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In this work, full dimensional (9D) quantum dynamics calculations on mode/bond-specific

surface scattering of a water molecule on a copper (111) rigid surface are performed

through the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method.

To easily perform the ML-MCTDH calculations on such triatomic molecule-surface sys-

tem, we first choose specific Jacobi coordinates as set of coordinates of water. Next, to

efficiently perform the 9D ML-MCTDH wavepacket propagation, the potential energy

surface (PES) is transferred to canonical polyadic decomposition (CPD) form with the aid

of a Monte Carlo based method. Excitation-specific dissociation probabilities of H2O on

Cu(111) are computed and mode/bond-specific dynamics are demonstrated by comparison

with probability curve computed for a water molecule in ground state. The dependence

of the dissociation probability of the initial state of H2O is studied, and it is found that

the excitation-specific dissociation probabilities can be divided into three groups. We find

that the vibrationally excited states enhance the dissociation reactivity of H2O, while the

rotationally excited states hardly influence it.
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I. INTRODUCTION

Dissociative chemisorption of water on the metal surfaces was considered as an essential step in

the steam reforming and the water-gas shift reaction. Figure 1 illustrates a total of nine coordinates

q9 = {x, y, z, r1, r2, θ1, θ2, φ, α} for the water molecule on a static metal-surface (say the copper

surfaces), where {x, y, z} is coordinates set of the center-of-mass (COM) of the water molecule

and the other six coordinates represent the internal motions of the water molecule. Over the past

decade, on the basis of reduced dimensional subsets of q9, several quantum-dynamics calculations

on the H2O/Cu(111) system have been reported. In 2012 Guo and co-workers1 reported their six-

dimension (6D) calculations on dissociative chemisorption of H2O/Cu(111) system with a static

surface, where the reduced model of q6 = q9\{x, y, α} in conjugation with the Chebyshev approach

was used to propagate the nuclear wave function. These 6D calculations1 predicted that excitations

in all three vibrational modes of water are capable of enhancing reactivity more effectively than

increasing translational energy, which is consistent with the late transition state (TS) in the reaction

path according to the Polanyi rule2–4. Furthermore, Guo, Jiang, and co-workers extended the

above 6D calculations on H2O/Cu(111) to computationally describe state-to-state scattering of

H2O/Ni(111)5.

On the other hand, based on their full-dimension (9D) potential energy surface (PES) con-

structed by neutral-network (NN), Zhang and co-workers6–10 reported a series of reduced dimen-

sional (6D and 7D) quantum dynamics calculations for the H2O/Cu(111) system, where the re-

duced models of q6 = q9 \ {x, y, α} and q7 = q9 \ {x, y} in conjugation with the split operator

method was used. Moreover, the adiabatic sudden model for the in-plane coordinates was used to

approximately simulate the 9D dissociation probability of H2O/Cu(111) by extensive 7D dissocia-

tion probabilities at many impacting sites. Zhang and co-workers8 found the largest enhancement

of the asymmetric-stretching excitation among the excitations in all three vibrational modes of

water. Moreover, Zhang and co-workers6 also reported the 9D quantum dynamics calculations for

H2O/Cu(111), where the mode specificity was found to be controlled by the initial rovibrational

eigen-states. Similar to the reduced dimensional calculations1,7,8, Zhang and co-workers6 again

found that the enhancement of the excitation in asymmetric stretch is the largest which is similar

to the reduced dimension results1,7,8, while the bending mode is the smallest. Despite these fruitful

dynamics results, all of previously reported calculations expanded the nuclear wave functions in

the single-layer fashion, which is similar to the expansion of the electron wave function at the full
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configuration interaction (full-CI) level. Hence, one can call such propagation scheme as CI-type

methods. This also implies a rather high computational cost and thus limitation to higher dimen-

sional calculations, that is, larger molecular reactions on the surfaces or including the motions of

the atoms of the surface.

In this work, in order to effectively perform 9D quantum dynamics calculations, the multi-

configuration time-dependent Hartree (MCTDH) together with its multi-layer version (ML-

MCTDH) methods11–17 are used to study the quantum dynamics of H2O/Cu(111) on the basis

of the NN PES constructed by Zhang and co-workers6–9. To this end, a new representation of

the Hamiltonian operator is firstly constructed consistent with the MCTDH and ML-MCTDH

methods which were originally designed for treating multi-dimension quantum dynamics. Special

interest of the present calculations is taken on the dynamics dynamics initially promoted by vari-

ous rovibrational excited states. The calculations in this work provide a comprehensive description

of the vibrational quantum dynamics of H2O/Cu(111). We also analyze the assignments of the

first few excited vibrational modes. We begin with the kinetic energy operator (KEO) by dividing

q9 into body-fixed and space-fixed subsets of coordinates, and then re-expressing the PES into the

sum-of-product (SOP) form using the Monte Carlo algorithm. Having got both KEO and PES,

we relax a guess wave function to the ground state using the improved-relaxation method18, and

then we compute the rovibrational excited states through the block-improved-relaxation (BLK)

method19 or the locked improved-relaxation method18. Based on these ro-vrationally excited

states, extensive ML-MCTDH calculations are performed and then the propagated wave func-

tions are analyzed to obtain the dissociation probability of water as a function of the collision

energy. Note that MCTDH has already been used for other molecules on metal surfaces such as

the H2 dissociation20 and to the CH4 dissociation in reduced dimensionality21 and to bimolecular

scattering in gas phase22–24

The rest of this paper is organized as follows. In Section II, we will describe the present

quantum dynamics calculations. Section III presents the numerical details, quantum dynamics

results, and discussions. Finally, Section IV concludes with a summary.
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II. THEORETICAL FRAMEWORK

A. Coordinates and Kinetic Energy Operator

Given in Figures 1 and 2 are definitions of the nine coordinates q9 = {x, y, z, r1, r2, θ1, θ2, φ, α}.

