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Abstract. While many graph drawing algorithms consider nodes as
points, graph visualization tools often represent them as shapes. These
shapes support the display of information such as labels or encode various
data with size or color. However, they can create overlaps between nodes
which hinder the exploration process by hiding parts of the informa-
tion. It is therefore of utmost importance to remove these overlaps to
improve graph visualization readability. If not handled by the layout
process, Overlap Removal (OR) algorithms have been proposed as layout
post-processing. As graph layouts usually convey information about their
topology, it is important that OR algorithms preserve them as much as
possible. We propose a novel algorithm that models OR as a joint stress
and scaling optimization problem, and leverages efficient stochastic gradi-
ent descent. This approach is compared with state-of-the-art algorithms,
and several quality metrics demonstrate its efficiency to quickly remove
overlaps while retaining the initial layout structures.

Keywords: Layout adjustment · Overlap removal · Stress optimization ·
Stochastic gradient descent

1 Introduction

Most dimension reduction algorithms consider data as points (e.g., Multi Dimen-
sional Scaling [23, 24], Graph Layout [10, 16, 26]). However, most visualization
tools represent them by shapes with an area, whether to encode additional data
within the screen representation of the nodes, or because it is simply more visually
pleasing for end-users. Rendering such data that was laid out as points with
shapes creates overlaps that can severely hinder the representation readability
by hiding information. If not handled directly inside the dimension reduction
algorithm (e.g., [11,17]), it is then the responsibility of a post-processing Overlap
Removal (OR) algorithm to remove these overlaps.

In this paper, we consider the OR problem in graph layouts context, meaning
that our laid out data points are nodes positioned by a graph drawing algorithm.
These nodes are represented as rectangles with a position and size in two dimen-
sions. Other shapes can be considered as well, as long as it is possible to check
for overlaps and measure a distance between them. We consider that a pair of
nodes overlaps if the intersection of their shapes representations is not null.



An OR algorithm takes a set of nodes positions and sizes as input and move
these nodes to remove all overlaps while optimizing two main criteria: compactness
and initial layout preservation. An algorithm that uniformly upscales the initial
layout until there is no overlap perfectly works (e.g., uniform Scaling [4]), but
its result is not satisfactory as it produces very sparse layouts where the nodes
visible areas are significantly reduced. Hence, a good OR algorithm should be
able to optimize compactness by preserving the scale of the initial layout, using
its empty spaces to move nodes apart. Initial layout preservation is also of utmost
importance in a graph drawing context since the initial graph layout is often
computed to emphasize the graph structure. It is then imperative to preserve the
mental map a user has of the initial layout. In addition, graph representations
also include visualization of their edges. In that regard, optimizing compactness
only is not suited to the graph context since it ends up hiding the graph edges.

The main contribution of this paper is FORBID1: Fast Overlap Removal By
stochastic gradIent Descent, a novel OR algorithm dedicated to graph drawings
that produces overlap-free layouts balancing compactness and initial layout
preservation. To the best of our knowledge, it is the first method to explicitly
optimize the conjunction of these two aspects. It models the problem as a stress
function: each pair of nodes in the overlap-free layout should be put at an ideal
distance such that (i) there is no longer overlaps in the layouts and (ii) the
distances between all the nodes are preserved. This stress is then optimized with
an efficient state-of-the-art stochastic gradient descent algorithm [26]. Leveraging
Chen et al. [3, 4] evaluation protocol, FORBID is compared with major state-
of-the-art OR algorithms on a set of quality metrics specifically selected for
this purpose. It demonstrates great capabilities to preserve initial layouts while
retaining a decent level of compactness.

The remainder of this paper is organized as follows. Section 2 presents related
works principally centered around the description of OR algorithms and their
evaluation as proposed in [3, 4]. Section 3 describes FORBID algorithm, while
Section 4 reports its evaluation. Finally, Section 5 discusses visual examples of
overlap-free layouts from several OR algorithms as well as FORBID convergence.

