Loann Giovannangeli

Frederic Lalanne

Romain Giot

Romain Bourqui

FORBID: Fast Overlap Removal By stochastic gradIent Descent for Graph Drawing

Keywords: Layout adjustment, Overlap removal, Stress optimization, Stochastic gradient descent

While many graph drawing algorithms consider nodes as points, graph visualization tools often represent them as shapes. These shapes support the display of information such as labels or encode various data with size or color. However, they can create overlaps between nodes which hinder the exploration process by hiding parts of the information. It is therefore of utmost importance to remove these overlaps to improve graph visualization readability. If not handled by the layout process, Overlap Removal (OR) algorithms have been proposed as layout post-processing. As graph layouts usually convey information about their topology, it is important that OR algorithms preserve them as much as possible. We propose a novel algorithm that models OR as a joint stress and scaling optimization problem, and leverages efficient stochastic gradient descent. This approach is compared with state-of-the-art algorithms, and several quality metrics demonstrate its efficiency to quickly remove overlaps while retaining the initial layout structures.

Introduction

Most dimension reduction algorithms consider data as points (e.g., Multi Dimensional Scaling [START_REF] Tipping | Probabilistic principal component analysis[END_REF][START_REF] Van Der Maaten | Visualizing data using t-SNE[END_REF], Graph Layout [START_REF] Hachul | Drawing large graphs with a potential-fieldbased multilevel algorithm[END_REF][START_REF] Kamada | An algorithm for drawing general undirected graphs[END_REF][START_REF] Zheng | Graph drawing by stochastic gradient descent[END_REF]). However, most visualization tools represent them by shapes with an area, whether to encode additional data within the screen representation of the nodes, or because it is simply more visually pleasing for end-users. Rendering such data that was laid out as points with shapes creates overlaps that can severely hinder the representation readability by hiding information. If not handled directly inside the dimension reduction algorithm (e.g., [START_REF] Harel | Drawing graphs with non-uniform vertices[END_REF][START_REF] Kamps | Constraint-based spring-model algorithm for graph layout[END_REF]), it is then the responsibility of a post-processing Overlap Removal (OR) algorithm to remove these overlaps.

In this paper, we consider the OR problem in graph layouts context, meaning that our laid out data points are nodes positioned by a graph drawing algorithm. These nodes are represented as rectangles with a position and size in two dimensions. Other shapes can be considered as well, as long as it is possible to check for overlaps and measure a distance between them. We consider that a pair of nodes overlaps if the intersection of their shapes representations is not null.

An OR algorithm takes a set of nodes positions and sizes as input and move these nodes to remove all overlaps while optimizing two main criteria: compactness and initial layout preservation. An algorithm that uniformly upscales the initial layout until there is no overlap perfectly works (e.g., uniform Scaling [START_REF] Chen | Node Overlap Removal Algorithms: an Extended Comparative Study[END_REF]), but its result is not satisfactory as it produces very sparse layouts where the nodes visible areas are significantly reduced. Hence, a good OR algorithm should be able to optimize compactness by preserving the scale of the initial layout, using its empty spaces to move nodes apart. Initial layout preservation is also of utmost importance in a graph drawing context since the initial graph layout is often computed to emphasize the graph structure. It is then imperative to preserve the mental map a user has of the initial layout. In addition, graph representations also include visualization of their edges. In that regard, optimizing compactness only is not suited to the graph context since it ends up hiding the graph edges.

The main contribution of this paper is FORBID1 : Fast Overlap Removal By stochastic gradIent Descent, a novel OR algorithm dedicated to graph drawings that produces overlap-free layouts balancing compactness and initial layout preservation. To the best of our knowledge, it is the first method to explicitly optimize the conjunction of these two aspects. It models the problem as a stress function: each pair of nodes in the overlap-free layout should be put at an ideal distance such that (i) there is no longer overlaps in the layouts and (ii) the distances between all the nodes are preserved. This stress is then optimized with an efficient state-of-the-art stochastic gradient descent algorithm [START_REF] Zheng | Graph drawing by stochastic gradient descent[END_REF]. Leveraging Chen et al. [START_REF] Chen | Node overlap removal algorithms: A comparative study[END_REF][START_REF] Chen | Node Overlap Removal Algorithms: an Extended Comparative Study[END_REF] evaluation protocol, FORBID is compared with major stateof-the-art OR algorithms on a set of quality metrics specifically selected for this purpose. It demonstrates great capabilities to preserve initial layouts while retaining a decent level of compactness.