The coordinates {x, y, z} are the skewed Cartesian coordinates for the COM of water with respect

to a laboratory-fixed (LF) frame linked to the metal surface, say the top atom. They correspond

to the position of the origin of the space-fixed (SF) frame whose axes are parallel to the LF frame

and whose origin is the COM of the water molecule. Thus, {x, y, z} describe the global translation

of the water molecule. The internal coordinates {r1, r2, θ1, θ2, φ, α} represent the reactive motions

of the water molecule. The r1 coordinate is the length of the vector ~r1, which is the vector from

the O atom to the H atom (see also Figure 1); r2 the length of the vector ~r2, which is the vector

from the COM of OH, GOH, to the leaving H′ atom (see also Figure 1); θ1 the angle between

the ~r1 and ~r2 vectors. These three coordinates describe the deformation of the water molecule.

The rest three coordinates {θ2, φ, α} are the three Euler angles that describe the global rotation of

the water molecule and the body-fixed (BF) frame with respect to the SF frame (see also Figure

1). The z axis of the BF frame, zBF, is parallel to ~r2. The (xBF, zBF) half plan with z ≥ 0 is

definited such that ~r1 is parallel to this half plan. As illustrated in Figure 2, the nine coordinates

{x, y, z, r1, r2, θ1, θ2, φ, α} can be divided into three parts: (i) translational coordinates {x, y, z} of

the COM of H2O, (ii) reactive coordinates {r1, r2, θ1} of dissociation HOH′ → H′ + OH, and (iii)

rotational coordinates {θ2, φ, α} of H2O.

The KEO for a set of two Jacobi vectors with our choice for the BF frame is well known25,26.

This set of coordinates can be also seen as a trivial case of the general formulation of the so-called

“polyspherical coordinates” that have been used many times successfully with MCTDH27,28. We

have implemented the KEO in MCTDH according to Equation (35b) of Reference27. Since the

nine coordinates are divided into three parts, it is easy to expect that the present KEO should be

composed by three terms,

T̂ = T̂COM + T̂reax + T̂rot. (1)

The first term T̂COM means the KEO for the translational motions of the COM of H2O. For the

present H2O/Cu(111) system, the x and y axes start from the top copper atom and point to the two

nearest copper atoms with angle of 120◦ in the Cu(111) surface, while the z axis is perpendicular
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to both x and y. Because of its skewed characteristic, T̂COM is given by

T̂COM = −
2

3M

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂x∂y

)
−

1
2M

∂2

∂z2 , (2)

where M is the total mass of the water molecule. Since the second and third terms usually cou-

pled with each other, we consider them as a unified item T̂inner = T̂reax + T̂rot. For the rotational

coordinates of H2O, {θ2, φ, α}, the KEO has a flexible form. Turning to θ1, a flexible approach is

necessary only if θ1 = 0 or θ1 = π. A semi-rigid form for θ1 is adopted. Moreover, in order to have

an hermitian conjugate momentum and non-Euclidean volume element

dV = dr1dr2du1 sin θ2dθ2dφdα, (3)

we have used u1 = cos θ1 to construct T̂inner instead of θ1 itself. Finally, according to Equation

(35b) of Reference27, the present KEO reads
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2

(
∂

∂u1

√
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1 +

√
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1
∂

∂u1

) (
Ĵ+BF − Ĵ−BF
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+

1
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2

u1√
1 − u2

1

[(
Ĵ+BF + Ĵ−BF

)
ĴzBF + ĴzBF

(
Ĵ+BF + Ĵ−BF

)]
, (4)

where µ1 = mHmO/(mH + mO) is the reduced mass associated with rotation of OH and µ2 =

mHmOH/(mH + mOH) the reduced mass associated with dissociation HOH′ → H′ + OH. We refer

the reader to Reference27 for further technical details.

B. Dynamics Calculations

In the present work, we use the Heidelberg implementation29 of the MCTDH algorithm11,12,14,16,17,

more precisely the multi-layer variant (ML-MCTDH)30–33 for solving the time-dependent Schrödinger

equation. These algorithms are well discussed in the literature11,12,14,16,17,30–33, such that we only

give a brief introduction here. Within the ML-MCTDH algorithm30–33, the total time-dependent

nuclear wave function is expressed in terms of a tensor in a hierarchical Tucker format which
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has a tree-like structure (denoted by ML-tree), where the wave function is expanded in a set of

multi-dimensional, time-dependent basis functions, called single particle functions (SPFs). The

SPFs are themselves expanded in an underlying multi-dimensional, time-dependent basis func-

tions. This expansion scheme is repeated until in the lowest level a time-independent primitive

basis is used. The expansion relation between the l-th and (l − 1)-th layers can be written as32

ϕ(z−1;κl−1)
m

(
Q(z−1)
κl−1

, t
)

=

n(z)
1∑
j1

· · ·

n(z)
κl∑

jpκl

A(z)
m; j1,··· , jpκl

(t)
p(z)∏
κl=1

ϕ(z,κl)
jκl

(
Q(z)
κl

)
=

∑
J

A(z)
m;J · Φ

(z)
J
(
Q(z−1)
κl−1

)
, (5)

where J = j1, · · · , jp, z = {l; κ1, · · · , κl−1}, and z−1 = {l−1; κ1, · · · , κl−2}. The symbol l denotes the

layer depth and z indicates a particular node in the ML-tree. In order for saving computational cost,

several physical coordinates with rather strong coupling can be combined to a logical coordinate,

which can be further combined to the logical coordinates in deeper layer,

Q(z−1)
κl−1

=
{
Q(z)

1 , · · · ,Q
(z)
pκl

}
. (6)

At the bottom layer the SPFs are to be replaced with time-independent primitive basis functions.

By Equation (5), it is easy to find that the case of l = 1 corresponds to the CI-type propagation

method, while the case of l = 2 corresponds to the MCTDH method with11,12,14,16,17. The structure

of an multi-layer wavefunction is most conveniently visualized by a plot of the aforementioned

tree structure. The tree used in the present work is shown in Figure 3.