Notations: Let G = (V,E) be a graph with V = {v1, v2, ..., vN} its set of
N = |V | nodes and E ⊆ V × V its set of edges. A graph layout is defined as a
tensor X ∈ RN×2 where Xi is the node vi projection in 2D. A node vi is defined
by a rectangle of width and height (wi, hi) centered in Xi. Two nodes overlap
each other if the intersection between their rectangles is not null. For convenience,
we define the set of overlapping pairs of nodes in a graph by O ⊆ V × V .
A corresponding overlap-free layout is defined as X ′ ∈ RN×2. The euclidean
distance bewteen two nodes vi and vj is noted ||Xi −Xj ||.

2 Related Works

This section presents major prior works in the Overlap Removal (OR) field. As
described in Chen et al. survey [3, 4], several efficient OR algorithms exist, many

1FORBID implementation: https://github.com/LoannGio/FORBID

https://github.com/LoannGio/FORBID


of which (e.g., [12, 14, 19]) rely on scan line [6] to detect overlap presency in
O(N logN) and find all overlaps in O(|O|N(logN+|O|)) which can be faster than
the pairwise search in O(N2). These OR algorithms focus on different contexts
(e.g., graph or generic 2D representation) and optimize different criteria (e.g.,
compactness, layout preservation). PFS [19], PFS’ [12], FTA [14], RWordle-L [22]
and uniform scaling [3,4] rely on the scan line algorithm to remove overlaps. PFS,
PFS’ and FTA are made of two passes handling horizontal and vertical movements
separately, while RWordle-L moves nodes on both axes at the same time. In the
end, they all have a quadratic complexity according to how nodes movements are
computed. PRISM [8] models OR as a stress optimization problem in a proximity
graph (i.e., Delaunay triangulation of the initial layout) of a layout and runs
in O(t(mkN +N logN)) where m, k are optimization hyper-parameters and t
depends on the number of overlaps. GTREE [20] leverages PRISM proximity
graph to remove overlaps, but constructs a minimum spanning tree upon it to
reduce the number of forces to compute. They both propose a good level of
initial layout preservation. As FORBID idea is close to that of PRISM in some
way, it will be further discussed in Section 3. VPSC [6,7] models OR as a set of
constraints to relax but tends to highly deform the initial layout. Its complexity
is O(CN logC) where C is the number of constraints in O(N) to relax; leading
to a final complexity in O(N2 logN). Finally, Diamond [18] is another constraint
programming-based OR algorithm in O(N2) that optimizes orthogonal order
preservation. Its originality is to propose to temporarily rotate nodes by 45◦,
representing them as diamonds to facilitate the constraints relaxations.

3 FORBID Algorithm

This section presents FORBID Overlap Removal (OR) algorithm. It is based
on finding an optimal (i.e., smallest) upscaling ratio while minimizing a stress
function that models an overlap-free layout that preserves the initial one. The
optimal scaling ratio is found with binary search, while the stress function is
optimized with the S GD2 algorithm [26] that simulates stochastic gradient
descent. An overview of the algorithm components is presented in Figure 1 and
its complexity is in O(s(N2 +N logN)) where s is defined later in Section 3.3.

3.1 Stress Modelization for Overlap Removal

Preliminaries. Traditional graph layout algorithms (e.g., [2, 16,21,26]) often
optimize a stress function that has been shown to lead to meaningful layouts and
is defined as:

σ(X) =
∑
i,j∈V

Wij(||Xi −Xj || − δij)
2 (1)

where δij is an ideal distance that the projected layout should preserve, and Wij

is a weight factor usually set to δ−2
ij . In the graph layout context, δij is set to
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Fig. 1. Simplified schema of FORBID algorithm representing how the stress
and upscaling criteria are organized together. Gears represent the algorithms
FORBID relies on (i.e., S GD2 [26] and scan line [6]), and colored boxes represent
layouts while white boxes represent the search for the optimal scaling.

the graph theoretical distances so that the projected representation of the graph
enables end-users to apprehend the graph structure.

