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Motivated by the major role funneling dynamics plays in light-harvesting processes, we built some
laser control strategies inspired from basic mechanisms such as interference and kicks, and apply
them to the case of pyrazine. We are studying the internal conversion between the two excited
states, the highest and directly reachable from the initial ground state being considered as a donor,
and the lowest as an acceptor. The ultimate control objective is the maximum population deposit in
the otherwise dark acceptor, from a two-step process: radiative excitation of the donor, followed by a
conical-intersection-mediated funneling towards the acceptor. The overall idea is to first obtain the
control field parameters (individual pulses leading frequency and intensity, duration and inter-pulse
time delay) for tractable reduced dimensional models basically describing the conical intersection
branching space. Once these parameters are optimized, they are fixed and used in full dimensional
dynamics describing the electronic population transfer. In the case of pyrazine, the reduced model
is 4 dimensional, whereas the full dynamics involve 24 vibrational modes. Within experimentally
achievable electromagnetic field requirements, we obtain a robust control with about 60% of the
ground state population deposited in the acceptor state, while about 16% remains in the donor.
Moreover, we anticipate a possible transposition to the control of even larger molecular systems, for
which only a small number of normal modes are active, among all the others acting as spectators
in the dynamics.

PACS numbers: 42.50.Hz, 33.80.-b, 31.70.Hq, 31.15.xt

I. INTRODUCTION

Funneling dynamics is a key mechanism in the frame-
work of artificial light-harvesting processes, biological an-
tennas, or organic photovoltaic devices [1–3]. Trans-
fer from an initial donor to a target acceptor proceeds
through an excited state gradient, leading to a final lo-
calization from which the photonic energy may be cap-
tured. In complex molecular systems, such energy trans-
port mechanisms are driven by ultra-fast non-adiabatic
transitions through conical intersections (CI) [4–9]. In-
vestigation of the coherent preparation of the donor state
from the initial ground state and the control of the subse-
quent dynamics using intense, ultra-short laser pulses are
major issues for modifying the energy transport mecha-
nisms [10–12]. In this context, we have recently studied a
rather complex molecular system, namely polyphenylene
ethynylene dendrimer, with a control objective aiming at
the coherent preparation of two donor states involved in
the dynamics, or their symmetric versus asymmetric su-
perposition [13]. In these systems, the acceptor state is
radiatively coupled to the ground state. It is only by dis-
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carding this direct excitation that we could build control
strategies to increase the coherence (asymmetry) lifetime
to populate the acceptor through the vibrational baths
of the donors.

In the present work, we address the coherent control
of the pyrazine (C4H4N2) photophysics and more pre-
cisely its S2 → S1 internal conversion leading to chal-
lenging issues, both with respect to its ultra-fast non-
adiabatic CI transfer (internal conversion time-scale of
20 fs [14–18]) and to its 24-dimensional vibrational ex-
citation dynamics. Some previous works in the litera-
ture are also concerned by the coherent control of pop-
ulation transfer from S0 to S2 and S1 electronic states
putting the emphasis on a significant delay of the inter-
nal conversion (or, in general, radiationless transition),
which is considered as an undesired phenomenon [19–21].
This is in relation with the fact that a successfully pop-
ulated excited state (S2) would be readily available for
applications (such as observation of desired photoprod-
ucts, mode selective chemistry, light-triggered molecular
rotors, separation of racemic mixtures) for only a brief
period of time. At this respect, refs.[20, 21] focus specif-
ically on an optimal control scheme to suppress radia-
tionless transitions on ns time scales after the external
control is over. As for ref.[19], the authors proceed to a
detailed study of the S0 → S2 → S1 process putting the
emphasis on maximal S2 population during the control
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scheme (about 50 fs duration). Still other works [22, 23]
refer to more general schemes by using overlapping reso-
nances. The main computational limitation is identified
as the reduced number of vibrational modes, usually 4
rather than 24. However, within some approximations,
model extensions to 24 dimensions have been achieved,
making use of a so-called QP partitioning [24]. Motivated
by light-harvesting systems, we pursue an opposite goal.
Our purpose is to maximize the population of the ener-
getically lower and thus more stable excited state S1. The
basic idea is to deposit the exciton energy from the bright
donor state S2 to the dark acceptor state S1, through a
funneling mechanism triggered by a conical intersection
and non-adiabatic internal coupling, taking advantage of
a decreasing electronic gradient from S2 to S1.

Control objectives being opposite, the strategies we are
developing also differ completely from the ones referred
to in previous works. More precisely, when maximizing
S2 population, the emphasis is put on stable, electroni-
cally localized eigenstates among the very dense manifold
of vibronically coupled levels. Refs.[20, 21] are concerned
by an optically coherent superposition of a specific eigen-
state localized in the S2 potential well. Ref.[19] also deals
with high-lying S2 vibrational states with significantly
slower decay rates into S1. A complete study of excita-
tion frequencies is undertaken to resonantly reach super-
position of such excited vibrational states, using rather
long duration pulses (180 fs for [20, 21] and 40 to 100
fs for [19]). Some other works deal either with the dy-
namic Stark effect used as a basic mechanism to shift
the CI away from the Franck-Condon region [25–27], or
with optimal control theory [28], but they are limited to
three or four modes vibronic couplings. We are adopting
different control strategies based on two mechanisms: ei-
ther interference, or sudden excitation kicks, as extended
to high dimensional complex molecular systems. This is
conducted by using ultra-short broad-band pulses, with-
out a specific resonant excitation frequency. We note that
such strategies remain in the spirit of what has been sug-
gested in the preliminary work of Ref.[29]. Our control
schemes are built so as to decrease the ground state S0

population, and simultaneously reach the optimal con-
trast favoring S1 population as compared to the one of
S2. As a signature of stable deposit of electronic en-
ergy, we are interested in post-pulse S1 population, tak-
ing into account the dephasing processes of the full 24-
modes dynamical description of pyrazine. On the exper-
imental side, it is worth mentioning that several works
are addressing the control of the internal conversion to
the energy transfer ratio, using in particular, open learn-
ing loop setups and evolutionary algorithms [30–33]. In
particular, the multi-pulse excitation (a degenerate four-
wave-mixing sequence) has its counterpart in the present
work, in terms of ultrashort pulse trains to propel the
wave packet towards the conical intersection.

