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Abstract

Ordinary Differential Equations are derived for the adjoint Euler equations firstly using the method of characteristics
in 2D. For this system of partial-differential equations, the characteristic curves appear to be the streamtraces and
the well-known C+and C−curves of the theory applied to the flow. The differential equations satisfied along the
streamtraces in 2D are then extended and demonstrated in 3D by linear combinations of the original adjoint equations.
These findings extend their well-known counterparts for the direct system, and should serve analytical and possibly
numerical studies of the perfect-flow model with respect to adjoint fields or sensitivity questions. Beside the analytical
theory, the results are demonstrated by the numerical integration of the compatibility relationships for discrete 2D
flow-fields and dual-consistent adjoint fields over a very fine grid about an airfoil.
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1. Introduction

In 1988, Jameson derived the continuous adjoint equations associated with the 2D and 3D Euler equations using
general curvilinear coordinates [1]. With this landmark article, the fluid dynamics and aeronautical communities
became better aware of the potential of the adjoint approach for design, that is, the possibility to calculate gradient
information at a cost scaling with the number of functions to be differentiated, independently of the number of design
parameters. The equations in [1] appeared to be a natural starting point for local optimizations involving a large
number of design variables by using adjoint gradients. However, in that setting, the flow and the dual fields had to be
calculated over a structured mesh.

Nine years later, Anderson and Venkatakrishnan [2, 3] and also Giles and Pierce [4] derived the corresponding
equations in Cartesian coordinates thus allowing the application of the continuous approach (sometimes referred to as
the differentiate-then-discretize approach) on all types of meshes and, in particular, on unstructured meshes. For the
sake of simplicity, we present here the two-dimensional case only in which the adjoint equations read

−AT ∂ψ

∂x
−BT ∂ψ

∂y
= 0, in Ω the fluid domain (1)

where A and B are the Jacobian matrices of the flux vectors Fx and Fy of the Euler equations in the x and y directions
respectively:

Fx =


ρu

ρu2 + p
ρuv
ρuH

 Fy =


ρv

ρuv
ρv2 + p

ρvH

 ,

with ρ the density, (u,v) the velocity components, p the static pressure and H the total enthalpy. In the most common
case where the quantity of interest (QoI) is a line integral along the solid wall Γw, it can be shown easily that the adjoint
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wall boundary condition is well-posed provided that the function of interest depends only on the static pressure [3]. In

the classical case where the functional output of interest is the force on Γw projected in direction d, J =
∫

Γw

p(n ·d)ds,

the wall boundary condition reads
n ·d +ψ2nx +ψ3ny = 0 on Γw. (2)

For the farfield of an external flow, as well as for the inlet and outlet of an internal flow, the boundary conditions are
derived from the theory of local one-dimensional characteristic decomposition [2, 5]. Here, the continuous adjoint
Euler equations and the associated boundary conditions are abbreviated as (AE). Along with the growing use of the
adjoint method for shape optimization, goal oriented mesh adaptation and also meta-modelling, stability or control,
great effort is being devoted to gain understanding in the mathematical properties of the (AE) solutions. The main
results are summarized here before discussing the characteristic relations for the (AE) system.

After the derivation of the (AE) equations, the first demonstrated property was also due to Giles and Pierce [4]: in
the common case where the function of interest is an integral along the wall, the authors proved that the first and last
components of the adjoint vector ψ , associated with mass and energy conservation, satisfy ψ1 = Hψ4.

Besides, the integration by parts yielding (1) is not valid in the entire fluid domain in the presence of flow dis-
continuities. After a series of works dealing with the quasi-1D Euler equations – see [5, 6] and references therein
– Baeza et al. presented the equations complementing (1) along a shock line [6] (denoted here Σ as in the original
reference). The new equations are derived by introducing a complementary set of Lagrange multipliers, multiplying
the Rankine-Hugoniot conditions, viewed as constraints on Σ. Finally, the continuity of the adjoint field ψ along Σ is
established, although ∇ψ may be discontinuous across Σ, as well as ψ over Γw∩Σ, and a so-called internal boundary
condition is derived:

(∂ψ/∂ t).(Fxtx +Fyty) = 0 on Σ (3)
with t the unit vector tangent to Σ

Coquel et al., Lozano and Renac [7, 8, 9] have derived additional relationships by using (3), the jump operator applied
to (1) across Σ and the Rankine-Hugoniot equations.