As proposed by Gansner and Hu [8], stress is also a good criterion for OR
problems. In fact, optimizing stress comes down to fit a distribution of distances
in a low dimensional space to that of a higher space, considered ideal but of too
high dimensions to be represented. The adaptation to an overlap removal context
simply changes the notion of ideal distances. Rather than fitting the projected
positions to match graph theoretical distances, the ideal distances are two-folded
here. For a pair of nodes pij = (vi, vj), with pij /∈ O, the ideal distance δij is
set to their distance ||Xi − Xj || in the original layout. On the other hand, if
pij ∈ O, δij is set to a distance such that vi and vj do not overlap anymore; that
distance depending on the nodes shapes and some design choices. This two-folded
definition enables the optimization of both the preservation of the original layout
and the overlapped nodes movement at the same time.

PRISM [8] is an example of OR algorithm that optimizes stress. It constructs
a proximity graph (Delaunay triangulation of the initial layout) and optimizes
stress alongside its edges. Considering nodes are represented as rectangles, they
define the ideal distance as δij = sij ||Xi −Xj || where sij is an expansion factor
of the edge (vi, vj) computed so that both nodes would be side by side. PRISM
main limitations comes from the use of the proximity graph that does not capture
all the overlaps and only enables the preservation of distances between close
nodes in the initial layout, ignoring longer distances preservation.

FORBID Stress Modelization. For every pair of overlapped nodes, δij is set
to the distance between vi and vj centers if they were tangent in their corner. It
allows one of them to be placed on the circle centered on the other and which
radius is the minimum so that the nodes do not overlap anymore regardless of their



relative position. This distance ensures that two nodes do not overlap anymore
and favors convergence by adding some margin space them, which is necessary
for two reasons. First, since stress is optimized by stochastic gradient descent in
FORBID (see Section 3.2), the ideal distances will most likely get approximated,
but never perfectly matched. Second, the PRISM definition of ideal distance
means there is only one correct placement for every pair of overlapping nodes
that satisfies the stress. However, as opposed to PRISM, FORBID optimizes the
distances between all N2 pairs of nodes, making the number of constraints to
relax much higher. This margin enables FORBID to converge faster toward a
solution. Formally, the stress is defined as Equation 1 with δij and Wij set to:

δij =


√(

wi+wj

2

)2

+
(

hi+hj

2

)2

, if (vi, vj) ∈ O

||Xi −Xj ||, if (vi, vj) /∈ O

(2)

Wij =

δk∗αij , if (vi, vj) ∈ O

δαij , if (vi, vj) /∈ O

(3)

where α is generally set to −2 and k ∈ R is an overlap-related factor to tailor
the algorithm behavior to a desired initial layout preservation. The smaller the
weight is given to overlapping pairs of nodes, the more the initial layout will be
preserved at the cost of slower convergence or higher scaling.

3.2 FORBID Stress Optimization

FORBID optimizes stress by stochastic gradient descent by leveraging S GD2 [26]
algorithm. S GD2 models stress as a set of constraints that are relaxed by
individually moving pairs of nodes. The process is based on constrained graph
layout [1, 5], and is optimized by considering the constraints individually to
efficiently model clothes movements [15]. By individually moving pairs of nodes to
optimize the stress, the algorithm can create new overlaps. And since overlapping
and non-overlapping pairs of nodes have different notions of ideal distances, δij
and Wij are updated at each optimization iteration (everytime all pairs of nodes
have been moved once) so that, at any time, the algorithm optimizes distances
according to the current state of the layout.