The manuscript is organized as follows. Section II is
devoted to the Frenkel vibronic Hamiltonian involving
the 24-modes model of pyrazine, with all relevant pa-

FIG. 1: Schematic view of the three-state model used for
pyrazine. The ground state S0 is indicated in thick solid blue
line. The bright donor state S2 is in thick solid black line, and
the dark acceptor state S1 is in thick solid red line. The thin
horizontal lines are for the corresponding vibrational states.
Are also indicated the interstate coupling W12 in dotted blue
line, and the transition dipole moments µ01 and µ02.

rameters taken from [34]. The methodology adopted to
treat this model is Multi Configurational Time Depen-
dent Hartree (MCTDH) [34–39] which is shortly reviewed
with respect to its numerical convergence criteria in the
CI branching space. The post-pulse field-free dynamics
and its recursive patterns in terms of wavepacket vibra-
tional periods on both S2 and S1 potential energy curves
are analyzed. A detailed interpretation is provided when
going from 2D to 4D, and 24D models. Control strate-
gies are presented in Section III, putting the emphasis on
control observable and parameters on the one hand, and
interference and kick mechanisms from weak to strong
field regimes, on the other hand. Results are presented
in Section IV, for both the mechanisms with their inter-
pretation. Conclusions and some perspectives are given
in Section V.

II. METHODOLOGY: MODEL HAMILTONIAN
AND NUMERICAL TECHNIQUES.

As in many previous works, we are considering three
electronic states of pyrazine, namely the ground state
S0(1Ag), together with the two lowest excited electronic
states, S1(1B3u) and S2(1B2u). These states are well-
separated from others, close in energy, and vibroni-
cally coupled to each other [15]. Figure (1) displays a
schematic view of the corresponding states and their cou-
plings.

Following the usual model of displaced harmonic os-
cillators in open quantum systems, we work with a lin-
ear vibronic Hamiltonian expressed in a diabatic rep-
resentation. In this Section, we examine the field-free
vibronic Frenkel Hamiltonian, the MCTDH method re-
tained for solving it, and the generic field-free dynamics
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after launching part of the ground state wavepacket on
the excited states. That is more precisely conducted with
successively 2D, 4D and 24D models for a clear under-
standing of the role of dimensionality.

A. Vibronic Hamiltonian

We briefly recall the generic field-free Frenkel Hamil-
tonian which reads [40]

HS(Q) =
∑
n

|n〉Hnn(Q)〈n|+
∑
n 6=m

|n〉Hnm(Q)〈m| (1)

where n and m = 0, 1, 2 denote the electronic states and
Q collectively the nuclear coordinates. Using the linear
vibronic coupling of ref. [34] in mass weighted coordi-
nates, we have:

Hnn(Q) = ε̃(n) +

Nα∑
α

{P 2
α + ω(n)

α

2
(Qα − d(n)α )2} (2)

and

Hnm(Q) =

Nα∑
α

λ(nm)
α Qα (3)

where Qα and Pα = −i~ ∂
∂Qα

are the coordinate and mo-

mentum associated with the mode α. There are Nα such

modes in the electronic state n with frequency ω
(n)
α and

displacement d
(n)
α . Reorganizing Eq.(2), one gets:

Hnn(Q) = ε(n) +

Nα∑
α

{P 2
α + ω(n)

α

2
Q2
α}+

Nα∑
α

κ(n)α Qα (4)

where the gradient at the reference point (Qα = 0) is

given by: κ
(n)
α = −2ω

(n)
α

2
d
(n)
α , and the gradient of the

interstate coupling is noted as: λ
(nm)
α = W12. Finally,

the renormalized site energy is: ε(n) = ε̃(n) + ω
(n)
α

2
d
(n)
α

2
.

Table I of ref. [34] collects all the parameters that are
relevant for the system Hamiltonian given by Eq.(1). We
have to position S2 with respect to S0, and for this we
take the value 4.84eV from [18, 41].

It is to be noted that the two normal modes that span
the conical intersection branching space, using the sym-
metry group notations, are Q6a for state S1 and Q10a for
state S2 [40]. As mentioned before, the three models will
be referred to as 2D (Nα = 2) involving Q6a, Q10a, 4D
(Nα = 4) when enlarging the branching space to Q9a and
Q1, and the full 24D (Nα = 24) description involving all
normal modes.

B. MCTDH survey

The MCTDH approach for multi electronic states and
multi-mode nuclear dynamics has been presented in de-
tail in the literature. For pyrazine, with its three elec-
tronic states in consideration, the multistate vibrational

wave function is taken as a 3-dimensional column vec-
tor (Ψ1,Ψ2,Ψ3)T , of single-state nuclear wave functions
Ψn, (n = 1, 2, 3), T being the transpose. The total
electro-nuclear eigenvector is then written as:

|ΨTot(Q, t)〉 =

3∑
n=1

Ψn(Q, t)|n〉 (5)

n labels the electronic states and the unknown nu-
clear wave functions are solutions of the following close-
coupled equations:

−i~ ∂
∂t

Ψn(Q, t) = HnnΨn(Q, t)+
∑
m6=n

HnmΨm(Q, t) (6)

A standard multiconfiguration approach consists in ex-
panding these functions on a time-independent basis set
ΦJ,n, with time-dependent coefficients AJ,n, as:

Ψn(Q, t) =

NJ∑
J

AJ,n(t)ΦJ,n(Q) (7)

The major improvement brought by MCTDH is that not
only the coefficients but also the basis functions are taken
as time-dependent. The challenge is that, by adapt-
ing the basis set functions to the temporal evolution,
one must reduce the total number of these functions
(i.e., NJ) for a given convergence criterion. To proceed
along this line, the now time-dependent basis set func-
tions Φ̃J,n(Q, t) are given as a tensorial product of time-

dependent single-particle functions ϕ
(α)
jα

(Qα, t) describ-
ing a given nuclear degree of freedom α. The complete
expansion reads as:

Ψn(Q, t) =

n1∑
j1=1

...

nf∑
jf=1

Aj1,...jf (t)

f∏
α=1

ϕ
(α)
jα

(Qα, t) , (8)

where f is the number of nuclear degrees of freedom.
The index jα stands for one of the nα possible single
particle functions for the αth nuclear degree of freedom.
The number of configurations is thus given by the prod-
uct n1...nf . The single particle functions are ultimately
expressed in a time-independent, so-called primitive basis

set functions χ
(α)
ik

(Qk) as:

ϕ
(α)
jα

(Qα, t) =

Mα∑
iα

c
(α,jα)
iα

(t)χ
(α)
iα

(Qα) (9)

Interestingly enough, there is no prescription for SPFs to
depend on a single coordinate, and they may depend on
several coordinates. To further reduce the memory and
the numerical effort, several physical coordinates can be
regrouped into a so-called combined mode [34] :

Q̃κ ≡
(
Qκ,1, Qκ,2, . . . , Qκ,d

)
, (10)

ϕ
(κ)
j (Q̃κ, t) = ϕ

(κ)
j (Qκ,1, Qκ,2, . . . , Qκ,d, t) , (11)
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n Q̃1 Q̃2 Q̃3 Q̃4 Q̃5 Q̃6 Q̃7 Q̃8

1 10 10 4 4 4 4 4 4

2 28 28 4 4 4 4 4 4

3 28 28 4 4 4 4 4 4

TABLE I: Number of single particle functions, (n1 · · ·n8) used
for the eight combined modes. The size of the DVR for each
mode is given in the text.

where d is the number of nuclear degrees of freedom in
the combined mode Q̃κ. The MCTDH wavefunction is
now expanded as

Ψ(Q̃1, . . . , Q̃p, t) =

n1···np∑
j1···jp

Aj1···jp(t)

p∏
κ=1

ϕ
(κ)
j (Q̃κ, t) ,

(12)
where p is the number of combined modes and the SPFs
themselves are expanded as:

ϕ
(κ)
j (Q̃κ, t) =

Mκ 1···Mκ d∑
i1···id

C
(κ,j)
i1···id(t) χ(κ,1)(Qκ,1) · · ·χ(κ,d)(Qκ,d) .

(13)

Here, we use p = 8 combined modes Q̃j , (j =

1, ...8). More precisely, Q̃1 results from a combina-
tion of Q6a and Q10a. For the others, the combina-
tion scheme is indicated in parenthesis, i.e., Q̃2(1, 9a, 8a),

Q̃3(2, 4, 5), Q̃4(6b, 3, 8b), Q̃5(7b, 16a, 17a), Q̃6(12, 18a),

Q̃7(19a, 13, 18b, 14) and Q̃8(19b, 20b, 16b, 11).
As already said, we use the normal coordinates of

pyrazine in its electronic ground state for the dynamics
(f = 24). For the primitive basis set, (χ(κ,j)(Qκ,j) cor-
respond to the primitive basis functions for the nuclear
coordinate Qκ,j and Mκ j their number), we have used
22 harmonic oscillator Discrete Variable Representation
(DVR) functions for the nuclear (normal) coordinates
Q6a and Q10a, whereas only 12 and 11 such functions
are retained for the normal coordinates Q9a and Q1 nor-
mal modes, respectively. All other nuclear coordinates,
not playing a crucial part in the dynamics, are merely
described by 4 DVR functions. Numerical convergence
is obtained by a much smaller basis set (n1 · · ·n8) of sin-
gle particle functions which are no more one-dimensional

(ϕ
(κ)
j (Q̃κ, t)) as given in Table I.

The equations of motion for the coefficients A of Eq.(8)
result from the time-dependent evolution equation in-
volving the total Hamiltonian, i.e. the one of the system,
together with the molecule-field coupling. The close cou-
pled system of differential equations (Eq.(6)) is solved by
projecting on the basis function of the combined modes.
The initial condition, at time t = 0, being taken as 1
for the vibrationless ground state n = 1, and 0 for all
other states, the nuclear wave functions are built fol-
lowing Eq.(8). Finally the time-dependent population

in each electronic state is given as:

Pn(t) =

∫
|Ψn(Q, t)|2dQ (14)

C. Field-free dynamics

In order to have a typical generic overview of the
S2 → S1 population transfer, we now proceed to three
dynamical calculations extending over a period of 500
fs. More precisely, we successively analyze 2D and 4D
approximate models and relate them with the full 24D
model. The minimal 2D model merely involves the two
normal modes α = 6a and α = 10a building up the con-
ical intersection branching space. The population trans-
fer dynamics is induced by some Franck-Condon verti-
cal launching of the initial vibrationless (vα = 0 for
all α) S0 wavepacket on the excited states. To fix the
ideas, this is practically done referring to a low intensity
(5 × 1012W/cm2), short duration (14 fs), resonant laser
pulse (carrier-wave frequency of 4.8 eV), which is symbol-
ized by the vertical blue arrow of figure (2) positioned at
time t=0. Note that several time-resolved photoelectron
spectroscopy experimental studies have been reported us-
ing pump pulses around 4.7 eV: they do not report any
dipole-allowed resonant (1+1) transition to a higher ly-
ing electronic state but a slows decay (of around 20 ps)
to the electronic ground state: see the introduction of
Ref. [45].