The fact that ψ1 = Hψ4 can be proven simply by forming the linear combination of the first three lines of system
(1) with coefficients (1,u/2,v/2). This yields U .∇ψ1−HU .∇ψ4 = 0 (with U = (u,v) the velocity vector). Note
that this was also derived in [4] by an approach based on physical source terms, constituting an important analysis
technique for the adjoint field of usual QoIs. In particular, this method proved to be very fruitful to identify the zones
where numerical divergence of the adjoint vector is observed and mathematical divergence of the solutions of (AE) is
suspected. For the sake of clarity and brevity, we restrict the present discussion to 2D flows about lifting airfoils, and
to two of these zones, namely the stagnation streamline and the wall, and to the lift and drag as functions of interest.

More precisely, Giles and Pierce [4] introduced four physical punctual source terms (or Green’s functions in the
classical mathematical vocabulary) denoted here δR1, δR2, δR3, δR4. These terms are added to the right hand-side
of the linearised Euler equations and correspond respectively to (i) a mass source at fixed stagnation pressure p0 and
enthalpy H ; (ii) a normal force ; (iii) a change in H at fixed p and p0; and (iv) a change in p0 at fixed p and H.
They are linearly independent. (We refer to the original reference for the detailed expression of these source terms.)
The resulting changes in the QoI J, δJl , can be expressed as the integral over the domain of ψδRl that is, the value
at the source location since δRl is a Green’s function. These source terms also admit a physical interpretation and
their influence on the flow can be understood in terms of mechanical principles, and sometimes even quantified finally
providing insight in the adjoint field [4].

It has been observed that the lift adjoint exhibits numerical divergence at the stagnation streamline and at the wall
at subcritical flow conditions. Also the drag and lift adjoint of a transonic airfoil exhibit numerical divergence at the
same locations if the foot of at least one shock wave is located strictly upwind the trailing edge – see [10, 11] and
references therein. Reference [9] includes a careful verification of this physical perturbations approach applied to the
discrete adjoint with a preliminary assessment of the consistency between the linear (discrete adjoint) and the non-
linear (flow perturbation) evaluations of the δJl . After this verification step, the non-linear perturbed flow approach
has been used (considering the physical source terms point of view prior to the classical adjoint) and it appeared
that: (a) δR4 is the only source term causing a numerical divergence of δJ in the vicinity of the wall and stagnation
streamline ; (b) in transonic condition, the numerical divergence of δCLp4 and δCDp4 in these zones is mainly due
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to the displacement of the shockfoot (or shock-feet if two shocks are not based at the trailing edge) ; (c) this numer-
ical divergence is transferred to the adjoint components via the inverse matrix of the source terms ; (d) this does not
necessarily prevent the numerical satisfaction of the adjoint lift- (resp. drag-) boundary condition at the wall (2) as the
calculation of ψ2nx +ψ3ny in this approach involves the product of δCLp4 (resp. δCDp4) by (unx + vny).

The method of characteristics for 2D inviscid supersonic flow is a classical method for deriving ordinary differ-
ential equations and, potentially, explicit algebraic relations satisfied along two families of curves, denoted C+(left
running with respect to (w.r.t.) a streamline) and C−(right running). Here, we recall the derivation of the continuous
equations and study their counterparts for the (AE) equations.
For the flow, the method starting point is the Cauchy problem posed for the Euler equations: knowing the state vari-
ables along a fixed curve (L), is it possible to calculate their partial derivatives, in both space directions, for all points
of (L) (this being a necessary condition for the flow calculation in the fluid domain) ? The flow variables in two neigh-
boring points of (L), denoted here a and b, are linked by fluid dynamics equations and basic first order Taylor formulas.
The more general presentations deal with rotational flows and, geometrically, both planar and axisymmetrical flows
[12, 13, 14, 15]. The authors derive a system of equations for the derivatives of selected primitive variables. This sys-
tem is linear in the unknown partial derivatives with non linear functions of the state variables as coefficients. When
its determinant is equal to zero, it cannot be solved. That is the case if b is on the streamline of a or, in case of a su-
personic flow, if the angle of