The remainder of this paper is organized as follows. Section 2 presents related works principally centered around the description of OR algorithms and their evaluation as proposed in [START_REF] Chen | Node overlap removal algorithms: A comparative study[END_REF][START_REF] Chen | Node Overlap Removal Algorithms: an Extended Comparative Study[END_REF]. Section 3 describes FORBID algorithm, while Section 4 reports its evaluation. Finally, Section 5 discusses visual examples of overlap-free layouts from several OR algorithms as well as FORBID convergence.

Notations: Let G = (V, E) be a graph with V = {v 1 , v 2 , ..., v N } its set of N = |V | nodes and E ⊆ V × V its set of edges. A graph layout is defined as a tensor X ∈ R N ×2 where X i is the node v i projection in 2D. A node v i is defined by a rectangle of width and height (w i , h i) centered in X i . Two nodes overlap each other if the intersection between their rectangles is not null. For convenience, we define the set of overlapping pairs of nodes in a graph by O ⊆ V × V . A corresponding overlap-free layout is defined as X ′ ∈ R N ×2 . The euclidean distance bewteen two nodes v i and v j is noted ||X i -X j ||.

Related Works

This section presents major prior works in the Overlap Removal (OR) field. As described in Chen et al. survey [START_REF] Chen | Node overlap removal algorithms: A comparative study[END_REF][START_REF] Chen | Node Overlap Removal Algorithms: an Extended Comparative Study[END_REF], several efficient OR algorithms exist, many of which (e.g., [START_REF] Hayashi | A layout adjustment problem for disjoint rectangles preserving orthogonal order[END_REF][START_REF] Huang | A new algorithm for removing node overlapping in graph visualization[END_REF][START_REF] Misue | Layout adjustment and the mental map[END_REF]) rely on scan line [START_REF] Dwyer | Fast node overlap removal[END_REF] to detect overlap presency in O(N log N) and find all overlaps in O(|O|N (log N +|O|)) which can be faster than the pairwise search in O(N 2). These OR algorithms focus on different contexts (e.g., graph or generic 2D representation) and optimize different criteria (e.g., compactness, layout preservation). PFS [START_REF] Misue | Layout adjustment and the mental map[END_REF], PFS' [START_REF] Hayashi | A layout adjustment problem for disjoint rectangles preserving orthogonal order[END_REF], FTA [START_REF] Huang | A new algorithm for removing node overlapping in graph visualization[END_REF], RWordle-L [START_REF] Strobelt | Rolled-out wordles: A heuristic method for overlap removal of 2d data representatives[END_REF] and uniform scaling [START_REF] Chen | Node overlap removal algorithms: A comparative study[END_REF][START_REF] Chen | Node Overlap Removal Algorithms: an Extended Comparative Study[END_REF] rely on the scan line algorithm to remove overlaps. PFS, PFS' and FTA are made of two passes handling horizontal and vertical movements separately, while RWordle-L moves nodes on both axes at the same time. In the end, they all have a quadratic complexity according to how nodes movements are computed. PRISM [START_REF] Gansner | Efficient, proximity-preserving node overlap removal[END_REF] models OR as a stress optimization problem in a proximity graph (i.e., Delaunay triangulation of the initial layout) of a layout and runs in O(t(mkN + N log N)) where m, k are optimization hyper-parameters and t depends on the number of overlaps. GTREE [START_REF] Nachmanson | Node overlap removal by growing a tree[END_REF] leverages PRISM proximity graph to remove overlaps, but constructs a minimum spanning tree upon it to reduce the number of forces to compute. They both propose a good level of initial layout preservation. As FORBID idea is close to that of PRISM in some way, it will be further discussed in Section 3. VPSC [START_REF] Dwyer | Fast node overlap removal[END_REF][START_REF] Dwyer | Fast node overlap removal-correction[END_REF] models OR as a set of constraints to relax but tends to highly deform the initial layout. Its complexity is O(CN log C) where C is the number of constraints in O(N) to relax; leading to a final complexity in O(N 2 log N). Finally, Diamond [START_REF] Meulemans | Efficient optimal overlap removal: Algorithms and experiments[END_REF] is another constraint programming-based OR algorithm in O(N 2) that optimizes orthogonal order preservation. Its originality is to propose to temporarily rotate nodes by 45 • , representing them as diamonds to facilitate the constraints relaxations.