Inserting the multi-layer Ansätze into the Dirac-Frenkel variational principle, the ML-MCTDH

equations of motion (EOMs) for arbitrary layering schemes together with an algorithm for the

recursive evaluation of all intermediate quantities entering the ML-MCTDH EOMs have been

derived30–33. Noting the fact that MCTDH is a special case of ML-MCTDH with l = 2, it is not

surprising that the ML-MCTDH EOMs have a very similar structure to the MCTDH EOMs. For

instance, the ML-MCTDH EOMs for the top layer coefficients are identical to the MCTDH ones,

i
∂A(1)

m;I

∂t
=

∑
J

〈
Φ

(1)
I

∣∣∣∣Ĥ∣∣∣∣Φ(1)
J

〉
A(1)

m;J =
∑

J

〈
Ĥ

〉(1)
IJ A(1)

m;J (7)

The ML-MCTDH EOM for the SPFs propagation are formally the same for all layers,

i
∂ϕ(z,κl)

n

∂t
=

(
1 − P(z,κl)

)∑
j,m

(
ρ(z,κl)

)−1

n j
·
〈
Ĥ

〉(z,κl)

jm
ϕ(z,κl)

m , (8)

where

P(z,κl) =
∑

j

∣∣∣∣ϕ(z,κl)
j

〉〈
ϕ(z,κl)

j

∣∣∣∣ (9)
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is the projector onto the space spanned by the SPFs ϕ(z,κl)
j , ρ(z,κl) a density matrix and 〈Ĥ〉(z,κl) is a

matrix of mean-field operators acting on the ϕ(z,κl)
j functions. Mathematically, the ML-MCTDH

EOMs are a set of coupled non-linear differential equations and can be efficiently solved using

standard numerical tools14,30–32. In resolving the EOMs, one may choose propagating an initial

eigen-state of the Hamiltonian operator using a real-valued time variable where the physical evo-

lution of the system is simulated. To obtain the rovibrational eigen-state, an imaginary-valued

time variable is used to relax a guess wave function, say improved relaxation18 for ground state

and BLK19 for excited states.

C. Potential Energy Surface and its Canonical Polyadic Decomposition

As shown in Equations (7) and (8) the EOMs need extensive integrals for 〈Ĥ〉(l)IJ and 〈Ĥ〉(z,κl).

These integrals will be easily performed if Ĥ has an appropriate SOP form14. Since the KEO given

in Equation (4) already has the SOP form (as always when using polyspherical coordinates), the

PES must be further refitted to the SOP form. The PES used in the present work have been con-

structed by Zhang and co-workers7,8, where a total of 93908 energy points were computed at the

Perdew-Wang (PW91) level. In fitting the PES, a feed-forward NN model with two hidden lay-

ers was employed in conjugation with the NN structure of 9-85-75-1 where q9 is the inputs. The

resulting 9D NN PES with the root mean square error (RMSE) of ∼ 10 meV indicates its accu-

racy. As a kind of SOP form, it was found34,35 that the potential function in the canonical polyadic

decomposition (CPD) form is more effective in performing the consequence ML-MCTDH calcu-

lations. In SOP or CPD form, the potential function is expanded by a series of the products of

one-dimension function. This expansion is similar to the expansion of the nuclear wave function

or SPFs (see also Equation (5)).

Generally, defining an appropriate set of grids, the CPD form of the f -dimensional potential

function V(q1, · · · , q f ) can be rewritten as34,35

V(q1, · · · , q f ) ' V (CPD)(q1, · · · , q f ) =

R∑
r=1

crv(1)
r (q1) · · · v( f )

r (q f ), (10)

where R is the expansion order, also called the rank of the CPD expansion (R = 1024 in this work),

while {q j}
f
j=1 are the set of f coordinates. The normalized basis functions v(κ)

r (qκ) are often called

the single-particle potentials (SPP), exclusively depend on only one coordinate. Using an under-

lying time-independent primitive basis, say basis functions of the discrete variable representation
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(DVR)14,36, the one-dimensional SPP function v(κ)
r (qκ) can be replaced by its values evaluated on

grid points, namely v(κ)
r,iκ

= v(κ)
r (qκ,iκ) for the iκ-th grid point. Then, the multidimensional potential

function in the CPD form V (CPD) is given in a tensors notation34,35 on a set of grids,

V(· · · , qκ,iκ , · · · ) ' V (CPD)(· · · , qκ,iκ , · · · ) = VCPD
I =

∑
r

cr

∏
κ

v(κ)
r,iκ

=
∑

r

crΩr,I , (11)

where the multi-index I = i1, · · · , i f and the product Ωr,I =
∏

κ v(κ)
r,iκ

are introduced for clarity.

Having the potential values on the grids, VCPD
I , the remaining task is to find both the expansion

functions Ωr,I and the coefficients cr. To this end, the optimization target function for the κ-th

coordinate is given by34,35

Jκ =
∑

I

W (κ)
I

(
VI − VCPD

I

)2
+ ε

∑
r

c2
r

∑
I

W (κ)
I Ω2

r,I . (12)

Introducing the index Iκ = i1, · · · , iκ−1, iκ+1, · · · , i f which is the full combined index with the κth

sub-index missing, a positive and coordinate-dependent weight function

W (κ)
I = 1κ

∑
iκ

WI = 1κW
(κ)
Iκ (13)

is defined, where the κ-th degree of freedom (DOF) has been integrated out and replaced by unity.

On the one hand, the weight function will be used to emphasize regions of interest where increased

fitting accuracy is required. For instance, the lower-lying energy regions where the wavefunction

resides will be important during the reaction. On the other hand, the weight function will serve

as a distribution function of sampling points when later the complete sum over I is replaced by

Monte-Carlo sampling. Therefore, the first part of Equation (12) measures the difference of the

CPD fit to the exact potential subject to the weight function. Moreover, ε is a regularization

parameter, typically setting to square root of machine precision. Thus, the second part is called the

regularization term. This part is introduced to penalize for (almost) linearly dependent terms in

the CPD expansion, which may arise due to ill-conditioned matrices in the minimizing algorithm.