−→
ab = (dx,dy) w.r.t. the streamline passing through a is ±sin−1(1/M) (M being the local

Mach number). The specific curves (L) where these conditions are satisfied for every points are, for all Mach numbers,
the streamtraces, and, where the flow is supersonic, the so-called C+(left running curves w.r.t. the streamtraces with
angle sin−1(1/M)) and the C−(right running curves the w.r.t. streamtraces with angle −sin−1(1/M)). Along these
curves, the physical existence and boundedness of the vector of unknowns allows to conclude from the nullity of the
determinant in the denominator of Cramer’s formulas, to the nullity of the determinants appearing in the numerators,
and this, for all the variables. The classical computational method for supersonic flow [12, 13, 16, 14, 17, 15] is
supported by the corresponding differential forms valid along the C+and C−curves, and the property of constant total
enthalpy and constant entropy along the streamtraces. If the flow is irrotational, homoenthalpic and homoentropic,
simpler equations are derived for the velocity magnitude and the velocity angle [13, 18, 16] or the velocity potential
[17] and the differential forms satisfied along the C+and C−curves may be integrated. This permits to establish the
well-known equations

k− = φ +ν(M) is constant along a C− k+ = φ −ν(M) is constant along a C+ (4)

in which φ is the streamline angle, ν(M) the Prandtl-Meyer function,

φ = tan−1(v/u), ν(M) =

√
γ +1
γ−1

tan−1(

√
γ−1
γ +1

(M2−1))− tan−1(
√

M2−1),

and γ the ratio of specific heats (γ = 7
5 for diatomic perfect gas). Finally, let us recall that the integration of the

corresponding ODEs along the trajectories results in the property of constant enthalpy and constant entropy.
Besides, Bonnet and Luneau indicate that the mechanical equations posed in a may be expressed in the Cartesian frame
of reference rather than in the usual local frame derived from the local velocity [14]. Note that the 2D characteristic
equations could also be calculated in the Cartesian frame and in an inexpert way, without taking advantage of the
known properties of the streamtraces. Then the following the 8× 8 linear system relating the derivatives of the
conservative variables would be solved:

dx 0 0 0 dy 0 0 0
0 dx 0 0 0 dy 0 0
0 0 dx 0 0 0 dy 0
0 0 0 dx 0 0 0 dy

A B





(∂ρ/∂x)
(∂ρu/∂x)
(∂ρv/∂x)
(∂ρE/∂x)
(∂ρ/∂y)
(∂ρu/∂y)
(∂ρv/∂y)
(∂ρE/∂y)


=



ρb−ρa

ρub−ρua

ρvb−ρva

ρEb−ρEa

0.
0.
0.
0.


(5)
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The starting point of our analytical development resides in the observation that (5) and the corresponding linear system
for the (AE) equations, (6), have the same determinant. From this observation, the adjoint Euler characteristics
equations are established in Sec. 2. The theoretical findings are linked with former researches and illustrated by
numerical computational solutions over a very fine grid in Sec. 3. Conclusions are drawn in Sec. 4.

2. Adjoint characteristic equations for 2D supersonic flow

The method exposed in [17] (resp. [15]) for potential (resp. general) inviscid flow has served as a guideline to
our derivation for the adjoint system. For all our calculations, we assume an ideal gas law for the static pressure
p = (γ−1)ρe = (γ−1)(ρE−0.5ρ||U ||2) with a constant γ .