S GD2 optimization convergence is based on an annealing step size schedule
that mimicks a stochastic gradient descent. It computes O(N2) movements, but
in practice it converges in very few iterations, making it competitive with other
algorithms (see Section 4.3). To make it even faster, we also stop the gradient
descent if, at any iteration, the sum of all nodes movements in the current
iteration is null. This explains why every execution of S GD2 is not necessarily
of the same length (see Section 5).



3.3 Scaling to Ensure Convergence

Here, we define the bounding box as the minimum rectangle in which the initial
layout fits. Removing all overlaps in a layout is sometimes not feasible without
deforming its bounding box, e.g., when the sum of the nodes areas exceeds the
layout bounding box area. Two strategies can overcome this: (i) to allow the
optimization algorithm to distort the bounding shape, or (ii) to scale up the
drawing to create empty spaces that can be used to move nodes. These two choices
boil down to considering that either “more space is needed” or “nodes must be
smaller” to provide an overlap-free layout. The first strategy has the benefit of
limiting the bounding box upscaling, but can result in strongly distorted layouts
that makes it difficult to recognize the original graph structure. To guarantee
that FORBID finds a solution, it uses the second method and searches for the
optimal upscale ratio so that there is enough space to remove overlaps without
deforming its aspect. The optimal upscale ratio smax is found by binary search
between 1 and the minimum scaling ratio for an overlap-free layout that has not
moved any node (i.e., scaling ratio of Scaling [4]). FORBID moves the nodes
until there is no overlap (scan line [6]) and until the scaling ratio is optimal up
to a given precision sstep (e.g., 0.1).

We name pass a call to the optimization algorithm S GD2 (see Section 3.2)
and iteration a step within S GD2 (i.e., moving all pairs of nodes once). The
maximum number of passes over S GD2 is defined by the binary search maximum

depth s ≤ log
(

smax−1
sstep

)
. Since the pass in S GD2 costs O(N2) and that we test

if there remains any overlap right after with the scan line [6] algorithm that
executes in O(N logN); the final complexity of FORBID is O(s(N2 +N logN)).

As every pass in the optimization algorithm resets the annealing step size
schedule (see Section 3.2), the nodes can be moved a lot at the beginning of every
pass; meaning that FORBID is somewhat allowed to modify the initial layout
more than expected. Hence, we also experiment a variant of FORBID, called
FORBID’, in which the model starts from the scaled initial layout at every pass
of the optimization algorithm. We expect this variant to be able to preserve the
initial layout even better, probably at the cost of convergence speed.

Algorithm 1 presents FORBID algorithm pseudo-code. It has been simplified
by removing the first pass that occurs with the initial scaling of the layout if
the sum of nodes areas is lower than the layout bounding box. In practice, it
only enters the while loop (line 20) to search for the optimal scale if scaling is
necessary. The only modification required to implement FORBID’ is to change line
21 into X ′ ← scaleLayout(X, curScale) so that the next pass in the optimization
algorithm starts with the scaled initial layout.

4 FORBID Evaluation

For the sake of reproducibility, we used the same evaluation protocol as in the Chen
et al. survey [3, 4]. That includes quality metrics, datasets and algorithms. This
section describes this protocol and presents the results of FORBID comparison



Algorithm 1 FORBID pseudo-code

1: Methods
2: getScalingRatio(Layout, Sizes): returns the minimum scaling ratio [3,4] so that

there is no overlap anymore in Layout
3: containsOverlap(Layout, Sizes): [6] returns true if there is overlap in Layout,

false otherwise
4: scaleLayout(Layout, scaleFactor): returns Layout scaled by scaleFactor
5: SGD2 StressOPT(Layout′, Layout, Sizes): One pass of S GD2 [26] to optimize