We refer the reader to References34,35 for further technical details on such Monte-Carlo sampled

CPD transfermation technique that is called MCCPD.
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III. RESULTS AND DISCUSSIONS

A. Numerical Details

To prepare the initial wave function, the water molecule is relaxed from a guess wave function

to the rovibrational eigen-states (see also Section III B below) while the collision energy of the

water molecule along the z coordinate has, as in all cases, been set to pz = −15.0 au, such that H2O

travels towards the surface. To place the water molecule at some large enough distance of z0 = 6.0

au from the surface when preparing |Ψro−vib〉, we add an artificial harmonic potential with the force

constant of k = 10−2 au and a minimum at z0 = 6.0 au to the z-coordinate and then compute

the eigen-states of this augmented system Hamiltonian, keeping the surface as rigid. When the

artificial harmonic potential is removed, the z-motion of water is no longer in an eigenstate but,

after adding the initial momentum pz, covers an energy range form zero to 0.25 eV. To this end,

the initial wave function of the H2O/Cu(111) system initially prepared as a product state∣∣∣Ψ(t = 0)
〉

= exp(ipzz)
∣∣∣Ψro−vib

〉
, (14)

where |Ψro−vib〉 is rovibrational eigen-state of the water molecule and the exponential term accounts

for the initial momentum of H2O towards the Cu(111) surface.

Given in Table I are primitive basis functions, namely basis functions of DVR, together with

the number of the grid points and the range of the grids which are all used for representing the

H2O/Cu(111) system in the present dynamics calculations. The symbol of the one-dimension (1D)

function for each coordinate for building the guess wave function in computing the rovibrational

eigen-states as well as its parameters are also given in Table I. The parameters of the 1D wave

functions include their positions and momenta, frequency ωHO and mass MHO of a harmonic os-

cillator (HO) function, width of a Gaussian function (i.e., variance of the modulus-square of the

Gaussian function) WGAUSS, and the initial quantum numbers ( jini,mini) of the angular 1D func-

tions. In Table II, we give the numerical details of the present 9D MCCPD calculations, including

the number of trajectory in Monte Carlo calculations and errors of the re-fitting calculations. The

present 9D MCCPD calculation is carried out through a total of ∼ 7×106 Monte Carlo points. The

resulting error of 7.49 meV in the MCCPD re-fitting together with the mean error of ∼ 10−3 meV

imply that the present MCCPD calculations are accurate enough. Noting that the NN-PES of the

H2O/Cu(111) system was constructed with a fitting error of ∼ 10 meV7,8, the present re-fitting

errors are small enough to obtain reasonable results under the construction accuracy. Finally, the
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primitive grids used in MCCPD are the same as the ones used in the ML-MCTDH calculations,

as given in Table I. In MCCPD we also used the same mode combination scheme as for the wave

function which is illustrated in Figure 3.

With the initial state prepared according to Equation (14) the water molecule will travel towards

the Cu(111) surface where it may either be reflected and depart again or it is absorbed and sticks

to the surface or it dissociates and sticks to the surface. The wave function of each initial state is

propagate up to 103 fs by the ML-MCTDH method. To compute the sticking probability of the

molecule or its fragments on the surface we analyse the flux of the wave function fraction through

the surface positioned at r(CAP)
2 = 4.0 au. The dissociation probability is computed from the

probability P(r2)
reax(E). To do this, beyond r(CAP)

2 we place a complex absorbing potential (CAP)37,38

V (r2)
CAP = −iη

(
r2 − r(CAP)

2

)n
. (15)

The CAP absorbs the reflected part of the wave packet if it reaches the region r2 ≥ r(CAP)
2 . In

Equation (15), the quantities n and η are order and strength of the CAP along the r2 coordinate,

while r(CAP)
2 marks the starting point of CAPs. In this work, we set n = 3 and η = 0.05 au.

Furthermore, to prevent any reflow of population from the region of the CAP back towards the

surface, we add a small artificial attractive potential that sucks a wave packet deeper into the CAP

region. It is switched on after t′ = 120 fs propagation time and at the position of r2 > r′2 with the

form35

Vatt(r2, t) = −aϑ
(
r2 − r′2

)
sin3

[
π

6
(
r2 − r′2

)]
ϑ
(
t − t′

)
, (16)

where a = 1.0 × 10−3 au and z′ = 4.0 au in this work. In Equation (16), ϑ is the Heaviside

step function. For further technical details concerning the flux analysis we refer the reader to

References14,35,39,40. In addition to flux analysis, the time-dependent expectation values of some

observable quantity A(t) are useful to obtain the dynamics. With the time-dependent wave function

Ψ(t) the expectation values 〈A(t)〉 have the form

〈
A(t)

〉
=

〈
Ψ(t)

∣∣∣Â∣∣∣Ψ(t)
〉〈

Ψ(t)
∣∣∣Ψ(t)

〉 , (17)

where Â is time-independent operator associated with A(t). Moreover, when the time-dependent

norms 〈Ψ(t)|Ψ(t)〉 become less than one, it is difficult to interpret the expectation values. This is

because the CAP annihilates predominantly the fast-moving long-ranged parts of the wave func-

tions. Therefore, only the expectation values at the beginning stage of scattering have capable to

explain dynamics.
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B. Eigen-States

In this work, the water molecule are prepared in the rovibrational eigen-states relaxed by 9D

MCTDH calculations. Given in Table III are excitation energies of the H2O/Cu(111) system for

various modes with z = 6.0 au, as well as those of the water molecule in the gas phase for com-

parison. In Table III excitation energies (in cm−1) of the water molecule in the first excited ro-

vibrational states are given, where the bond symmetry and asymmetry stretches are denoted by

ν1 and ν3, respectively, while the bond bending is denoted by ν2. Based on these eigen-states,

the mode-specific dynamics can be performed. It is worth to emphasize that, the angle θ1 was

transferred to u1 in this work (see also Equation (4)) and thus the excitation of ν2 will not be con-

sidered in the dynamics calculations. Indeed, according to the previous calculations by Zhang and

co-workers6, excitation of ν2 hardly influence the dissociation probabiliy. To further consider the

bond-specific dynamics, we also compute excitation energies for the vibrational excitations of the

O-H bonds, ν4 and ν5, together with the frustrated rotations of the α, φ, and θ2 (see also Figure

1) of the BF coordinates set (denoted by ν6, ν7, and ν8, respectively). For comparison, excitation

energies of the normal vibration modes of H2O are also given in Table III, including those com-

puted by resolving eigen-problem of the nuclear Hamiltonian operator, those computed by various

electron structure calculations, and those measured by spectrum experiments.