2.1. Problem statement
Given two fixed close points in the supersonic zone, a and b, is it possible to estimate (∂ψ/∂x),(∂ψ/∂y) from

the local value of the flow field and (ψa,ψb) ? This question is the starting point of the method of characteristics in
which specific lines are identified along which this problem is ill-posed, and particular ordinary differential equations
are satisfied. Let us denote

−→
ab = (dx,dy) and first assume that dx , 0. By definition of differential forms, and in view

of the adjoint system (1), the following holds

dx 0 0 0 dy 0 0 0
0 dx 0 0 0 dy 0 0
0 0 dx 0 0 0 dy 0
0 0 0 dx 0 0 0 dy

− AT − BT





(∂ψ1/∂x)
(∂ψ2/∂x)
(∂ψ3/∂x)
(∂ψ4/∂x)
(∂ψ1/∂y)
(∂ψ2/∂y)
(∂ψ3/∂y)
(∂ψ4/∂y)


=



dψ1
dψ2
dψ3
dψ4

0
0
0
0


(6)

in which by neglecting second-order terms in space: (dψ1,dψ2,dψ3,dψ4) = (ψb
1 −ψa

1 ,ψ
b
2 −ψa

2 ,ψ
b
3 −ψa

3 ,ψ
b
4 −ψa

4 ).
The determinant of the linear system is evidently∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dxI dyI

−AT −BT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dxI 0

−AT −BT +dy/dxAT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= dx4|−BT +dy/dxAT |= |−dxBT +dyAT |

Of course, |−dxBT +dyAT | is equal to |−dxB+dyA| and the value of this determinant is known from the eigenvalues
of the matrix:

D = |−dxB+dyA|= (−v dx+u dy)2(−v dx+u dy+ c ds)(−v dx+u dy− c ds),

in which

c =
√

γ p
ρ
, ds =

√
dx2 +dy2.

Similarly to the flow derivatives reconstruction [17, 15], the problem of adjoint derivatives reconstruction in a super-
sonic zone is ill-posed along the same three families of curves

−v dx+u dy = 0 S streamtraces (all Mach numbers) (7)
−v dx+u dy+ c ds = 0 C−characteristics (supersonic flow only) (8)
−v dx+u dy− c ds = 0 C+characteristics (supersonic flow only) (9)
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Figure 1: S , C+and C−curves according to local Mach number. Neighboring a and b points along these curves

Classically, the method of characteristics uses the ill-posedness of (6) in the following way: along the curves defined
by equations (7), (8) or (9), not only the denominator appearing in the Cramer formulas applied to the linear equations
(6) is equal to zero, but the numerators giving the eight components of (∂ψ/∂x) and (∂ψ/∂y) must also be equal to
zero for the fractions not to be singular. This (somehow paradoxical) technique allows the derivation of equations (4).
It is derived here for the (AE) system by analysing the set of linear equations (6).

2.2. Null differential forms in the adjoint variations along trajectories and characteristics

The transposed of the Euler flux Jacobian matrices in x and y direction read

AT =


0 γ1Ec−u2 −uv (γ1Ec−H)u
1 (3− γ)u v H− γ1u2

0 −γ1v u −γ1uv
0 γ1 0 γu

 BT =


0 −uv γ1Ec− v2 (γ1Ec−H)v
0 v −γ1u −γ1uv
1 u (3− γ)v H− γ1v2

0 0 γ1 γv


in the usual notations in aerodynamics and γ1 = γ−1. Let

t =
dy
dx

, κ = ut− v,

and also introduce the following notations for the column vectors of the transposed Jacobian matrices: AT = [A1|A2|A3|A4],
BT = [B1|B2|B3|B4]. Before presenting the results, the principle of the calculation is recalled in one of the cases that
leads to the simplest calculations: the definition of (∂ψ4/∂x) along the curves where (7), (8) or (9) is satisfied (that
is, the streamtraces, the C−or C+characteristic) requires that, along these curves∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dx 0 0 dψ1 dy 0 0 0
0 dx 0 dψ2 0 dy 0 0
0 0 dx dψ3 0 0 dy 0
0 0 0 dψ4 0 0 0 dy
| | | | | | | |
−A1 −A2 −A3 0 −B1 −B2 −B3 −B4
| | | | | | | |

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

The determinant is expanded along the fourth column and the following notations are used

−C1
4xdψ1 +C2

4xdψ2−C3
4xdψ3 +C4

4xdψ4 = 0 (10)
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in which, for example