overlap removal modeled as stress
6: end Methods
7:
8: Variables
9: X: Initial layout, 2D position of every node
10: S: Nodes sizes in 2D, Si = (wi, hi)
11: scaleStep: Scaling step size to stop the search of optimal scale
12: end Variables
13:
14: procedure FORBID(X, S, scaleStep, SGD2 HP )
15: lowScale ← 1
16: upScale ← getScalingRatio(X, S)
17: curScale ← (lowScale+ upScale)/2
18: X ′ ← X
19: thereIsOverlap ← containsOverlap(X ′, S)
20: while thereIsOverlap or (upScale− lowScale > scaleStep) do
21: X ′ ← scaleLayout(X ′, curScale)
22: X ′ ← SGD2 StressOPT(X ′, X, S)
23: thereIsOverlap ← containsOverlap(X ′, S)
24: if thereIsOverlap then
25: lowScale ← curScale
26: else
27: upScale ← curScale
28: end if
29: curScale ← (lowScale+ upScale)/2
30: end while
31: return X ′

32: end procedure

with the selected algorithms on these datasets and metrics. Finally, FORBID
execution time is also compared with some algorithms.

4.1 Evaluation Protocol

Quality Metrics. The quality metrics used to compare FORBID with other
algorithms from the literature were selected by Chen et al. [3, 4]. All are oriented
as lower is better, the optimal value being 0 unless specified otherwise.

oo nni : stands for the Orthogonal Ordering: Normalized Number of Inversions
and counts the number of times the nodes orthogonal order have been violated.



sp ch a [22]: is for Spread Minimization: Convex Hull Area. It measures by
how much the convex hull area of the overlap-free layout is different from the

one of the initial layout: sp ch a = convex hull area(X′)
convex hull area(X) , the optimal value being 1.

This metric mainly measures the layout scaling.
gs bb iar : means Global Shape preservation: Bounding Box Improved Aspect

Ratio and is a variant of the aspect ratio between the bounding box of the initial
and overlap-free layouts in which the minimal and target value is 1.

nm dm imse : stands for Node Movement minimization: Distance Moved
Improved Mean Squared Error. It quantifies how much the nodes moved from
their position in the initial layout to theirs in the overlap-free layout. To lessen
the effect of positions value domains, the layouts are aligned as follows:

nm dm imse =
1

N

∑
vi∈V

||X ′
i − scale(shift(Xi))||2 (4)

where shift and scale are moving and scaling the initial layout bounding box
to match the center and dimensions of the overlap-free layout. It is important
to mention that both in [3, 4] and therefore in this paper, the bounding boxes
computed to scale the layouts do not take the nodes sizes into account.

el rsd : is for Edge Length preservation: Relative Standard Deviation. It
measures by how much the lengths of edges in the Delaunay Triangulation graph
of an initial layout are preserved, i.e., how well short-distances are preserved.

Datasets. Still following Chen et al. [3, 4] evaluation protocol, we use the
Generated and Graphviz datasets available online2.

Generated is a set of 840 synthetic graphs specifically generated for the bench-
mark in [3, 4]. It is made of 120 graphs of each size 10, 20, 50, 100, 200, 500, 1000,
laid out with the FM3 algorithm [10]. These layouts have 2770±7567(std) initial
overlaps in average, ranging between 0 and 31843.

Graphviz is a set of 14 real-world graphs from the Graphviz suite. They
have between 36 and 1463 nodes and are laid out with SFDP algorithm [13]
and have for between 4 and 11582 initial overlaps (2118± 4078(std) in average).

Baseline Algorithms. As already state (see Section 2), there are two main
criteria to optimize in overlap removal algorithms: compactness and initial layout
preservation. By design, FORBID belongs to the second category and is then only
compared with its corresponding algorithms (i.e., PFS [19], PFS’ [12], PRISM [8],
GTREE [20] and Diamond [18]). Other algorithms create embeddings so compact
that it is not even possible to visualize the graph edges and structures anymore;
meaning they are not suited to overlap removal for graph visualization. Scaling
is also excluded since it does not look for balance and rawly upscales the layout;
which is not a satisfactory solution on its own.