It is worthwhile noting that the precise parameters of
this excitation are, but an illustrative example for the
kind of sudden excitation we refer to initiate the transfer
dynamics. During the 14fs S0 → S2 resonant excitation
process, it is basically the S2 state which is populated
up to P2 = 0.37, whereas P1 does not exceed 0.03. The
short pulse here is just to initiate a typical population
transfer from the initial ground S0 to the bright donor
state S2, without any control purpose. Actually, what we
call free-field dynamics is to be understood as the wave
packet dynamics following the switch-off of this pulse.

The post-pulse field-free dynamics starts with this con-
figuration, and proceeds towards the descending energy
gradient from S2 to S1 electronic potential energy sur-
faces coupled by W12. In particular, due to the coni-
cal intersection, an important amount of population is
transferred to S1. After a delay corresponding to the S1

vibrational period (T1=56fs with the parameters of our
model), the wavepacket reflecting on the outer right turn-
ing point returns back to the CI region with a partial back
transfer to S2, and then evolves with another oscillation
with the vibrational period (T2=44 fs) of the state S2.
The combination of these two oscillation modes in the
vibrational baths of S1 and S2 gives rise to a recurrent
pattern in the population dynamics which is then peri-
odically repeated. Figure (2) provides a complete illus-
tration of such recursive patterns. Calculations based on
longer propagation times show that the revival structures
last for more than 1ps. They are progressively attenuated
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FIG. 2: Excited states populations as a function of propaga-
tion time in a minimal 2D model involving the CI branching
space. P2 and P1 are respectively indicated by thin black and
thick red solid lines. The blue vertical arrow at t=0 symbol-
izes the vertical launching of the v = 0 wavepacket from the
initial state S0. T1 and T2 are respectively, the vibrational
periods of the excited states S1 and S2. W−1

12 is a notation
for the CI characteristic transfer time.

and their periodicity is slightly altered due to wavepacket
broadening. We now proceed by including higher degrees
of freedom through additional normal modes. Figure (3)
displays such calculations over 500 fs of propagation time,
with the same excitation initiating the population trans-
fer from S0. It is to be noted that the additional degrees
of freedom in multidimensional calculations dramatically
increase the density of vibrational states. As a conse-
quence, the specificity of the T1 and T2 vibrational peri-
ods of the α = 6a and α = 10a normal modes, building
up the 2D model, is partially lost. The wavepacket is
spreading over all the additional modes through all the
vibrational states which form a quasi-continuum. Typ-
ically after 250 fs, the revival structures are completely
suppressed. The P1 and P2 populations are moderately
oscillating and progressively stabilizing in time.

III. COHERENT CONTROL.

Pyrazine molecule is studied in planar geometry and
assumed to be oriented in a plane Oyz orthogonal to
the propagation direction Ox of the electromagnetic field
E(t). The laser is supposed to be linearly polarized along
the Oz axis. The time-dependent total Hamiltonian is
written in the length gauge and within the dipole ap-
proximation as:

H(Q; t) = HS(Q) + V (Q; t) (15)

HS being the molecular Hamiltonian taken from Eq.(1)
and V the radiative coupling:

V (Q; t) = −µ(Q)E(t) (16)

The transition dipole matrix elements between the
ground S0 and excited S1, S2 states are respectively

FIG. 3: Excited states populations as a function of propa-
gation time in 4D (upper panel) and full 24D models (lower
panel). Same notations as for figure (2)

noted µ01 and µ02. Their explicit spatial expansions in
terms of the normal mode coordinates are given by [26]:

µ01(Q) = ξ
(01)
10a Q10a (17)

µ02(Q) = µ02(0) +
∑
α 6=10a

ξ(02)α Qα +
1

2
ρ
(02)
10a Q

2
10a (18)

It is worthwhile noting that for symmetry arguments,
µ02 is much larger than µ01 due to its permanent dipole
component µ02(0). Numerical values we are using are
extracted from ref.[27]. It is also to be noted that we
are working in such field conditions that referring to the
polarizability is not necessary, as opposite to Ref. [27],
concerned by very strong intensities and excitation con-
ditions far from resonance. We will now examine the
relevance of some control observable, together with two
strategies to reach them in an optimal way, by exploit-
ing two different mechanisms; namely, interference and
kicks.
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A. Control observable.

The primary objective of this study is to optimize the
population P1 of the acceptor state S1. But for pyrazine,
the acceptor state S1 is a quasi-dark one, as is clear from
Eq.(17), practically without the possibility of a direct
radiative excitation from the ground state. The popu-
lation transfer process first proceeds with the radiative
excitation of the ground S0 state to the bright excited S2,
which then acts as a donor. The second step is monitored
by the interstate coupling W12 leading to a CI-induced
strong non-adiabatic transfer from S2 to S1. A rather
intuitive control objective could be taken as the maxi-
mization of the ratio r(t) = P1(t)/P2(t). But this goes
with the difficulty of getting very high ratio r, between
actually very small excited states populations, that is
without any practical interest. To properly take into ac-
count the two steps, excitation and funneling, we built
a population contrast type control observable combining
two requirements: (i) maximization of the excited states
populations, which actually amounts the minimization of
the residual population P0 of the ground state S0, and
(ii) among the two excited states, bring the maximum
of population on the dark acceptor state S1, or in other
words, increase the contrast between excited states pop-
ulation. Such a time-dependent contrast is given by:

p̃(t) =
P1(t)− P2(t)

P0(t)
(19)

It is worth noting that, in terms of r Eq.19 can be
written as:

p̃(t) =
r(t)− 1

1/P2(t)− [r(t) + 1]
(20)

Maximizing p̃ requires simultaneously maximizing the
numerator, that is r > 1, and minimizing the (always
positive) denominator, which is achieved with P2(t) <
1/[1 + r(t)]. Finally, combining these two requirements,
in particular limiting the P2 increase, our control ob-
jective goes much beyond the passive observation of the
acceptor state population P1 increase (i.e., increasing the
donor state population P2 and waiting for its CI medi-
ated transfer towards the acceptor).