C1
4x =

∣∣∣∣∣∣∣∣∣∣∣∣

0 dx 0 0 dy 0 0
0 0 dx 0 0 dy 0
0 0 0 0 0 0 dy
| | | | | | |
−A1 −A2 −A3 −B1 −B2 −B3 −B4
| | | | | | |

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

0 dx 0 0 0 0 0
0 0 dx 0 0 0 0
0 0 0 0 0 0 dy
| | | | | | |
−A1 −A2 −A3 −B1 −B2 + tA2 −B3 + tA3 −B4
| | | | | | |

∣∣∣∣∣∣∣∣∣∣∣∣
Finally

C1
4x = dx2dy | −A1 −B1 (−B2 + tA2) (−B3 + tA3) |

The determinant of this 4×4 matrix is easily calculated thanks to the simplicity of the first two columns A1 and B1.
The final result is

C1
4x = dx2dy γ1 κ (u+ vt)

We emphasise that at this stage no assumption is made on the value of t = dy/dx w.r.t. the velocity vector (u,v). In
particular t is not assumed to be the tangent of the angle of the velocity w.r.t. the x axis and κ is not assumed to be
zero. This is mandatory to derive relations that can be used for all three types of specific curves and also to account
for the multiplicity of the eigenvalue (−v dx+ u dy) along streamtraces. The other terms of the differential form of
interest read

C2
4x = −dx2dy | −A2 (−B1 + tA1) −B2 (−B3 + tA3) |=−dx2dy γ1 κ (u2 + v2)

C3
4x = dx2dy | −A3 (−B1 + tA1) (−B2 + tA2) −B3 |= dx2dy γ1 κ t (u2 + v2)

C4
4x = dx3 | (−B1 + tA1) (−B2 + tA2) (−B3 + tA3) −B4 |

= −dx3
κ
(
(γ1 + γt2)u2v−2uv2t + γ1Hκ +(γ + γ1t2)v3− γ1v (1+ t2) Ec

)
The explicit expression of (10), the necessary condition for the boundedness of (∂ψ4/∂x), hence reads

− dx2dy γ1 κ (u+ vt) dψ1−dx2dy γ1 κ (u2 + v2)dψ2−dx2dy γ1 κ t (u2 + v2)dψ3

− dx3
κ
(
(γ1 + γt2)u2v−2uv2t + γ1Hκ +(γ + γ1t2)v3− γ1v Ec (1+ t2)

)
dψ4 = 0 (11)

Assuming that dx , 0, this equation may be further simplified for the C−and C+for which κ , 0:

γ1 t(u+ vt) dψ1 + γ1 t(u2 + v2) dψ2 + γ1 t2 (u2 + v2) dψ3

+
(
(γ1 + γt2)u2v−2uv2t + γ1Hκ +(γ + γ1t2)v3− γ1v Ec (1+ t2)

)
dψ4 = 0. (12)

As (−v dx+ u dy) = κ dx has a multiplicity of two in the determinant of (6), equation (12) is also needed for the
existence of (∂ψ4/∂x) and hence true for neighboring points a and b along the same S curves. (This point is detailed
in §2.3.)
For the sake of clarity, the results of the corresponding calculations for the existence of the seven other partial deriva-
tives along the S , C−and C+curves, and the properties of the Ci

jx Ci
jy coefficients are presented in Appendix A and B.

Only the counterparts of equation (12), for the existence of (∂ψ1/∂x), (∂ψ2/∂x), (∂ψ3/∂x), (∂ψ1/∂y), (∂ψ2/∂y),
(∂ψ3/∂y) and (∂ψ4/∂y) are presented hereafter in this order:

((2tu+(t2−1)v)(γ1H + γ1Ec + γvκ)− (u+ vt)(γ1tH + γ1uκ + γvκt)dψ1

+ γ1 t (u2 + v2) H(dψ2 + tdψ3)+ γ1 t (u+ vt) H2dψ4 = 0 (13)

t (γ1H + γ1Ec + γvκ) (dψ1 +Hdψ4)

− (γ1u2v−uv2t + γv3− γ1(ut + v)(Ec +H)) (dψ2 + tdψ3) = 0 (14)

t (tγ1H + tγ1Ec− γuκ)(dψ1 +Hdψ4)+ t ((γ +1)u2v− tγ1uv2 +(v+ut)(γ1Ec + γ1H− γu2))dψ2