2Generated and Graphviz graphs: https://github.com/agorajs/agora-dataset,
last consulted on May 2022

https://github.com/agorajs/agora-dataset


4.2 Comparison with Baseline Algorithms on Quality Metrics

This section reports and discusses the performances of FORBID and the selected
algorithms from the literature on the Generated and Graphviz datasets.

On the Generated dataset (see Figure 2), every algorithm succeeds in
minimizing oo nni, with Diamond and FORBID having slightly higher scores than
others on worst cases (Q3). On sp ch a and gs bb iar, FORBID and FORBID’ have
the best scores by a fair margin, especially on worst cases (Q3). This demonstrates
a good capability to limit the upscaling of the drawing in complicated layouts.
Both FORBID and FORBID’ also minimize nodes movements nm dm imse more
than other algorithms, especially FORBID’ that barely moves the nodes even on
complex cases (nm dm imse = 50.23 on Q3). Finally, FORBID and its variant
both have high scores on el rsd. As defined in Section 4.1, this metric measures
the edge length preservation along the edges of the Delaunay Triangulation (DT)
of a graph. Hence, it does not measures that the lengths of the actual graph edges
are preserved, but rather quantifies the preservation of the distances between the
closest nodes. On the other hand, FORBID focuses on the preservation of all the
nodes pairwise distances. These two strategies do not have the same notion of
preservation of the initial layout and by ignoring long distances, PRISM tends
to break the overall layout aspect. In addition, since overlapped nodes are likely

Fig. 2. Quality metrics quartile values for each algorithm on the Generated
dataset (see Sect. 4.1). Cells color are selected based on the median value of the
algorithms on each metric to enhance comparisons readability. The greener/lighter
a cell color is, the better its quality metric score.

Fig. 3. Quality metrics mean values on the Graphviz dataset (see Sect. 4.1).
The greener/lighter a cell color is, the better its quality metric score.



to be adjacent in the DT graph and since our ideal distance between them is
not the shortest possible (see Section 3.1), it was expected that FORBID would
distord these distances more than other algorithms (e.g., PRISM).

The performances on the Graphviz dataset are reported in Figure 3. On
that dataset, the same trend can be observed with slight differences. Here again,
every algorithm successfully minimizes oo nni and both FORBID and FORBID’
are still ahead by a fair margin on gs bb iar. However, they are no longer the
bests on sp ch a and FORBID’ is the only one to keep the lead on nm dm imse.
On those two metrics, PRISM is slightly better than FORBID, while FORBID’
has a deteriorated sp ch a for a much better node movement nm dm imse in
comparison to other algorithms and to its own performances on the Generated
dataset. In fact, since FORBID’ focuses on preserving the initial layout, it tends to
upscale the layouts more (worsening sp ch a) to minimize the nodes movements
(improving nm dm imse). Finally, both have again the highest el rsd scores,
though the difference with other algorithms is less pronounced.

4.3 Execution Time Comparison with some Baseline Algorithms

This section compares FORBID execution time with that of the best techniques
according to the performances observed in Section 4.2: PFS’, GTREE and PRISM.

Execution times on the Graphviz dataset are reported in Figure 4 and
enable to categorize three groups of difficulty. FORBID, FORBID’ and PFS’ are
instantaneous on easy graphs, taking less than 20ms to solve the OR problem,
being about ten to twenty times faster than GTREE and PRISM. On medium
complexity graphs, PFS’ achieves again the best performances. FORBID is slower,
but remains faster than GTREE and PRISM by a fair margin, while FORBID’
is slower than GTREE. On these graphs, PRISM is significantly slower than the

Fig. 4. Execution time (in ms) of FORBID, FORBID’, GTREE and PRISM on
the Graphviz dataset (see Sect. 4.1). Rows are sorted by “graph complexity”
measured with their number of nodes |V|, edges |E| and overlaps |O|. The
greener/lighter a cell color is, the better its quality metric score.



four others. Finally, on the hardest graphs, PFS’ is still almost instantaneous.
FORBID is faster than the remaining methods, while FORBID’ loses to GTREE.
On hard graphs, PRISM becomes dramatically slower than other algorithms.