FORBID Algorithm

This section presents FORBID Overlap Removal (OR) algorithm. It is based on finding an optimal (i.e., smallest) upscaling ratio while minimizing a stress function that models an overlap-free layout that preserves the initial one. The optimal scaling ratio is found with binary search, while the stress function is optimized with the S GD 2 algorithm [START_REF] Zheng | Graph drawing by stochastic gradient descent[END_REF] that simulates stochastic gradient descent. An overview of the algorithm components is presented in Figure 1 and its complexity is in O(s(N 2 + N log N)) where s is defined later in Section 3.3.

Stress Modelization for Overlap Removal

Preliminaries. Traditional graph layout algorithms (e.g., [START_REF] Brandes | An experimental study on distance-based graph drawing[END_REF][START_REF] Kamada | An algorithm for drawing general undirected graphs[END_REF][START_REF] Ortmann | A sparse stress model[END_REF][START_REF] Zheng | Graph drawing by stochastic gradient descent[END_REF]) often optimize a stress function that has been shown to lead to meaningful layouts and is defined as:

σ(X) = i,j∈V W ij (||X i -X j || -δ ij) 2 (1)
where δ ij is an ideal distance that the projected layout should preserve, and W ij is a weight factor usually set to δ -2 ij . In the graph layout context, δ ij is set to the graph theoretical distances so that the projected representation of the graph enables end-users to apprehend the graph structure.

As proposed by Gansner and Hu [START_REF] Gansner | Efficient, proximity-preserving node overlap removal[END_REF], stress is also a good criterion for OR problems. In fact, optimizing stress comes down to fit a distribution of distances in a low dimensional space to that of a higher space, considered ideal but of too high dimensions to be represented. The adaptation to an overlap removal context simply changes the notion of ideal distances. Rather than fitting the projected positions to match graph theoretical distances, the ideal distances are two-folded here. For a pair of nodes p ij = (v i , v j), with p ij / ∈ O, the ideal distance δ ij is set to their distance ||X i -X j || in the original layout. On the other hand, if p ij ∈ O, δ ij is set to a distance such that v i and v j do not overlap anymore; that distance depending on the nodes shapes and some design choices. This two-folded definition enables the optimization of both the preservation of the original layout and the overlapped nodes movement at the same time.

PRISM [START_REF] Gansner | Efficient, proximity-preserving node overlap removal[END_REF] is an example of OR algorithm that optimizes stress. It constructs a proximity graph (Delaunay triangulation of the initial layout) and optimizes stress alongside its edges. Considering nodes are represented as rectangles, they define the ideal distance as δ ij = s ij ||X i -X j || where s ij is an expansion factor of the edge (v i , v j) computed so that both nodes would be side by side. PRISM main limitations comes from the use of the proximity graph that does not capture all the overlaps and only enables the preservation of distances between close nodes in the initial layout, ignoring longer distances preservation.

FORBID Stress Modelization.

For every pair of overlapped nodes, δ ij is set to the distance between v i and v j centers if they were tangent in their corner. It allows one of them to be placed on the circle centered on the other and which radius is the minimum so that the nodes do not overlap anymore regardless of their relative position. This distance ensures that two nodes do not overlap anymore and favors convergence by adding some margin space them, which is necessary for two reasons. First, since stress is optimized by stochastic gradient descent in FORBID (see Section 3.2), the ideal distances will most likely get approximated, but never perfectly matched. Second, the PRISM definition of ideal distance means there is only one correct placement for every pair of overlapping nodes that satisfies the stress. However, as opposed to PRISM, FORBID optimizes the distances between all N 2 pairs of nodes, making the number of constraints to relax much higher. This margin enables FORBID to converge faster toward a solution. Formally, the stress is defined as Equation 1 with δ ij and W ij set to:

δ ij =      wi+wj 2 2 + hi+hj 2 2 , if (v i , v j) ∈ O ||X i -X j ||, if (v i , v j) / ∈ O (2)
W ij =    δ k * α ij , if (v i , v j) ∈ O δ α ij , if (v i , v j) / ∈ O (3)
where α is generally set to -2 and k ∈ R is an overlap-related factor to tailor the algorithm behavior to a desired initial layout preservation. The smaller the weight is given to overlapping pairs of nodes, the more the initial layout will be preserved at the cost of slower convergence or higher scaling.