+ ((tv2−uκ)(−γ1u+(γ +1)tv)− (ut− (1+2t2)v)(γ1Ec + γ1H− γv2))dψ3 = 0 (15)
6



(
(γ1 + γt2)u3−2u2vt− γ1tκH +(γ + γ1t2)uv2− γ1u (1+ t2) Ec

)
dψ1

+ γ1 (u2 + v2) H(dψ2 + tdψ3)+ γ1 (u+ vt) H2dψ4 = 0 (16)

(γ1H + γ1Ec + γvκ) (dψ1 +Hdψ4)

+ ((vκ +u2)(vt− (γ1 + γt2)u)− (vt− (2+ t2)u)(γ1Ec + γ1H + γvκ))dψ2

− (γ1u2v−uv2t + γv3− γ1(ut + v)(Ec +H))dψ3 = 0 (17)

(tγ1H + tγ1Ec− γuκ)(dψ1 +Hdψ4)

+ ((γ +1)u2v− tγ1uv2 +(v+ut)(γ1Ec + γ1H− γu2))(dψ2 + tdψ3) = 0 (18)

γ1 (u+ vt) dψ1 + γ1 (u2 + v2)(dψ2 + tdψ3)

+
(
(γ1 + γt2)u3−2u2vt− γ1tκH +(γ + γ1t2)uv2− γ1u Ec (1+ t2)

)
dψ4 = 0 (19)

2.3. Ordinary differential equations for the adjoint along the streamtraces S

The trajectories are one of the families of specific curves for the gradient calculation problem (6). Along these
curves u dy− v dx = 0 is a zero of the denominator of Cramer’s formulas with multiplicity two. Let us first assume
that point a is fixed and point b is very close to Sa, the streamtrace passing through a but not on this curve. The
first-order expression of (∂ψ1/∂x) is

∂ψ1

∂x
=

C1
1xdψ1−C2

1xdψ2 +C3
1xdψ3−C4

1xdψ4

(−v dx+u dy)2(−v dx+u dy+ c ds)(−v dx+u dy− c ds)

Actually κdx = u dy−v dx is a factor of all four coefficients C1
1x, C2

1x, C3
1x and C4

1x. We denote by C̄l
mx the coefficients

obtained by removing the (κ dx) factor from the corresponding Cl
mx. Obviously

∂ψ1

∂x
=

C̄1
1xdψ1−C̄2

1xdψ2 +C̄3
1xdψ3−C̄4

1xdψ4

(−v dx+u dy)(−v dx+u dy+ c ds)(−v dx+u dy− c ds)

If point b is moved closer and closer to Sa (−v dx+u dy)→ 0, so that the boundedness of (∂ψ1/∂x) requires that

C̄1
1xdψ1−C̄2

1xdψ2 +C̄3
1xdψ3−C̄4

1xdψ4 = 0 on Sa

This expression and its counterparts for the other derivatives (∂ψ2/∂x) ... (∂ψ4/∂y) have to be satisfied for all
trajectories. How many of these eight differential forms are independent ? If κ dx = 0, then

C̄1
1x =−t C̄1

1y C̄2
2x =−t C̄2

2y C̄3
3x =−t C̄3

3y C̄4
4x =−t C̄4

4y (20)

as in this case
C̄1

1x = C̄4
4x =−0.5 tγ1dx2(1+ t2)2u3 C̄1

1y = C̄4
4y = 0.5 γ1dx2(1+ t2)2u3

C̄2
2x = 2 dx2

γ1tuH C̄2
2y =−2 dx2

γ1uH C̄3
3x = 2 dx2

γ1t3uH C̄3
3y =−2 dx2

γ1t2uH.

Relations (39) to (42) are valid for the C̄ coefficients (as they stand whatever the values of w and dx, they may be
simplified by wdx). In the specific case where κ = 0 they are completed by (20). Equations {(16),(17),(18),(19)}
(necessary for the boundedness of the ∂ψ l/∂y) and {(13),(14),(15),(12)} (same for ∂ψ l/∂x) are then proportional by
a (−t) factor. Considering the range of the set of the eight differential forms, it appears that one of these two sets of
four equations need be accounted for.