In the end, we can conclude that FORBID scales well with the OR problem
complexity, while it is more difficult for FORBID’. For this last, the constraint
to start from the scaled initial layout at each pass in the optimization algorithm
significantly slows its convergence (see Section 5) and is responsible of the higher
upscaling observed in Section 4.2 that enables a better layout preservation. In
comparison with PRISM, which also optimizes OR modeled as stress, both
FORBID variants are much faster, while PFS’ faster handles large graphs.

5 Discussion

This section discusses FORBID behavior on some specific graph examples by
comparing it to other algorithms. It also briefly discusses the convergence of
FORBID and FORBID’ variants, highlighting their different behaviors.

Visual Evaluation. This section focuses on the study of FORBID, FORBID’,
PFS’, GTREE and PRISM on three graphs of the Graphviz dataset: mode,
badvoro and root. Both initial and overlap-free layouts are presented in Figure 5,
while the methods quality metrics are reported in Table 1.

On mode, both FORBID and PRISM damaged the initial layout to produce
more compact embeddings. On the other hand, the others preserved the initial
layout structure, FORBID’ being the most pleasing one. The quality metrics
corroborate this observation, with FORBID and PRISM having lower sp ch a (i.e.,
upscaling) scores while FORBID’, PFS’ and GTREE have smaller nm dm imse
(i.e., nodes movements) scores; FORBID’ having the smallest one.

On both badvoro and root, the same trend can be observed between the
Overlap Removal methods. PRISM produces more compact embeddings that
makes it difficult to recognize the initial layout and even to visualize edges. On
the other hand, GTREE produces less compact layouts, but distorts the initial
graph structures. Finally, FORBID, FORBID’ and PFS’ are satisfactory, but PFS’
upscales the initial layout more than necessary. Again, these observations are
corroborated by the quality metrics presented in Table 1: PRISM is consistently
better on sp ch a, GTREE is not the best on any metric, and the remaining three
have less nodes movements but higher upscaling. The high nm dm imse scores of
PFS’ can be imputed to the fact that this metric is sensitive to the overlap-free
layout scale, even though the graph layout structures seem visually preserved.

Overall, FORBID and FORBID’ produce balanced layout that optimize both
the initial layout preservation and the embedding compactness.

Convergence Analysis. This section studies how re-initializing the layout
at every pass (i.e., call to the optimization algorithm) in FORBID’ affects its
convergence speed in comparison to FORBID. Observations of both variants on
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Table 1. Quality metrics of the drawings presented in Figure 5. For each graph
and quality metric, the best score is highlighted in bold.

FORBID FORBID’ PFS’ GTREE PRISM

m
od
e

oo nni 0.20 0.03 0.54 0.05 0.06
sp ch a 2.98 10.35 9.08 7.77 3.72
gs bb iar 1.02 1.01 1.20 1.23 1.52

nm dm imse 20417 1657 8655 10238 17442
el rsd 0.95 0.70 0.39 0.54 0.62

ba
d
vo
ro

oo nni 0.01 0.00 0.48 0.02 0.02
sp ch a 11.42 12.40 17.92 13.45 6.87
gs bb iar 1.00 1.00 1.25 1.17 1.85

nm dm imse 979 451 57267 67296 47708
el rsd 0.32 0.23 0.20 0.40 0.39

ro
o
t

oo nni 0.01 0.01 0.53 0.05 0.04
sp ch a 19.17 29.99 48.34 14.29 6.27
gs bb iar 1.01 1.01 1.34 1.30 2.04

nm dm imse 24502 12151 662185 356632 450287
el rsd 0.90 0.72 0.43 0.67 0.72

the mode, badvoro and root Graphviz graphs are presented in Figure 6. Each
plot reports the number of passes, the length of each pass and the stress, number
of overlaps and scaling ratio evolution against the total number of iterations.