FORBID Stress Optimization

FORBID optimizes stress by stochastic gradient descent by leveraging S GD 2 [START_REF] Zheng | Graph drawing by stochastic gradient descent[END_REF] algorithm. S GD 2 models stress as a set of constraints that are relaxed by individually moving pairs of nodes. The process is based on constrained graph layout [START_REF] Bostock | Jeffrey: D 3 data-driven documents[END_REF][START_REF] Dwyer | Scalable, versatile and simple constrained graph layout[END_REF], and is optimized by considering the constraints individually to efficiently model clothes movements [START_REF] Jakobsen | Advanced character physics[END_REF]. By individually moving pairs of nodes to optimize the stress, the algorithm can create new overlaps. And since overlapping and non-overlapping pairs of nodes have different notions of ideal distances, δ ij and W ij are updated at each optimization iteration (everytime all pairs of nodes have been moved once) so that, at any time, the algorithm optimizes distances according to the current state of the layout. S GD 2 optimization convergence is based on an annealing step size schedule that mimicks a stochastic gradient descent. It computes O(N 2) movements, but in practice it converges in very few iterations, making it competitive with other algorithms (see Section 4.3). To make it even faster, we also stop the gradient descent if, at any iteration, the sum of all nodes movements in the current iteration is null. This explains why every execution of S GD 2 is not necessarily of the same length (see Section 5).

Scaling to Ensure Convergence

Here, we define the bounding box as the minimum rectangle in which the initial layout fits. Removing all overlaps in a layout is sometimes not feasible without deforming its bounding box, e.g., when the sum of the nodes areas exceeds the layout bounding box area. Two strategies can overcome this: (i) to allow the optimization algorithm to distort the bounding shape, or (ii) to scale up the drawing to create empty spaces that can be used to move nodes. These two choices boil down to considering that either "more space is needed" or "nodes must be smaller" to provide an overlap-free layout. The first strategy has the benefit of limiting the bounding box upscaling, but can result in strongly distorted layouts that makes it difficult to recognize the original graph structure. To guarantee that FORBID finds a solution, it uses the second method and searches for the optimal upscale ratio so that there is enough space to remove overlaps without deforming its aspect. The optimal upscale ratio s max is found by binary search between 1 and the minimum scaling ratio for an overlap-free layout that has not moved any node (i.e., scaling ratio of Scaling [START_REF] Chen | Node Overlap Removal Algorithms: an Extended Comparative Study[END_REF]). FORBID moves the nodes until there is no overlap (scan line [START_REF] Dwyer | Fast node overlap removal[END_REF]) and until the scaling ratio is optimal up to a given precision s step (e.g., 0.1).

We name pass a call to the optimization algorithm S GD 2 (see Section 3.2) and iteration a step within S GD 2 (i.e., moving all pairs of nodes once). The maximum number of passes over S GD 2 is defined by the binary search maximum depth s ≤ log smax-1 sstep . Since the pass in S GD 2 costs O(N 2) and that we test if there remains any overlap right after with the scan line [START_REF] Dwyer | Fast node overlap removal[END_REF] algorithm that executes in O(N log N); the final complexity of FORBID is O(s(N 2 + N log N)).

As every pass in the optimization algorithm resets the annealing step size schedule (see Section 3.2), the nodes can be moved a lot at the beginning of every pass; meaning that FORBID is somewhat allowed to modify the initial layout more than expected. Hence, we also experiment a variant of FORBID, called FORBID', in which the model starts from the scaled initial layout at every pass of the optimization algorithm. We expect this variant to be able to preserve the initial layout even better, probably at the cost of convergence speed.

Algorithm 1 presents FORBID algorithm pseudo-code. It has been simplified by removing the first pass that occurs with the initial scaling of the layout if the sum of nodes areas is lower than the layout bounding box. In practice, it only enters the while loop (line 20) to search for the optimal scale if scaling is necessary. The only modification required to implement FORBID' is to change line 21 into X ′ ← scaleLayout(X, curScale) so that the next pass in the optimization algorithm starts with the scaled initial layout.

FORBID Evaluation

For the sake of reproducibility, we used the same evaluation protocol as in the Chen et al. survey [START_REF] Chen | Node overlap removal algorithms: A comparative study[END_REF][START_REF] Chen | Node Overlap Removal Algorithms: an Extended Comparative Study[END_REF]. That includes quality metrics, datasets and algorithms. This section describes this protocol and presents the results of FORBID comparison Algorithm 1 FORBID pseudo-code

1: Methods 2:
getScalingRatio(Layout, Sizes): returns the minimum scaling ratio [START_REF] Chen | Node overlap removal algorithms: A comparative study[END_REF][START_REF] Chen | Node Overlap Removal Algorithms: an Extended Comparative Study[END_REF] so that there is no overlap anymore in Layout 3: containsOverlap(Layout, Sizes): [START_REF] Dwyer | Fast node overlap removal[END_REF] returns true if there is overlap in Layout, f alse otherwise 4:

scaleLayout(Layout, scaleF actor): returns Layout scaled by scaleF actor 5:

SGD2 StressOPT(Layout ′ , Layout, Sizes): One pass of S GD 2 [START_REF] Zheng | Graph drawing by stochastic gradient descent[END_REF] to optimize overlap removal modeled as stress 6: end Methods 7: 8: Variables 9:

X: Initial layout, 2D position of every node 10:

S: Nodes sizes in 2D, Si = (wi, hi) 11:

scaleStep: Scaling step size to stop the search of optimal scale 12: end Variables 13: 14: procedure FORBID(X, S, scaleStep, SGD2 HP) 15:

lowScale ← 1 16:

upScale ← getScalingRatio(X, S) 17:

curScale ← (lowScale + upScale)/2 18:

X ′ ← X 19: thereIsOverlap ← containsOverlap(X ′ , S) 20:
while thereIsOverlap or (upScale -lowScale > scaleStep) do 21:

X ′ ← scaleLayout(X ′ , curScale) 22:

X ′ ← SGD2 StressOPT(X ′ , X, S) 23:

thereIsOverlap ← containsOverlap(X ′ , S) 24:

if thereIsOverlap then 25:

lowScale ← curScale 26: else 27:

upScale ← curScale 28:

end if 29:

curScale ← (lowScale + upScale)/2 30: end while 31: return X ′ 32: end procedure with the selected algorithms on these datasets and metrics. Finally, FORBID execution time is also compared with some algorithms.

Evaluation Protocol

Quality Metrics. The quality metrics used to compare FORBID with other algorithms from the literature were selected by Chen et al. [START_REF] Chen | Node overlap removal algorithms: A comparative study[END_REF][START_REF] Chen | Node Overlap Removal Algorithms: an Extended Comparative Study[END_REF]. All are oriented as lower is better, the optimal value being 0 unless specified otherwise.

oo nni : stands for the Orthogonal Ordering: Normalized Number of Inversions and counts the number of times the nodes orthogonal order have been violated. sp ch a [START_REF] Strobelt | Rolled-out wordles: A heuristic method for overlap removal of 2d data representatives[END_REF]: is for Spread Minimization: Convex Hull Area. It measures by how much the convex hull area of the overlap-free layout is different from the one of the initial layout: sp ch a = convex hull area(X ′) convex hull area(X) , the optimal value being 1. This metric mainly measures the layout scaling.

gs bb iar : means Global Shape preservation: Bounding Box Improved Aspect Ratio and is a variant of the aspect ratio between the bounding box of the initial and overlap-free layouts in which the minimal and target value is 1.

nm dm imse: stands for Node Movement minimization: Distance Moved Improved Mean Squared Error. It quantifies how much the nodes moved from their position in the initial layout to theirs in the overlap-free layout. To lessen the effect of positions value domains, the layouts are aligned as follows:

nm dm imse = 1 N vi∈V ||X ′ i -scale(shift(X i))|| 2 (4)
where shift and scale are moving and scaling the initial layout bounding box to match the center and dimensions of the overlap-free layout. It is important to mention that both in [START_REF] Chen | Node overlap removal algorithms: A comparative study[END_REF][START_REF] Chen | Node Overlap Removal Algorithms: an Extended Comparative Study[END_REF] and therefore in this paper, the bounding boxes computed to scale the layouts do not take the nodes sizes into account. el rsd : is for Edge Length preservation: Relative Standard Deviation. It measures by how much the lengths of edges in the Delaunay Triangulation graph of an initial layout are preserved, i.e., how well short-distances are preserved.

Datasets. Still following Chen et al. [START_REF] Chen | Node overlap removal algorithms: A comparative study[END_REF][START_REF] Chen | Node Overlap Removal Algorithms: an Extended Comparative Study[END_REF] evaluation protocol, we use the Generated and Graphviz datasets available online2 .

Generated is a set of 840 synthetic graphs specifically generated for the benchmark in [START_REF] Chen | Node overlap removal algorithms: A comparative study[END_REF][START_REF] Chen | Node Overlap Removal Algorithms: an Extended Comparative Study[END_REF]. It is made of 120 graphs of each size 10, 20, 50, 100, 200, 500, 1000, laid out with the F M 3 algorithm [START_REF] Hachul | Drawing large graphs with a potential-fieldbased multilevel algorithm[END_REF]. These layouts have 2770 ± 7567(std) initial overlaps in average, ranging between 0 and 31843.