As shown in Table III, the present excitation energies and those computed by Zhang and co-

workers6 are approximately identical with the differences are smaller than 10 cm−1. It is not

surprising if one remembers that we use the same PES as that used in the previous calculations6.

Moreover, based on their own PES, Guo and co-workers1 reported the vibrational excitation ener-

gies of H2O/Cu(111), which are generally 100 cm−1 smaller than the present results. This may be

caused by (i) tiny different of the shapes of the PESs used in these calculations and (ii) the reduced

dimension in the calculations of Guo and co-workers1. Noting the fact that 100 cm−1 ≈ 12.4 meV,

point (i) is not surprising because these differences are roughly equal to the error in fitting PESs1,6.

Turning to point (ii), in the reduced dimension scheme1 three DOFs were ignored making the con-

straints on the normal model weaker and thus making frequencies of the normal modes smaller

than those by full dimension calculations. On the other hand, all calculations predict that frequen-

cies of the normal modes of H2O/Cu(111) are smaller than those of H2O in the gas phase. For

example, frequency of the symmetry stretch (3520 cm−1) is roughly 300 cm−1 smaller than that of

H2O in the gas phase at the CCSD(T) level. This might be raised from the existence of the Cu(111)
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surface.

Finally, illustrated in Figure 4 are contour plots of the initial wave functions for the symmetry

and asymmetry stretch modes together with those of the PES. By Figure 4 one can clearly find the

symmetry or asymmetry feature of the stretch normal mode. It is clear that the symmetry mode (see

the left panel of Figure 4) is the summation of the r1 and r2 bond stretches, while the asymmetry

mode (see the right panel of Figure 4) is subtraction of the two bond stretches. Obviously, this is

consistent with the group-theory analysis for the normal modes of H2O. Moreover, in Figure 5 we

also show the contour plots of the initial wave functions for bond-specific dynamics calculations.

By the nodal planes of these contour plots various bond excitations can be clearly identified. The

above calculations for excitation enegries and wave functions imply that the present 9D MCTDH

relaxations are reasonable and accurate.

C. Mode/Bond-Specific Dynamics

With the various initial initial states as discussed in Section III B, extensive ML-MCTDH prop-

agations and follow-up flux and expectation analyses are performed to compute the sticking prob-

abilities and time-dependent expectation curves. Now, we shall show results obtained with the 9D

Hamiltonian model for scattering off a rigid surface. Figure 6 displays the sticking probabilities as

a function of the collision energies for the different initial states. In general, one observes that the

dissociation probability curves are approximately equal to zero, when the impacting energy is less

than roughly 0.15 eV. Moreover, at the impacting energy of more than 0.15 eV, the dissociation

probability curves increase from zero to 10−3 ∼ 10−2. To understand this feature of the flux anal-

ysis, the general features of the time-dependent expectation curves have to be given. Illustrated

in Figure 7 are time-dependent expectation curves of the relative energy where the operator Â in

Equation (17) is Ĥ − E0 with E0 = E(t = 0) the total energy at t = 0. We also show the other ex-

pectation curves in the Supporting Information, including
〈
E(t)

〉
,
〈
z(t)

〉
,
〈
r1(t)

〉
, and

〈
r2(t)

〉
, where

the operators are Ĥ, r̂1, and r̂2, respectively. Here, we show expectation values only for times up

to 450 fs, as the norms of wave functions become less than one for t > 400 fs (see also Figure 1 of

the Supporting Information).

Turning to the dissociation probability curves computed by various initial-states (see colored

lines in Figure 6), let us consider the mode- and bond-specific dynamics. The dissociation proba-

bility curves in Figure 6 can be clearly divided into three groups. The dissociation probability from
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the symmetry excitation state (denoted by “symm. mode”) itself composes a group with middle

values and lowest value at the kinetic energy more than and less than 0.12 eV, respectively. The

second group of dissociation probabilities contains those computed from the ground state (denoted

by “GS”) and the angular excitation states. The third group with larger values of dissociation prob-

ability is composed by those computed from the asymmetry excitation state (denoted by “asymm.

mode”) and the O-H bond excitation states (denoted by “r1 excitation” and “r2 excitation”). The

reason why there are such three groups is directly that the mode/bond-excitations associated with

the O-H bonds have capable to enhance the dissociation activity of the water molecule (as shown

in Figures 4 and 5), but the excitations associated with the angular coordinates are not capable of

this.

Indeed, for the rotational excited states, there is a small difference of the dissociation prob-

abilities from the GS one and thus they compose the first group. Moreover, the excitations of

the asymmetry mode as well as those for r1 and r2 enhance the reactivity of dissociation as these

excitations associate with the reaction coordinate. Thus they belong to the second group. But,

calculations from the excitation of the r1 coordinate predict somewhat smaller values of the dis-

sociation probability (see also the green line in Figure 6) due to the different settings of r1 and r2.

Obviously, as illustrated by Figure 1, the dissociation coordinate mainly composed of r2 coordinate

instead of r1 coordinate. Finally, excitation of the symmetry mode also enlarge the bond length

values of the O-H bonds, it can thus enhance the dissociation probability. However, comparing

with the second group, from state of excited symmetry mode ability to improve reactivity is not so

large. Furthermore, at low energy lower than the dissociation barrier, excitation of the symmetric

stretching vibration will not cause the dissociation of water, but will cause the molecules to tend to

come back. This is because the movements of the two hydrogen atoms are in the same direction.

These features of the symmetry excitation make its probability curve composes the third group

alone. By Figure 6 we also note a crossing of the probability curves between the first and third

groups at roughly 0.12 eV. Since the difference between these two probability curves are roughly

10−5, which is too small to distinctly separate them. Therefore, we are supposed to say that they

are equal to each other when the kinetic energy is less than roughly 0.12 eV.

Turning to the energy transfer on the rigid surface, let us consider the time-dependent expecta-

tion values of the relative energy as shown in Figure 7. When the water molecule approaches the

Cu(111) surface, the relative energy is always equal to zero until t = 160 fs, implying the energy

conservation during the dissociation. Near and slightly above t = 300 fs or t = 400 fs, the system
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is transferred to another new state with energy conservation. It is also found that there exist a min-

imum along the curve computed from the excited states of the symmetry and asymmetry modes as

well as O-H bond stretch, as shown by red, blue, green, and yellow lines in Figure 7. This might

be caused by the energy rearrangement during the surface scattering of vibrationally excited water

molecule.

