

2
)

2

]

[𝑘𝛼]+1

𝑔 (
𝜆

𝜏
) 𝑑𝜆

+ 𝑛−2𝑘𝛼 ∑

𝑞

𝑖=1

𝑐𝑖 |
sin [

𝑛𝜏𝑤𝑖

2
]

sin [
𝜏𝑤𝑖

2
]

|

2𝑘𝛼

 

𝜓𝑁 ≥ 𝑛−2𝑘𝛼
𝑛−1

2𝐵′𝛼,𝑁
∫

𝜋

−𝜋

[
1 − cos𝑛𝜆

2
]

[𝑘𝛼]+1

𝑔 (
𝜆

𝜏
) 𝑑𝜆

+ 𝑛−2𝑘𝛼 ∑

𝑞

𝑖=1

𝑐𝑖 |
sin [

𝑛𝜏𝑤𝑖

2
]

sin [
𝜏𝑤𝑖

2
]

|

2𝑘𝛼

. 

The binomial formula gives:  

2[𝑘𝛼]+1𝜓𝑁 ≥ 𝑛−2𝑘𝛼 ∫
∞

−∞

𝑔(𝜆)𝑑𝜆 

+𝑛−2𝑘𝛼 ∑

[𝑘𝛼]+1

𝑟=1

(−1)𝑟𝐶[𝑘𝛼]+1
𝑟 ∫

𝜋

−𝜋

cos𝑟(𝑛𝜆)𝑔 (
𝜆

𝜏
) 𝑑𝜆

+ 𝑛−2𝑘𝛼 ∑

𝑞

𝑖=1

𝑐𝑖 |
sin [

𝑛𝜏𝑤𝑖

2
]

sin [
𝜏
𝑤𝑖

2]
|

2𝑘𝛼

 

We know that ∫
𝜋

−𝜋
cos𝑟(𝑛𝜆)𝑔 (

𝜆

𝜏
) 𝑑𝜆 is converging to a 

constant. Indeed, using the binomial formula, we obtain:  

cos𝑟(𝑛𝜆) = (
𝑒𝑖𝑛𝜆 + 𝑒−𝑖𝑛𝜆

2
)

𝑟

=
1

2𝑟
∑

𝑟

𝑗=0

𝐶𝑟
𝑗
𝑒𝑖𝑗𝑛𝜆𝑒−𝑖(𝑟−𝑗)𝑛𝜆 

Hence  

∫
𝜋

−𝜋

cos𝑟(𝑛𝜆)𝑔 (
𝜆

𝜏
) 𝑑𝜆 = 

1

2𝑟
∑

𝑟

𝑗=0

𝐶𝑟
𝑗

∫
𝜋

−𝜋

cos((2𝑗 − 𝑟)𝑛𝜆)𝑔 (
𝜆

𝜏
) 𝑑𝜆. 

The right side of the last equality converges to 
1

2𝑟 ∫
𝜋

−𝜋
𝑔 (

𝜆

𝜏
) 𝑑𝜆 when 𝑟 is even, and converges to 0 when 𝑟 

is odd. Consequently,  

Lim
𝑁→∞

∑

[𝑘𝛼]+1
2

𝑟=1

(−1)𝑟𝐶[𝑘𝛼]+1
𝑟 ∫

𝜋

−𝜋

cos𝑟(𝑛𝜆)𝑔 (
𝜆

𝜏
) 𝑑𝜆 = 

∑

[𝑘𝛼]+1
2

𝑝=1

(−1)2𝑝𝐶[𝑘𝛼]+1
2𝑝 1

22𝑝
∫

𝜋

−𝜋

𝑔(𝜆𝜏)𝑑𝜆   𝑖𝑓  [𝑘𝛼] + 1  𝑖𝑠 𝑒𝑣𝑒𝑛 

and 

 Lim
𝑁→∞

∑

[𝑘𝛼]+1

𝑟=1

(−1)𝑟𝐶[𝑘𝛼]+1
𝑟 ∫

𝜋

−𝜋

cos𝑟(𝑛𝜆)𝑔 (
𝜆

𝜏
) 𝑑𝜆 = 

∑

[𝑘𝛼]2

𝑝=1

(−1)2𝑝𝐶[𝑘𝛼]+1
2𝑝 1

22𝑝
∫

𝜋

−𝜋

𝑔 (
𝜆

𝜏
) 𝑑𝜆    𝑒𝑙𝑠𝑒. 

Since lim𝑁→∞𝑛−2𝑘𝛼 ∑𝑞
𝑖=1 𝑐𝑖 |

sin[
𝑛𝜏𝑤𝑖

2
]

sin[
𝜏𝑤𝑖

2
]

|

2𝑘𝛼

= 0 . The 

similar arguments are used for showing that  

lim
𝑁→∞

(𝜓𝑁)
𝑝

𝛼𝑛2𝑘𝑝 ≥ 𝑐𝑡𝑒 (∫
𝜋

−𝜋
𝑔 (

𝜆

𝜏
) 𝑑𝜆)

𝑝

𝛼
.                (8) 

Theorem 6. 

Assume that spectral density satisfies:  

𝜙(𝜆) = |𝜆|𝛽𝑔(𝜆) 

where 𝛽 > 2𝑘𝛼 − 1 and 𝑔 is measurable positive function 

bounded on [−𝜋, 𝜋]. Then  

𝑐𝑡𝑒 × 𝑅 ≤ 𝑙𝑖𝑚
𝑁→∞

𝑛2𝑘𝑝𝐸|�̂� − 𝑎|𝑝 ≤ 𝑅 

where 𝑅 =
𝜋

2𝐶𝑝,𝛼
(∫

𝜋

−𝜋

|𝜆|𝛽

|𝑠𝑖𝑛
𝜆

2
|
2𝑘𝛼 𝑔(𝜆)𝑑𝜆)

𝑝

𝛼

.  