Graphviz is a set of 14 real-world graphs from the Graphviz suite. They have between 36 and 1463 nodes and are laid out with SF DP algorithm [START_REF] Hu | Efficient, high-quality force-directed graph drawing[END_REF] and have for between 4 and 11582 initial overlaps (2118 ± 4078(std) in average).

Baseline Algorithms. As already state (see Section 2), there are two main criteria to optimize in overlap removal algorithms: compactness and initial layout preservation. By design, FORBID belongs to the second category and is then only compared with its corresponding algorithms (i.e., PFS [START_REF] Misue | Layout adjustment and the mental map[END_REF], PFS' [START_REF] Hayashi | A layout adjustment problem for disjoint rectangles preserving orthogonal order[END_REF], PRISM [START_REF] Gansner | Efficient, proximity-preserving node overlap removal[END_REF], GTREE [START_REF] Nachmanson | Node overlap removal by growing a tree[END_REF] and Diamond [START_REF] Meulemans | Efficient optimal overlap removal: Algorithms and experiments[END_REF]). Other algorithms create embeddings so compact that it is not even possible to visualize the graph edges and structures anymore; meaning they are not suited to overlap removal for graph visualization. Scaling is also excluded since it does not look for balance and rawly upscales the layout; which is not a satisfactory solution on its own.

Comparison with Baseline Algorithms on Quality Metrics

This section reports and discusses the performances of FORBID and the selected algorithms from the literature on the Generated and Graphviz datasets.

On the Generated dataset (see Figure 2), every algorithm succeeds in minimizing oo nni, with Diamond and FORBID having slightly higher scores than others on worst cases (Q3). On sp ch a and gs bb iar, FORBID and FORBID' have the best scores by a fair margin, especially on worst cases (Q3). This demonstrates a good capability to limit the upscaling of the drawing in complicated layouts. Both FORBID and FORBID' also minimize nodes movements nm dm imse more than other algorithms, especially FORBID' that barely moves the nodes even on complex cases (nm dm imse = 50.23 on Q3). Finally, FORBID and its variant both have high scores on el rsd. As defined in Section 4.1, this metric measures the edge length preservation along the edges of the Delaunay Triangulation (DT) of a graph. Hence, it does not measures that the lengths of the actual graph edges are preserved, but rather quantifies the preservation of the distances between the closest nodes. On the other hand, FORBID focuses on the preservation of all the nodes pairwise distances. These two strategies do not have the same notion of preservation of the initial layout and by ignoring long distances, PRISM tends to break the overall layout aspect. In addition, since overlapped nodes are likely Fig. 2. Quality metrics quartile values for each algorithm on the Generated dataset (see Sect. 4.1). Cells color are selected based on the median value of the algorithms on each metric to enhance comparisons readability. The greener/lighter a cell color is, the better its quality metric score. The greener/lighter a cell color is, the better its quality metric score. to be adjacent in the DT graph and since our ideal distance between them is not the shortest possible (see Section 3.1), it was expected that FORBID would distord these distances more than other algorithms (e.g., PRISM).

The performances on the Graphviz dataset are reported in Figure 3. On that dataset, the same trend can be observed with slight differences. Here again, every algorithm successfully minimizes oo nni and both FORBID and FORBID' are still ahead by a fair margin on gs bb iar. However, they are no longer the bests on sp ch a and FORBID' is the only one to keep the lead on nm dm imse. On those two metrics, PRISM is slightly better than FORBID, while FORBID' has a deteriorated sp ch a for a much better node movement nm dm imse in comparison to other algorithms and to its own performances on the Generated dataset. In fact, since FORBID' focuses on preserving the initial layout, it tends to upscale the layouts more (worsening sp ch a) to minimize the nodes movements (improving nm dm imse). Finally, both have again the highest el rsd scores, though the difference with other algorithms is less pronounced.

Execution Time Comparison with some Baseline Algorithms

This section compares FORBID execution time with that of the best techniques according to the performances observed in Section 4.2: PFS', GTREE and PRISM.

Execution times on the Graphviz dataset are reported in Figure 4 and enable to categorize three groups of difficulty. FORBID, FORBID' and PFS' are instantaneous on easy graphs, taking less than 20ms to solve the OR problem, being about ten to twenty times faster than GTREE and PRISM. On medium complexity graphs, PFS' achieves again the best performances. FORBID is slower, but remains faster than GTREE and PRISM by a fair margin, while FORBID' is slower than GTREE. On these graphs, PRISM is significantly slower than the four others. Finally, on the hard est graphs, PFS' is still almost instantaneous. FORBID is faster than the remaining methods, while FORBID' loses to GTREE. On hard graphs, PRISM becomes dramatically slower than other algorithms.