On numerical grounds, in weak fields, P0 would be
considered not less than 0.5, meaning that no more than
half of the initial population is assumed to be transferred
to the excited states. As a consequence, even in the case
of the best contrast that could ideally be reached between
the donor and acceptor states (that is P1 = 0.5 and P2 =
0), the maximum possible value for p̃ should not exceed
1. In other words, it is only in the strong field regime
that we could expect a contrast p̃ > 1.

Finally, instead of the time-dependent contrast given
by Eq.(19), we choose a scalar control observable by tak-
ing time averages of p̃(t).

p =
1

[tmax − tmin]

∫ tmax

tmin

p̃(t)dt (21)

FIG. 4: Sine-square laser electric field envelopes for two iden-
tical pulses as a function of time. The illustrated pulse du-
ration corresponds to T = 14fs, whereas the inter-pulse time
delay is τ = 6fs.

This involves the definition of time windows over which
the average is performed. A local contrast can be defined
over a time-window displaying the maximum of contrast,
which happens during the first vibrational pattern, last-
ing over 45 fs, as illustrated in figure 2, and leading to
the choice [tmin, tmax] = [45fs, 90fs]. Although during
this 45 fs time-window some experimental observable are
reachable, more interestingly, an asymptotic contrast is
adopted in the following defining a semi-finite time inter-
val above 300 fs. Incidentally, it is to be noticed that 300
fs corresponds to typical electronic coherence times for
such molecular systems (the dissipation comes from the
Intramolecular Vibrational Redistribution or IVR) and
an upper limit 500 fs is taken as our final propagation
time, leading to [tmin, tmax] = [300fs, 500fs].

B. Control fields.

In the following, we refer to two laser control strategies
based on two mechanisms; namely interference and kicks.
In both cases, the control field is made up of a train of
N time-delayed individual pulses. Two such pulses are
illustrated in figure 4. The general expression for the field
involved in Eq.(16) is given by:

E(t) =

N∑
i=1

√
IEi(t) sin(ωt) (22)

where I is the laser leading intensity and ω its frequency.
Ei(t) is the pulse envelope, taken as:

Ei(t) = sin2[
π

T
(t− ti)]H(t− ti)H(ti + T − τ) (23)

where T is the pulse duration. H is the Heaviside func-
tion, being zero or one depending on whether its argu-
ment is negative or positive. The time intervals ti are
given as ti = (i− 1)τ , where τ is the time delay between
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the two successive pulses. Moreover, we wish to disentan-
gle the roles of strong field and interference effects. When
referring to our control observable, a relevant comparison
would require excitation conditions where the same total
electromagnetic energy is deposited in the system by the
pulse train over its full duration, and given by:

A =

∫ ∞
0

E2(t)dt (24)

More precisely, we compare pulse trains with the same
total energy, namely the one provided by the single pulse.
To fix the ideas, for two identical pulses E1 = E2 = ε, A
can be written as:

A = a

∫ ∞
0

ε2(t)dt (25)

Referring to figure 4, three cases are examined: (i) τ ≥ T ,
no overlapping pulses, resulting in a = 2; (ii) τ = 0, full
overlapping, with a = 4; and (iii) 0 < τ < T , partial
overlapping, leading to a delay-dependent a (2 < a < 4),
to be calculated according to Eqs. (24, 25). Our control
fields amplitudes are normalized so as to provide the same
total electromagnetic energy. This is practically done by
dividing the nominal intensities I by a, or equivalently,
the electric field amplitudes by

√
a.

We also wish to emphasize that when developing these
strategies, we always have in mind the experimental feasi-
bility with respect to pulse duration, intensities and max-
imum number of pulses in the train. For the interference
scenario, the laser leading frequency ω is taken to be ap-
proximately resonant with the excited states vibrational
levels at the Franck-Condon vertical region of the ground
state. The optimal value which is adopted is ω = 4.77eV ,
i.e., a wavelength of λ = 260nm in the UV region. The
pulse duration T is calculated such that the correspond-
ing energy band broadening covers enough vibrational
levels taking part in the funneling process. For the kicks
scenario, the resonance condition is no more a relevant
requirement, since the ultra-short pulses involved in this
strategy, would lead to excitation with even broader en-
ergy bands. All ultra-short pulses are taken identical
and typical values which are retained (T=14 fs or even
T=10 fs) correspond to band broadening ranging from
2382 cm−1 up to 3335 cm−1. Following a few attempts
to roughly optimize the frequency ω and the duration
T , we are finally left with two main control parameters,
namely, the field intensity I and the time delay τ .