Proof: 

  Define the function 𝑙 as follows:  

   𝑙(𝜆) = 𝜋2𝑘𝛼               𝑖𝑓  |𝜆| > 𝜋 

   𝑙(𝜆) = |𝜆|2𝑘𝛼|sin𝜆2|2𝑘𝛼      𝑖𝑓    0 < |𝜆| ≤ 𝜋  
   𝑙(𝜆) = 22𝑘𝛼               𝑖𝑓 𝜆 = 0. 

The function 𝜓𝑁 can be written as:  

𝜓𝑁 = 𝑛−2𝑘𝛼 ∫
𝜋

−𝜋

|
sin

𝑛𝜆
2

sin
𝜆
2

|

2𝑘𝛼

sin2𝑘𝛼 (
𝜆

2𝜏
) ℎ (

𝜆

𝜏
) 𝑑𝜆

+ 𝑛−2𝑘𝛼 ∑

𝑞

𝑖=1

𝑐𝑖 |
sin [

𝑛𝜏𝑤𝑖

2
]

sin [
𝜏𝑤𝑖

2
]

|

2𝑘𝛼

, 

where ℎ(𝜆) = 𝑙(𝜆)|𝜆|𝛽−2𝑘𝛼𝑔(𝜆) . We know that the 

function ℎ  is integrable on [−𝜋, 𝜋] . Indeed, since the 

function 𝑔 is bounded, we get:  

∫
𝜋

−𝜋

ℎ(𝜆)𝑑𝜆 ≤ sup(𝑔) ∫
𝜋

−𝜋

𝑙(𝜆)|𝜆|𝛽−2𝑘𝛼𝑑𝜆. 

Using the inequality (7), we obtain 

 𝑙(𝜆) ≤ 𝜋2𝑘𝛼. Thus  

∫
𝜋

−𝜋

ℎ(𝜆)𝑑𝜆 ≤ 2𝜋2𝑘𝛼sup(𝑔) ∫
𝜋

0

(𝜆)𝛽−2𝑘𝛼𝑑𝜆. 

Since 𝛽 > 2𝑘𝛼 − 1, the function ℎ is integrable. From 

(4) and the theorem 4, the result is obtained. 

IV. NUMERICAL STUDIES 

In this work, we apply our estimator to the concrete case 

of studying the sound of a bird that has just been captivated 

and under stress. This sound was observed with an additive 

noise supposed to be constant coming from the flapping of 

wings. We started by studying the variance of this signal, 

we observe that this variance tends to grow indefinitely 

following the increasing size of the sample. We also note 

that the curve of the characteristic function of the signal 

grows exponentially as a function of time, which led us to 

modeling by a stable continuous-time alpha process. 
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Estimation of the alpha parameter is done by using [30], 

the estimator gives α=1.68.  

Using [31], we estimate the spectral density ϕ. 

We modeled our signal by a series representation using 

the work [32], 

𝑍𝑡 = 𝐶𝛼(∫ 𝜙(𝑥)𝑑𝑥)1𝛼 ∑∞
𝑘=1 휀𝑘Γ𝑘

−1𝛼𝑒𝑖𝑡𝑉𝑘𝑒𝑖𝜃𝑘   where 

• 휀𝑘  is a sequence of i.i.d. random variables such as: 

𝑃[휀𝑘 = 0] = 𝑃[휀𝑘 = 1] = 12,  

• Γ𝑘 is a sequence of arrival times of Poisson process,  

• 𝑉𝑘 is a sequence of i.i.d. random variables independent 

of 휀𝑘  and of Γ𝑘  having the same distribution of control 

measure𝑚, which has probability density 𝜙.  

 
Figure 1. Estimation of the density 𝜙. 

 

• 𝜃𝑘 is a sequence of i.i.d. random variables that have 

the uniform distribution on [−𝜋, 𝜋], independent of 휀𝑘, Γ𝑘 

and 𝑉𝑘.  

 
Figure 2. The observed signal. 

 

The observations of the signal is taken at instants: 𝑡𝑛 =
3

2
𝑛, then 𝜏 =

3

2
, 0 ≤ 𝑛 ≤ 𝑁 

Taking 𝑘 = 4, we calculate the estimator �̂� given in (1) 

for different sizes of sample 𝑁 = 101,501,1001, 1501 , 

2001. The result is given in the following table: 
 

N 101 501 1001 1501 2001 2501 3001 

        

�̂� 14.4 12.5 9.2 10.5 9.7 10.2 10.1 

 

From Table I, the estimator �̂� tends to the constant error 

𝑎 = 10 when the sample size is large.  

V.   CONCLUSION 

This work gives a way of solving the problem of the 

aliasing phenomenon encountered when estimating an 

error by using discrete observations of continuous-time 

stable alpha signal. This work could be applied to other 

processes whose variance is infinite and its observation is 

disturbed by constant noise. We her give the following 

examples: 

 Segmentation of a sequence of dynamic images, 

detecting a part of birds in flight; 

 detection of possible structural changes in the 

dynamics of an economic structural phenomenon 

according to a constant sampling parameter; 

 study of the occurrence rate of notes in melodic 

music in order to simulate the sensation of 

hearing from afar accompanied by an additional 

acoustic vibration; 

 models of transmission rate in indoor 

environment for next generation of wireless 

communication systems. 

The perspectives of this work: give a method to find the 

optimal smoothing parameters such as the cross-validation 

method. 
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