In the end, we can conclude that FORBID scales well with the OR problem complexity, while it is more difficult for FORBID'. For this last, the constraint to start from the scaled initial layout at each pass in the optimization algorithm significantly slows its convergence (see Section 5) and is responsible of the higher upscaling observed in Section 4.2 that enables a better layout preservation. In comparison with PRISM, which also optimizes OR modeled as stress, both FORBID variants are much faster, while PFS' faster handles large graphs.

Discussion

This section discusses FORBID behavior on some specific graph examples by comparing it to other algorithms. It also briefly discusses the convergence of FORBID and FORBID' variants, highlighting their different behaviors.

Visual Evaluation. This section focuses on the study of FORBID, FORBID', PFS', GTREE and PRISM on three graphs of the Graphviz dataset: mode, badvoro and root. Both initial and overlap-free layouts are presented in Figure 5, while the methods quality metrics are reported in Table 1.

On mode, both FORBID and PRISM damaged the initial layout to produce more compact embeddings. On the other hand, the others preserved the initial layout structure, FORBID' being the most pleasing one. The quality metrics corroborate this observation, with FORBID and PRISM having lower sp ch a (i.e., upscaling) scores while FORBID', PFS' and GTREE have smaller nm dm imse (i.e., nodes movements) scores; FORBID' having the smallest one.

On both badvoro and root, the same trend can be observed between the Overlap Removal methods. PRISM produces more compact embeddings that makes it difficult to recognize the initial layout and even to visualize edges. On the other hand, GTREE produces less compact layouts, but distorts the initial graph structures. Finally, FORBID, FORBID' and PFS' are satisfactory, but PFS' upscales the initial layout more than necessary. Again, these observations are corroborated by the quality metrics presented in Table 1: PRISM is consistently better on sp ch a, GTREE is not the best on any metric, and the remaining three have less nodes movements but higher upscaling. The high nm dm imse scores of PFS' can be imputed to the fact that this metric is sensitive to the overlap-free layout scale, even though the graph layout structures seem visually preserved.

Overall, FORBID and FORBID' produce balanced layout that optimize both the initial layout preservation and the embedding compactness.

Convergence Analysis. This section studies how re-initializing the layout at every pass (i.e., call to the optimization algorithm) in FORBID' affects its convergence speed in comparison to FORBID. Observations of both variants on the mode, badvoro and root Graphviz graphs are presented in Figure 6. Each plot reports the number of passes, the length of each pass and the stress, number of overlaps and scaling ratio evolution against the total number of iterations.

For both FORBID and FORBID', the number of passes never exceeded 10. In these executions, the maximum number of iterations in the optimization algorithm was set to 30. Many passes stop before reaching this limit thanks to the stop condition on null nodes movements (see Section 3.2). As the stress and number of overlaps follow the same trends on every plot, it confirms that optimizing our stress effectively removes overlaps. The difference between FORBID and FORBID' is also distinctly observable. In FORBID, most overlaps are removed in the first few passes while the last ones are dedicated to the search for the optimal upscaling ratio while preserving the overlap-free layout. On the other hand, FORBID' has to restart from the scaled initial nodes every time a new pass begins, the problem being made simpler or harder through a different upscaling ratio. This explains why FORBID' is consistently slower than FORBID (see Section 4.3) but better preserves the initial layout (see Section 4.2).

Finally, we would like to discuss the choice of the binary search upper-bound s max . In this paper, it was set to the minimum scaling ratio for an overlap-free layout that has not moved any node (see Section 3.3). Doing so guarantees that FORBID finds a overlap-free layout and solve the Overlap Removal task. Such an s max value can be high when two nodes are almost perfectly overlapped, but in practice FORBID output layouts scaling remained far from this upper-bound during the benchmark (e.g., green lines in Figure 6). Nevertheless, it would be possible to set s max to a lower value to enforce a smaller scaling in the produced layout, at the cost of initial layout preservation and the guarantee that it is overlap-free. For instance, s max could be set to twice the sum of nodes areas, leading toward a layout which bounding box space is at least half occupied, but there would be no guarantee that this restrained space is enough to provide an overlap-free layout that preserves the initial one. The notion of overlap itself could also be approximated with a tolerance to speed up the convergence (i.e., consider as not overlapped the pairs of nodes that do overlap by less than a tolerance margin). In the end, these choices mainly depend on the initial graph layout and the desired aspect of overlap-free layout. Although it can be slightly suboptimal, the s max defined and used in this paper (see Section 3.3) is better adapted to the general case.