C. Coherent control strategies.

The first strategy we are referring to relies on vibra-
tional wave packets interference as a basic mechanism,
envisioned either in a pump-probe or a pump-pump pro-
cess. More precisely, as illustrated in figure 1, the pump-
probe process involves two routes to reach S1, starting
from the ground state S0. Route 1 (pump pulse) pro-
ceeds through the intermediate state S2 with the lowest

order transition amplitude given by [42]:

T1 = V + VG0V (26)

where G0 is the lowest order Green’s function of the sys-
tem Hamiltonian involving the diabatic electronic states,
and V stands for interstate (W12) and radiative (µ20E1)
couplings. More precisely, for Route 1, in the absence of
direct radiative coupling S0 → S1, one has:

T1 = 〈S1|W12
1

ES0 − ES2 + ~ω
µ20E1|S0〉 (27)

where ESi are the energies of the corresponding elec-

tronic states, and E1 is the pump pulse electric field.
Route 2 (probe pulse) is the direct transition S0 → S1,
with a transition amplitude:

T2 = 〈S1|µ01E2|S0〉 (28)

with E2, the probe pulse electric field. When applying
the two pulses with a time delay τ , the pump-probe strat-
egy finally results in an S1 population given by:

P1 = |T1 + T2e−iEτ/~|2 (29)

with E = ES0 + ~ω. Due to very low transition dipole
µ01 as compared to µ02, the transition amplitude T2 is
actually negligible unless very strong field amplitudes E2

are used with possible ionization or dissociation damage
on the molecule. This is why we rather focus on a pump-
pump process retaining only route 1 and resulting in:

P1 = |T1 + T1e−iEτ/~|2 (30)

Finally, the interference scheme we are considering
through Eq.(30) is between the transition amplitudes T1,
with a controlled delay τ . Such interference mechanisms
have already been recently exploited in the control of
rotational anisotropy [43]. A physical understanding of
the mechanism can be obtained by considering the vi-
brational wavepacket back and forth oscillations in the
excited states potentials. Following a first laser pulse
leading to a vertical Franck-Condon launching from S0

to S2, the vibrational wavepacket oscillates during its
early dynamics t < 70 fs in the excited S2 and S1 states
harmonic potentials. A second pulse is then applied with
a controlled delay τ launching a second wavepacket from
the ground state S0, which can interfere with the first
one, as they may overlap if the delay is adequately cho-
sen. A constructive interference would produce an ampli-
tude enhancement close to the CI, and thus an efficient
population transfer from S2 to S1. Later on (t > 70 fs),
due to wavepacket spatial broadening and also its dis-
patching over additional degrees of freedom, the control
efficiency is expected to be lost, as a consequence of less
important successive wavepacket overlapping.

The interference mechanism can be extended and com-
plemented by a kick mechanism, in the spirit of the one
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FIG. 5: Excited state population P2 as a function of the lead-
ing intensity. Red dashed thin line for a single pulse, black
thick solid line for two equal fluence pulses, with a delay of
τ = 13fs.

already discussed previously in the context of molecular
alignment or orientation processes [44]. At this respect,
we are considering a train of N = 5 identical individual
pulses in Eq.(22). The kick mechanism assumes sudden
excitation of the system. We are therefore addressing
even shorter duration T=7 fs to 10 fs pulses without the
specific need for a resonance condition. The molecule can
be kicked every time when P1 starts decreasing.

As has previously been stated, the control observable
given by Eq.(19), highly depends on the field intensity.
In particular, it is only for strong field regimes that it
can take the values exceeding 0.5. In order to fix the in-
tensity regimes for the present system described within
a 4D model, we proceed to dynamical calculations us-
ing both a single pulse or two (equal fluence) pulses with
a typical delay of 13 fs, and for a series of increasing
intensities. Figure 5 plots the bright donor state pop-
ulation P2 at final time (t=50 fs) as a function of the
field leading intensity. As is clear from the figure, for the
single excitation, the weak field regime extends up to in-
tensities I = 1013W/cm2, for which P2 increases rather
linearly. The strong field regime shows non-linear be-
haviors: First a saturation in S2 population, for about
I = 2 × 1013W/cm2, followed by a decrease down to
I = 7 × 1013W/cm2, corresponding to a partial popu-
lation trapping in the ground state S0, and then again
an increase. We checked that the limit between weak
(linear behavior) and strong fields (non-linear behaviors)
remains practically unchanged when applying two pulses
of equal fluence with a typical delay of τ=13 fs, as will
basically be the case for the following control issues.

IV. RESULTS AND DISCUSSION.

We will successively examine the efficiency and the ro-
bustness of the interference and kick mechanisms as im-
plemented in their respective control strategies, when go-

FIG. 6: Asymptotic contrast (4D) as a function of the inter-
pulse delay τ for two pulses, each with a duration of T = 14fs,
equal fluence pulses of leading intensity I. The weak field
regime is illustrated by the intensities I = 5 × 1012W/cm2

in blue, dashed-dotted line, and by I = 1013W/cm2 in red
dashed line. I = 8.8 × 1013W/cm2 corresponds to the strong
field regime, represented by the black solid curve.

ing from a reduced 4D to a full 24D model. The guiding
principle is to define the parameters of the control field in
a 4-dimensional realistic and tractable model. This field
once obtained, is later used in a full dimensional dynamic
calculation including all the 24 degrees of freedom. The
challenge is to discover the efficiency and robustness of
such a control field that persists when confronted with
the presence of the other numerous degrees of freedom of
the molecule.

A. Interference mechanism.

Having in mind the general post-pulse evolution of the
excited states populations as illustrated by figure 2 two
possible interference schemes could be envisioned. One
concerns the nuclear wavepacket early dynamics for times
typically less than t < 70 fs within the first vibrational
periods, the second corresponding to longer times, typi-
cally t > 70 fs when the wavepacket revisits the FC re-
gion, following the revival patterns that are observed in
figure 2. The asymptotic contrast, as defined by Eq.(21),
is calculated in a 4D model as a function of the delay τ
between the two pulses of fixed duration T=14 fs. All
calculations are conducted within the appropriate field
amplitude renormalization condition (cf. Eq.(24)) lead-
ing to the same fluence than the one of the single pulse.
The results are displayed in figure 6. Following the anal-
ysis of figure 5, we consider three laser intensities: Two
pertaining to the weak field regime I = 5 × 1012W/cm2

and I = 1013W/cm2, and one to the strong field regime
I = 8.8 × 1013W/cm2. Weak fields, apart from being
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FIG. 7: Excited states populations as a function of
the propagation time, for two pulses of intensity I =
1013W/cm2delayed by τ = 25fs. P0 is indicated in dashed-
dotted blue line, P1 in thick red solid line, and P2 in thin solid
black line.

easier to realize experimentally, have the advantage of
better supporting the first order perturbation approach
of Eq.(28). However, the rather low contrast obtained
for I = 5 × 1012W/cm2 makes us favor the choice of
I = 1013W/cm2 for a typical illustration of the weak
field regime. In this regime, the optimal contrast p = 0.8
is obtained for a delay of τ=25 fs, which, as discussed
before, denotes a rather good efficiency, taking into ac-
count that less than 20% of the initial state population
is transferred to the donor state S2, as seen from figure
5.