D. Discussions

In 2012 Guo and Xie and co-workers1 reported their quantum dynamics calculations on dis-

sociative chemisorption of the H2O/Cu(111) system with a static surface, where the Chebyshev

approach was used to propagate the wave function. In their calculations1, the mode selectivity

of the symmetric stretching ν1, bending ν2, and antisymmetric stretching ν3 modes of water in

this dissociative chemisorption was examined on the 6D PES. They1 found that excitations in

all three vibrational modes are capable of enhancing reactivity more effectively than increasing

translational energy, consistent with the late transition state in the reaction path. These results are

consistent with the present results that the vibrational excitations of water play a central role in its

dissociative chemisorption on Cu(111).

Later, to extend the 6D results to full dimensional case, Zhang and co-workers6–10 first per-

formed a series of reduced dimensional (6D and 7D) quantum dynamics calculations for the

H2O/Cu(111) system and its isotopic effects with static surface, where the split operator method

was used to propagate the nuclear wave function. The 7D dissociation probabilities7 at the TS,

top, bridge, and hcp sites are quite different from the corresponding 6D probabilities with various

fixed azimuthal angles α, indicating the great importance of the azimuthal angle. Through the

sudden model for the in-plane modes as well as the site-average scheme, it is possible to approxi-

mate the 9D dissociation probability of H2O on Cu(111) by 7D dissociation probabilities for many

impacting sites. Later, Zhang and co-workers8 found that excitations in all three vibrational modes

of water have a significant impact on reactivity with the largest enhancement for the asymmetric-

stretching excitation which are consistent with the present work. In 2016, the full dimension

quantum dynamics calculations for H2O/Cu(111) were reported by Zhang and co-workers6, where

the mode specificity was also considered by controlling the initial states as vibrational eigenstate.

These calculations6 predicted that the enhancement of the excitation in asymmetric stretch is the

largest which is similar to the reduced dimension results1,7,8 as well as the present results.
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Finally, by their calculations, Zhang and co-workers6 also predicted the importance of the lat-

tice effects in dissociation chemisorption of H2O/Cu(111). To consider the lattice effects, the

expansion model for extending the PES has been proposed35,39,41 the for the surface scattering

of CO/Cu(100). For surface scattering of lighter molecule, such as H2O/Cu(111), the expansion

model is very suitable for considering its lattice effects. Under the expansion model, the surface

atoms is vibrating around the equilibrium position Q0 = 0 with small-amplitude. Thus, letting q

and Q be coordinates sets of the molecule and the surface atoms, respectively, the whole potential

energy V(q,Q) can be expanded into a Taylor series,35,39,41

V(q,Q) = V (0)(q,Q0) +

Ngrid∑
j=1

3∑
α=1

V (1)
jα (q)Q jα +

1
2

Ngrid∑
j,k=1

3∑
α,β=1

V (2)
jαkβ(q)Q jαQkβ + · · ·

= V (0)(q,Q0) + V(1)(q) ·Q +
1
2
Q
† · V(2)(q) ·Q + · · · , (18)

where V (0)(q,Q0) denotes the potential function with all surface atoms fixed at their equilibrium

positions. The sum in Equation (18) runs only over a selected set of surface atoms, the remaining

surface atoms are still kept fixed at their equilibrium positions. Moreover, the series has to be

truncated after some order, say the second order, keeping the computational effort manageable.

By fitting each derivatives, one can then construct the PES with the coordinates of several surface

atoms. Introducing the surface coordinates in the PES term, the KEO and PES of the clean surface

should be directly added following the expression of Equation (11) of Reference41. Thus, use of

the expansion model allows us to study the lattice effects which have been planned.

IV. CONCLUSIONS

In this work, full dimensional (9D) quantum dynamics calculations on mode/bond-specific

surface scattering of a water molecule on the Cu(111) rigid surface are performed through the

ML-MCTDH method. The PES was constructed by Zhang and co-workers6–9 through NN fitting

approach. Then, we derive the KEO by setting the Jacobi coordinates for the BF set of coordinates

and introducing the angular coordinates to describe its relative orientations to the SF set of coor-

dinates. To efficiently perform the 9D ML-MCTDH wavepacket propagation, the PES is further

transferred to the CPD form with the aid of a Monte Carlo based method. Having the KEO and

the PES in CPD, excitation-specific dissociation probabilities of H2O on Cu(111) are computed by

analysis of the propagated wave functions. Then, mode/bond-specific dynamics are demonstrated
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by comparison with probability computed for ground state. To this end, extensive MCTDH re-

laxations are first performed. From these relaxed eigen-states, the dependence of the dissociation

probability of the initial state of H2O is studied. In this work, by extensive ML-MCTDH prop-

agations, we find that the excitation-specific dissociation probabilities can be divided into three

groups. Moreover, the vibrationally excited states enhance the dissociation reactivity of H2O,

while the rotationally excited states hardly influence it. The present results are consistent with the

previous ones and the methodological framework introduced here opens the way to include the

impact of a movable surface on the dynamics.

SUPPLEMENTARY MATERIAL

See Supplementary Material Documents at http://dx.doi.org/XXX for the definitions of the BF

and SF frames of coordinates and the time-dependent expectation values.
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18H.-D. Meyer, F. Le Quéré, C. Léonard, and F. Gatti, “Calculation and selective population of

vibrational levels with the Multiconfiguration Time-Dependent Hartree (MCTDH) algorithm,”

Chem. Phys. 329, 179–192 (2006).
19L. J. Doriol, F. Gatti, C. Iung, and H.-D. Meyer, “Computation of vibrational energy levels

and eigenstates of fluoroform using the multiconfiguration time-dependent Hartree method,”

J. Chem. Phys. 129, 224109 (2008).
20C. Crespos, H.-D. Meyer, R. C. Mowrey, and G. J. Kroes, “Multiconfiguration time-dependent

Hartree method applied to molecular dissociation on surfaces: H2+Pt(111),” J. Chem. Phys. 124,

074706 (2006).
21G. P. Krishnamohan, R. A. Olsen, G.-J. Kroes, F. Gatti, and S. Woittequand, “Quantum dynam-

ics of dissociative chemisorption of ch4 on ni(111): Influence of the bending vibration,” J. Chem.