For both FORBID and FORBID’, the number of passes never exceeded 10. In
these executions, the maximum number of iterations in the optimization algorithm
was set to 30. Many passes stop before reaching this limit thanks to the stop
condition on null nodes movements (see Section 3.2). As the stress and number
of overlaps follow the same trends on every plot, it confirms that optimizing
our stress effectively removes overlaps. The difference between FORBID and
FORBID’ is also distinctly observable. In FORBID, most overlaps are removed
in the first few passes while the last ones are dedicated to the search for the
optimal upscaling ratio while preserving the overlap-free layout. On the other
hand, FORBID’ has to restart from the scaled initial nodes every time a new pass
begins, the problem being made simpler or harder through a different upscaling
ratio. This explains why FORBID’ is consistently slower than FORBID (see
Section 4.3) but better preserves the initial layout (see Section 4.2).

Finally, we would like to discuss the choice of the binary search upper-bound
smax. In this paper, it was set to the minimum scaling ratio for an overlap-free
layout that has not moved any node (see Section 3.3). Doing so guarantees that
FORBID finds a overlap-free layout and solve the Overlap Removal task. Such
an smax value can be high when two nodes are almost perfectly overlapped, but
in practice FORBID output layouts scaling remained far from this upper-bound
during the benchmark (e.g., green lines in Figure 6). Nevertheless, it would be
possible to set smax to a lower value to enforce a smaller scaling in the produced
layout, at the cost of initial layout preservation and the guarantee that it is
overlap-free. For instance, smax could be set to twice the sum of nodes areas,
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Fig. 6. Convergence plots of FORBID and FORBID’. It reports the evolution of
stress, number of overlaps and scaling ratio against the total number of iterations.
Vertical dashed lines represent beginning of new passes. Stress and number of
overlaps are normalized by their respective maximum value, while upscaling ratio
is normalized by its binary search maximum bound (see Section 3.3).

leading toward a layout which bounding box space is at least half occupied, but
there would be no guarantee that this restrained space is enough to provide an
overlap-free layout that preserves the initial one. The notion of overlap itself
could also be approximated with a tolerance to speed up the convergence (i.e.,
consider as not overlapped the pairs of nodes that do overlap by less than a
tolerance margin). In the end, these choices mainly depend on the initial graph
layout and the desired aspect of overlap-free layout. Although it can be slightly
suboptimal, the smax defined and used in this paper (see Section 3.3) is better
adapted to the general case.

6 Conclusion

This paper has presented FORBID, an Overlap Removal (OR) algorithm that
leverages upscaling and stress optimization by simulated stochastic gradient
descent to minimize deformations in the initial layout. FORBID idea is based
on combining upscaling and the preservation of all nodes pairwise distances
to produce an overlap-free layout, focusing on the preservation of the initial



graph layout structures while limiting the surface used. It has been compared to
several state-of-the-art algorithms, and is among the best techniques to preserve
the initial layout, which is critical in graph drawing to retain the readability
of the graph layout structures. FORBID complexity is in O(s(N2 +N logN))
and is among the fastest methods on the benchmark graphs (with up to 1463
nodes and 11 582 Overlaps). Future works leads include improvements of the
algorithm complexity to better handle large graphs. The first idea to achieve that
is to sub-sample the nodes pairs to process to remove overlaps. A multi-scale
approach could enable to optimize the initial graph layout structures preservation
while sampling the distances to preserve (i.e., preserve distances between-clusters
and within-cluster; ignore between nodes of different clusters). Finally, with the
recent advances in Deep Learning for graph drawing [9,25], we plan to learn a
Deep Learning model solve OR problems. By design, these models can scale to
large graphs as they are capable of solving the task they have learned in almost
constant time.
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