As a clear indication of the efficiency of the optimal
control strategy, we compare the two population trans-
fer dynamics resulting from either a single pulse or two
pulses of equal fluence with the optimal delay of τ=25
fs (figure 7). The single pulse depletes the ground state
up to P0 = 0.65. The second pulse in constructive in-
terference, produces a depletion up to P0 = 0.38. The
contrast is increased by a factor ×3.3 from p = 0.24 up to
p = 0.8. The final population which is deposited on state
S1 is P1 = 0.5, meaning that about 50% of the ground
state population is in the acceptor state, while only 16%
remains in the donor.

The strong field regime offers much better contrasts
by depleting more the ground state population P0. The
results displayed in figure 6 show that the maximum is
reached for a delay of τ=6 fs and leads to p = 1.55 as
a contrast. Moreover, fast oscillations as a function of
the delay show the sensitivity of the observable to this
delay, which is another signature of interference effects.
Four characteristic delays are considered in the 4D re-
duced model for an intensity I = 8.8× 1013W/cm2. The
single pulse (corresponding to τ=0 fs, after equal flu-
ence renormalization), and τ=9 fs (corresponding to a
local minimum in figure 6) result into comparable dy-
namics leading to small asymptotic contrasts (typically
p < 0.3). The third choice for the delay τ=6 fs cor-

Mechanism ω(eV ) p

Interference 4.56 0.3

I = 8.8 × 1013W/cm2 4.77 1.6

τ = 6fs 4.91 0.45

T = 14fs 5.15 0.67

Kicks 4.56 0.58

I = 5 × 1012W/cm2 4.77 1.71

τ = 13fs 4.91 1.64

T = 10fs 5.15 0.61

TABLE II: Contrasts for several excitation frequencies for
both mechanisms discussed in the text. ω = 4.77eV corre-
sponds to the resonance.

FIG. 8: Excited states populations as a function of the prop-
agation time, for two pulses of intensity I = 8.8×1013W/cm2

delayed by τ = 6fs from a full 24D model. P0 is indicated in
dashed-dotted blue line, P1 in thick ed solid line, and P2 in
thin solid black line.

responds to the optimal value reached during the early
dynamics p = 1.55, whereas the fourth choice τ=75 fs
stands for the optimal value p = 0.9 obtained during the
late dynamics. In a posteriori way, we also checked the
sensitivity and optimality with respect to the resonance
condition. The first rows of Table II for the interference
scenario, collect the asymptotic contrasts for two off res-
onance conditions. The frequency ω = 4.56eV below the
resonance is better fitted for a population transfer to-
wards state S1. But, as such transfers cannot operate in
a direct way, the efficiency in terms of contrast, is not
satisfactory. The frequency ω = 5.15eV above the res-
onance, although opening the possibility for some inter-
esting superposition of vibrational levels mixing the two
excited states, turns out to be less efficient. This study
validates the choice made for the resonance frequency, as
the presumably optimal one.

Finally, we introduce the optimal control parameter
values obtained from the reduced 4D dynamics into a full
24D model describing populations evolution. The results
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FIG. 9: Excited states populations as a function of the prop-
agation time, for two pulses of intensity I = 8.8×1013W/cm2

delayed by τ = 75fs from a full 24D model. P0 is indicated
in dashed-dotted blue line, P1 in thick red solid line, and P2

in thin solid black line.

are displayed in figure 8 for the early dynamics and figure
9 for the late dynamics. It is worthwhile noting that such
full dimensional calculations are done once the laser pa-
rameters are optimized within the context of the reduced
4D model. As for the 24D calculations, they necessitate
a Central Processing Unit (CPU) time of about 32 hours
using OpenMP parallelization scheme with 16 processors
on a Intel E5-2665 computer. The most striking obser-
vation is that the population evolution in the 24D full
dynamics closely follows the one of the 4D calculations.
Both end with very comparable asymptotic contrast ex-
ceeding p ' 1.6 for τ=6 fs and p ' 0.9 for τ=75 fs. Fol-
lowing this observation, late dynamics control turns out
to be less efficient. Actually, better interference schemes
are operating for early dynamics where the vibrational
wavepacket dynamics is more accurately periodic, with
better marked revival structures, better adapted for the
interference mechanism. The asymptotic contrasts ob-
tained in the 24D model are comparable with the ones
of the reduced 4D model, and even very slightly better.
This is presumably due to the fact that the wavepacket is
more efficiently and rapidly dispatching towards the ad-
ditional degrees of freedom, resulting into a faster popu-
lation stabilization between the excited states. As a con-
clusion, the optimal result obtained for an early dynamics
control scheme, gives an acceptor dark state population
of about P1 = 0.6, which means that 60% of the ground
state initial population is transferred to the acceptor S1,
while only 16% remains on the donor S2.