Phys. 133, 144308 (2010).
22R. Ellerbrock and U. Manthe, “Communication: Reactivity borrowing in the mode selective

chemistry of H + CHD3 → H2 + CD3,” J. Chem. Phys. 147, 241104 (2017).
23B. Zhao, U. Manthe, and H. Guo, “Fermi resonance controlled product branching in the h+ hod

reaction,” Phys. Chem. Chem. Phys. 20, 17037 (2018).
24R. Ellerbrock and B. Z. nd U. Manthe, “Vibrational control of the reaction pathway in the h+chd3

→ h2 + cd3 reaction,” Sciences advances 13, eabm9820 (2022).
25B. T. Sutcliffe and J. Tennyson, “A generalized approach to the calculation of ro-vibrational

spectra of triatomic molecules,” J. Chem. Phys. 76, 5710 (1982).
26B. T. Sutcliffe and J. Tennyson, “A generalized approach to the calculation of ro-vibrational

spectra of triatomic molecules,” Mol. Phys. 58, 1053 – 1066 (1986).
27F. Gatti, C. Iung, C. Leforestier, M. Menou, Y. Justum, A. Nauts, and X. Chapuisat, “Vector

parametrization of the three-atom problem in quantum mechanics,” J. Mol. Struct. (Theochem)

424, 181 (1998).

18



28F. Gatti and C. Iung, “Exact and constrained kinetic energy operators for polyatomic molecules:

The polyspherical approach,” Phys. Rep. 484, 1–69 (2009).
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35Q. Meng, M. Schröder, and H.-D. Meyer, “High-dimensional quantum dynamics study on

excitation-specific surface scattering including lattice effects of a five-atom surface cell,”

J. Chem. Theory Comput. 17, 2702–2713 (2021).
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a Symbols of EXP, SIN, and HO stand for exponential, sine, and harmonic oscillator DVR, respec-

tively, while symbol FFT denotes fast Fourier transform collocation. Symbol WIGNER denotes a

three-dimension Wigner function as the basis function for angular coordinates θ2, φ, and α.
b Symbols HO and GAUSS designate the choice of harmonic oscillator eigenfunction and Gaus-

sian function, respectively, as 1D functions in building the guess wave functions for relaxations.

Symbol EIGENF means eigenfunction of a specified potential which, in this work, is the 1D po-

tential along r1 setting z is sufficiently large (z0 = 6.0 au) as to make the interaction between CO

and Cu(100) negligible. Symbols WIGNER and K denotes associated 3D Wigner function and

body-fixed magnetic quantum number, respectively, to specify the angular functions.
c In this cases only the position (that is 1.811 au) and frequency (that is 3945.580cm−1) parameters

of the HO DVR are given, and then the ranges of the grids are calculated automatically.
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TABLE II: Numerical details of the present MCCPD calculations34,35. The second column gives

the method used in the present Monte-Carlo sampling. The third column gives the temperature

(kBT in eV) of each kind Metropols sampling. These samplings are distributed according to the

weight w = exp(−V/(kBT )), as given in Equations (12) and (13). The fourth and fifth columns

present the numbers of the sampling points used for the fit and test, respectively. For constructing

the CPD form of the PES, the combined set of sampling points of the distributions given in the

FIT column (the fourth column) are used. The computation of the fitting error is performed for

each temperature distribution individually, as given in the fifth column, the TEST column, where

fit- and test-distributions are independent. The sixth and seventh columns give energy errors (in

meV) between refitted and original potential using text sampling points, including their average

(denoted by MEAN) and root-mean-square (denoted by RMS) values, respectively.

No. Trajectory Testing Error (meV)

Method kBT (eV) FIT TEST MEAN RMS

1 Metropolis 5.0 × 10−4 3.0 × 105 2.0 × 106 2.79 × 10−1 2.63

2 Metropolis 1.0 × 10−3 3.0 × 105 1.0 × 106 7.65 × 10−1 4.82

3 Metropolis 5.0 × 10−2 2.5 × 105 1.0 × 106 −3.86 × 10−2 2.56

4 Metropolis 5.0 × 10−1 1.0 × 105 7.0 × 105 4.11 × 10−2 11.57

5 Metropolis 1.0 × 100 5.0 × 104 1.0 × 105 1.87 × 10−1 25.60

6 Metropolis 2.0 × 100 5.0 × 104 1.0 × 105 1.94 × 10−1 28.42

7 Metropolis 4.0 × 100 5.0 × 104 7.05 × 10−2 27.99

8 uniform 1.0 × 105 1.0 × 106 −3.95 × 10−1 36.87

in total 1.15 × 106 5.95 × 106 1.23 × 10−3 7.49
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TABLE III: Excitation energies of the water molecule in the first excited ro-vibrational states (all

energies in cm−1) of the bond symmetry and asymmetry stretches (denoted by ν1 and ν3,

respectively), the bond bending (denoted by ν2). Here, we also given excitation energies for the

vibrational excitations of the O-H bonds (denoted by ν4 and ν5) together with the frustrated

rotations of the Euler angles for yaw, pitch, and roll rotations (associated with α, φ, and θ2,

respectively, as shown in Figure 1) of the BF coordinates set (denoted by ν6, ν7, and ν8,

respectively). These vibrational eigen-states will be the initial states of the concequence

ML-MCTDH propagations. In these eigen-states the COM of the water molecule is located at

z0 = 6.0 au and hence the excitation energies of the frustrated rotations are very small. The first

and second columns give the vibrational modes and corresponding symbols. The third column

present the present 9D MCTDH relaxation results at z0 = 6.0 au. For comparison, the previously

reported excitation energies for the H2O/Cu(111) system are also given in the fourth, fifth, and

sixth columns. Excitation energies of the water molecule in the gae phase are also given in the

other columns for comparison, where the electron structure calculations are performed by various

methods in conjugation with the aug-cc-pVTZ basis set.