Conclusion

This paper has presented FORBID, an Overlap Removal (OR) algorithm that leverages upscaling and stress optimization by simulated stochastic gradient descent to minimize deformations in the initial layout. FORBID idea is based on combining upscaling and the preservation of all nodes pairwise distances to produce an overlap-free layout, focusing on the preservation of the initial graph layout structures while limiting the surface used. It has been compared to several state-of-the-art algorithms, and is among the best techniques to preserve the initial layout, which is critical in graph drawing to retain the readability of the graph layout structures. FORBID complexity is in O(s(N 2 + N log N)) and is among the fastest methods on the benchmark graphs (with up to 1463 nodes and 11 582 Overlaps). Future works leads include improvements of the algorithm complexity to better handle large graphs. The first idea to achieve that is to sub-sample the nodes pairs to process to remove overlaps. A multi-scale approach could enable to optimize the initial graph layout structures preservation while sampling the distances to preserve (i.e., preserve distances between-clusters and within-cluster; ignore between nodes of different clusters). Finally, with the recent advances in Deep Learning for graph drawing [START_REF] Giovannangeli | Deep Neural Network for DrawiNg Networks[END_REF][START_REF] Wang | DeepGD: A Deep Learning Framework for Graph Drawing Using GNN[END_REF], we plan to learn a Deep Learning model solve OR problems. By design, these models can scale to large graphs as they are capable of solving the task they have learned in almost constant time.

Fig. 1 .

 1 Fig. 1. Simplified schema of FORBID algorithm representing how the stress and upscaling criteria are organized together. Gears represent the algorithms FORBID relies on (i.e., S GD 2 [26] and scan line [6]), and colored boxes represent layouts while white boxes represent the search for the optimal scaling.

Fig. 3 .

 3 Fig. 3. Quality metrics mean values on the Graphviz dataset (see Sect. 4.1).The greener/lighter a cell color is, the better its quality metric score.

Fig. 4 .

 4 Fig. 4. Execution time (in ms) of FORBID, FORBID', GTREE and PRISM on the Graphviz dataset (see Sect. 4.1). Rows are sorted by "graph complexity" measured with their number of nodes |V|, edges |E| and overlaps |O|. The greener/lighter a cell color is, the better its quality metric score.

Fig. 5 .

 5 Fig. 5. Graph visualization of examples from the Graphviz dataset with FOR-BID, FORBID', PFS' GTREE and PRISM. Nodes are colored in transparent red if they overlap each other, and opaque blue otherwise.

Fig. 6 .

 6 Fig. 6. Convergence plots of FORBID and FORBID'. It reports the evolution of stress, number of overlaps and scaling ratio against the total number of iterations. Vertical dashed lines represent beginning of new passes. Stress and number of overlaps are normalized by their respective maximum value, while upscaling ratio is normalized by its binary search maximum bound (see Section 3.3).

Table 1 .

 1 Quality metrics of the drawings presented in Figure5. For each graph and quality metric, the best score is highlighted in bold.

			FORBID	FORBID'	PFS'	GTREE	PRISM
		oo nni	0.20	0.03	0.54	0.05	0.06
	mode	sp ch a gs bb iar nm dm imse	2.98 1.02 20417	10.35 1.01 1657	9.08 1.20 8655	7.77 1.23 10238	3.72 1.52 17442
		el rsd	0.95	0.70	0.39	0.54	0.62
		oo nni	0.01	0.00	0.48	0.02	0.02
	badvoro	sp ch a gs bb iar nm dm imse	11.42 1.00 979	12.40 1.00 451	17.92 1.25 57267	13.45 1.17 67296	6.87 1.85 47708
		el rsd	0.32	0.23	0.20	0.40	0.39
		oo nni	0.01	0.01	0.53	0.05	0.04
	root	sp ch a gs bb iar	19.17 1.01	29.99 1.01	48.34 1.34	14.29 1.30	6.27 2.04
		nm dm imse	24502	12151	662185	356632	450287
		el rsd	0.90	0.72	0.43	0.67	0.72

FORBID implementation: https://github.com/LoannGio/FORBID

Generated and Graphviz graphs: https://github.com/agorajs/agora-dataset, last consulted on May 2022

Acknoledgements

We would like to thank the Nouvelle-Aquitaine Region for supporting this work through its foundings OPE 2020-0408 and OPE 2020-0513.