B. Kick mechanism.

The kick mechanism operates with ultra-short (broad
band) pulses, leading to successive sudden, non-resonant
momentum transfer to the molecule [44]. Figure 10 dis-
plays the asymptotic contrast as a function of a constant

FIG. 10: Asymptotic contrast (4D) as a function of the inter-
pulse delay τ for five equal kicks at a fixed intensity I =
5×1012W/cm2 . The thick black solid line is for kicks duration
T = 10fs; thin red solid line for T = 7fs.

single delay τ between the kicks imparted to the system
from a train of five identical pulses, with fixed intensity
I = 5× 1012W/cm2. Here, we deal with two control pa-
rameters, namely the pulse duration T and the delay τ .
It is important to note that a precise value for the excita-
tion frequency is not very relevant, since the broad-band
character of the individual pulses renders the strategy es-
sentially non-resonant. As with the previously discussed
mechanism, once the optimal pulse parameters are de-
termined on the reduced more tractable 4D model, they
are transposed to the full 24D dynamics. More precisely,
we obtain from figure 10, an optimal asymptotic contrast
p = 1.71, for individual pulse duration T=10 fs and de-
lay τ= 13 fs. Here also we checked the sensitivity of the
results with respect to the excitation frequency ω. The
last rows of Table II corresponding to the kick scenario,
collect the results for three off-resonant frequencies. As
expected, the contrast is not very sensitive to frequen-
cies within a reasonable window covering ω = 4.77eV to
ω = 4.91eV leading to almost the same p = 1.7. It is
only far from these values that the results differ but with
a less efficient control.

Figure 11 displays the corresponding time evolution of
the electronic states populations. As can be seen from the
step-by-step decreasing evolution of P0, at each kick , the
momentum imparted to the system induces an increasing
population towards the excited states. Our primary aim
was to increase regularly the population P1. Such a con-
trol could presumably be possible with different delays
between the kicks. But for easier experimental require-
ments, we assume in this control scheme, a maximum of
equally delayed, five identical pulses pertaining to a weak
field regime I = 5× 1012W/cm2. With such restrictions,
the population P1 is not regularly increasing, even during
the time when the kicks are applied. Another strategy
could be to apply kicks every time P1 starts to decrease,
as has been previously done in ref.[44]. Targeting ex-
perimental feasibility, within this restrictive parameters
sampling space, we get very encouraging results, with
contrasts up to p = 1.75. We also observe from the full
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FIG. 11: Excited states populations as a function of the prop-
agation time, for five ultra-short T = 10fs pulses of intensity
I = 5×1012W/cm2 delayed by τ = 13fs for a full 24D model.
P0 is indicated in dashed-dotted blue line, P1 in thick red solid
line, and P2 in thin solid black line.

dimensional calculation of figure 11 that 60% of the pop-
ulation of the ground state is transferred to the dark
acceptor, while only 16% remains on the donor. About
54 CPU hours are needed for this calculation with the
same computer as mentioned before. It is worthwhile
noting that short duration and low intensity five-pulses
trains can do as well, and even better than the two in-
terfering long duration (resonant) intense pulses, as can
be observed from figures 11 and 8.

V. CONCLUSION.

In this work, we consider the intense laser control of
funneling dynamics between electronic states with de-
creasing energy gradient and passing through a coni-
cal intersection. Pyrazine molecule offers such a frame-
work involving two excited electronic states, presenting a
strong non-adiabatic coupling in relation with their con-
ical intersection. Moreover, the initial ground state is
radiatively coupled to the highest energy excited state,
which is considered as a bright donor (D). We are con-
cerned by the population transfer dynamics from this
state, to the lowest energy dark acceptor (A) state, moti-
vated by the possibility of long term deposit in (A), like in
light-harvesting systems. We propose some efficient and
robust external control schemes to achieve stable optimal
final population in (A). Facing an indirect population
transfer process, our control observable should incorpo-
rate both a maximum depletion of the ground state and a
maximum final population in (A), when sharing between
(D) and (A). This is done by defining an asymptotic con-
trast in terms of the ratio of the population difference
between (A) and (D), to the remaining ground state pop-
ulation. In order to maximize this contrast, and inspired
by a thorough understanding of the 2D (CI branching
space) post-pulse field-free population evolution, we re-

fer to two basic coherent control mechanisms, namely,
pump-pump interference and kicks. The search for the
optimal control parameters for an electromagnetic field
in terms of a train of ultra-short laser pluses is carried on
a reduced but still realistic 4D model of pyrazine. More
precisely, we optimize the pulse leading frequency and
intensity, duration, and the inter-pulse delay. Once ob-
tained and fixed, these parameters are used in the full
24D dynamics to calculate the time evolution of the elec-
tronic states populations. It is very gratifying to see that
this extension of control mechanisms, often established
for over simplified systems involving but a small number
of levels, can survive and be effective when applied to
systems with a large number of degrees of freedom. This
is probably the most relevant message of this study.

Having in mind the limitations of realistically achiev-
able experimental conditions, the excited states popula-
tion contrasts we obtained can be considered as efficient
ones for pyrazine CI-mediated funneling dynamics. Re-
ferring to either interference or kick mechanisms, about
60% of the ground state population is deposited in the
acceptor state, while about 16% remains in the donor
state. As perspectives, we can mention other control
strategies that could be checked in terms of their possible
extension to multidimensional systems. One is the strong
field pump-probe interference we already mentioned (cf.
Eq.(27)); the other being the frequency chirp. The den-
sity of levels for the vibrational baths being important,
addressing in an optimal way some specific levels play-
ing a major role in the funneling dynamics control may
deserve an interest. Even more importantly, pyrazine
should be considered but as an example of a modestly
complex system. As a conclusion, and consequence of
our findings, we anticipate the possibility of potential
transposition of such control mechanisms to other larger
biological systems. This would certainly be conditioned
by having a small number of active normal modes among
all the others which are rather spectators in the dynamics
we wish to control. Then, similar to what we have ob-
served for pyrazine, external control fields once defined
and fixed in low dimensional models, should be effective
at higher dimensions.
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