Excitation Energies a (in cm−1) Excitation Energies of H2O (in cm−1)

Mode Symbol MCTDH b Zhang et al. c Guo et al. c B3LYP b MP2 b CCSD(T) b Expt. d

symmetry stretch ν1 3520 3517 3437 3796 3822 3832 3802

bond bending ν2 — e 1545 1537 1627 1628 1646 1615

asymmetry stretch ν3 3624 3614 3526 3899 3948 3942 3694

O-H stretch ν4 3218

O-H stretch ν5 3217

yaw (α) rotation ν6 0.5

pitch (φ) rotation ν7 4.2

roll (θ2) rotation ν8 25.4

24



a These columns give excitation energies for the H2O/Cu(111) system with z0 = 6.0 au.
b This work.
c Results computed by Zhang and co-workers6 and Guo and co-workers1.
d See also Reference42.
e In this work, the bond angle θ1 was transferred to u1 = cos θ1 and thus the excitation of ν2 will

not be considered.
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FIGURE CAPTIONS

Figure 1: The schematic diagram of the body-fixed (BF) coordinates set of the water molecule,

where ~r1 is the vector from the O atom to the first H atom, ~r2 the vector from the center of mass

(COM) of OH, GOH, to the second H atom, θ1 ∈ [0, π] the angle between the ~r1 and ~r2 vectors.

The z axis of the BF frame, zBF, is parallel to ~r2. The (xBF, zBF) half plan with z ≥ 0 is determined

such that ~r1 is parallel to this half plan. The origin of the BF frame is, in principle, the COM of

the water molecule but the origin of the frame has no impact on the definition of the angles and

distances.

Figure 2: The schematic diagram of the space-fixed (SF) coordinates set of the water molecule,

where the axes of the SF frame are parallel to the laboratory-fixed (LF) frame. The origin of the

SF frame is the COM of the water molecule, where θ2 ∈ [0, π] and φ ∈ [0, 2π) are the spherical

coordinates of ~r2 in the SF frame. The H′ atom is the projection of the top of ~r2 onto the (xSF, ySF)

plan.

Figure 3: The ML-MCTDH wavefunction structure (ML-tree structure) for the 9D quantum dy-

namcis of the surface scattering of H2O on the Cu(111) surface, where H2O collides on Cu(111)

and then reflects back or dissociates to the H and OH fragments. The maxima depth of the ML-

tree is five layers and the first layer separates the three coordinates of the H2O COM from the

coordinates of the inner motions of H2O. The number of SPFs for each layer are also given. The

numbers of primitive basis sets to represent SPFs of the deepest layer are given next to the lines

connecting with the squares (see also Table I).

Figure 4: The reduced densities of the 2D wave functions on the r1-r2 plane, together with the con-

tour plots of the PES. The left and right panels give those for the symmetry and asymmetry stretch

modes, respectively. These wave functions are used as initial wave functions in 9D ML-MCTDH

calculations for mode-specific dynamics of H2O/Cu(111). The energies of these vibrational states

can be found in Table III.

Figure 5: Same as Figure 4, except for the states of O-H bond excitation-specific modes. The
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left and right panels give reduced densities of the 2D wave functions on the z-r1 and z-r2 planes,

respectively, together with the contour plots of the PES. These eigen-states are used as initial wave

functions in 9D ML-MCTDH calculations for bond excitation-specific dynamics of H2O/Cu(111).

The energies of these vibrational states can be found in Table III.

Figure 6: Dissociative sticking probabilities versus collision energy (in eV) computed for the

9D model with rigid surface atoms. The black, red, and blue lines represent the dissociation

probabilities when the water molecule is initially in the ground state (denoted by “GS”), symmetry

excited state (denoted by “symm. mode”), and asymmetry excited state (denoted by “asymm.

mode”). The green and yellow lines represent those where the water molecule is in the excited

states associated with the r1 and r2 coordinates, which are denoted by “r1 excitation” and “r2

excitation”, respectively. The brown, purple, and crimson lines represent those where the water

molecule is in the excited states associated with the angular coordinates.

Figure 7: Comparsion of the time-dependent expectation values of the total energy of the water

molecule from the 9D model, that is 〈E(t)〉 = 〈Ψ(t)|H|Ψ(t)〉, where H is the Hamiltonian operator

of the H2O/Cu(111) system. The colored lines represent the results computed by various excited

states and are illustrated by the same color scheme as in Figure 6. Here, the propagation time is

cut at 450 fs.
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FIG. 1: wat-Cu111, MCCPD, ML-MCTDH
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(a) The BF frame in the present work
29



(b) The SF frame in the present work

FIG. 2: wat-Cu111, MCCPD, ML-MCTDH

30



z

128

10

x

27

y

27

8

10

r1

15

u1

50

8

r2

128

8

8

θ2

45

φ

37

α

15

10

10

FIG. 3: wat-Cu111, MCCPD, ML-MCTDH

31



r1/au                                                                                 r1/au   
r 2

/a
u 

 

symmetry stretch                                                             asymmetry stretch

FIG. 4: wat-Cu111, MCCPD, ML-MCTDH

32



z/au z/au 

r 2
/a

u 
 

r 1
/a

u 
 

2.6

FIG. 5: wat-Cu111, MCCPD, ML-MCTDH

33



0 0.05 0.1 0.15 0.2

Kinetic Energy (eV)

1e-06

1e-05

0.0001

0.001

0.01

D
is

so
ci

a
ti

v
e 

S
ti

ck
in

g
 P

ro
b

a
b

il
it

y

GS
symm. mode

asymm. mode

r1 excitation
r2 excitation
theta2 excitation
alpha excitation

phi excitation

FIG. 6: wat-Cu111, MCCPD, ML-MCTDH

34



0 50 100 150 200 250 300 350 400 450

Time (fs)

-0.005

-0.004

-0.003

-0.002

-0.001

0

E
x
p

ec
a
ti

o
n

 o
f 

R
el

a
ti

v
e 

E
n

er
g
y
 (

eV
)

GS
symm. mode

asymm. mode

r1 excitation
r2 excitation
theta2 excitation
alpha excitation

phi excitation

FIG. 7: wat-Cu111, MCCPD, ML-MCTDH

35