The relations stemming from the existence of the ∂x partial derivative are retained. Equation (13), required for the
definition of (∂ψ1/∂x), is further simplified using the specific properties of a trajectory (κ = 0 v = ut):

0.5tγ1(1+ t2)2u3dψ1 + γ1 t (1+ t2)u2 H(dψ2 + tdψ3)+ γ1 t (1+ t2)u H2dψ4 = 0
7



0.5(1+ t2)u2dψ1 +u H(dψ2 + tdψ3)+ H2dψ4 = 0

For the streamstraces, the equation finally derived from the existence of (∂ψ1/∂x) is

Ec dψ1 +H(u dψ2 + v dψ3)+ H2dψ4 = 0 (21)

Note that we have assumed that u , 0 and dx , 0 to perform the calculations but finally obtained an expression that is
also well-defined in this specific case. Equation (14), is further simplified for the motion along a trajectory:

t (γ1H + γ1Ec) (dψ1 +Hdψ4)+2γ1 u t H (dψ2 + tdψ3) = 0

(H +Ec) (dψ1 +Hdψ4)+2H (u dψ2 + v dψ3) = 0

Using the first relation and simplifying by H, we get

H(dψ1 +Hdψ4)+2H (u dψ2 + v dψ3)+EcHdψ4−H(udψ2 + vdψ3)− H2dψ4 = 0

and finally dψ1 +u dψ2 + v dψ3 +Ecdψ4 = 0 (22)

Simplifying equation (15) for trajectories yields

(H +Ec)(dψ1 +Hdψ4)+2H(udψ2 + vdψ3) = 0,

that had already been derived. Using κ = 0 and v = ut, the fourth relation (first simplified by a κdx factor) gives

γ1 tu(1+ t2) dψ1 + γ1 tu2(1+ t2) dψ2 + γ1t2 u2(1+ t2) dψ3 +0.5tγ1(1+ t2)2u3dψ4 = 0

or dψ1 +u dψ2 + tu dψ3 +0.5(1+ t2)u2dψ4 = 0

and finally dψ1 +u dψ2 + v dψ3 +Ec dψ4 = 0

This equation is similar to (22). These differential forms along the trajectories S may be turned in differential equa-
tions. The natural variable w.r.t. which differentiate, is the curvilinear abscissa along the streamtraces, s, increasing
in the direction opposite to the motion (as this is the direction of the adjoint transport of information from the support
of the function of interest). The final equations along the S curves are then

Ec
dψ1

ds
+H(u

dψ2

ds
+ v

dψ3

ds
)+ H2 dψ4

ds
= 0 (23)

dψ1

ds
+u

dψ2

ds
+ v

dψ3

ds
+Ec

dψ4

ds
= 0 (24)

Although the calculations of this section are not very complex, they have been checked with the computer algebra
software Maple. The independent variables of the formal calculations are (u,v) also M the Mach number (that allows
the calculation of the speed of sound c and then the total enthalpy H) and γ . The set of four differential forms {(16),
(17), (18), (19)} was associated with {(21),(22)} in a 6×4 matrix that was again found to have rank two.

2.4. Ordinary differential equation for the adjoint along the C+and C−characteristics
Let us first note that the determinant in the denominator of the Cramer formulas for (6) may be calculated as

D = dx C1
1x +dy C1

1y

developing D along the first line. Doing the same along the second, third and fourth lines yields

D = dx C2
2x +dy C2

2y = dx C3
3x +dy C3

3y = dx C4
4x +dy C4

4y

As D = 0 along the C+and C−characteristics, equations (39) to (42) are completed by

C1
1x =−t C1

1y C2
2x =−t C2

2y C3
3x =−t C3

3y C4
4x =−t C4

4y
8



so that the differential forms stemming from the boundedness of (∂ψ l/∂x) and their counterparts for (∂ψ l/∂x) are
proportional. (Incidentally, note that this argument may have been used also in the previous subsection.)
Numerical tests indicate that the four differential forms associated with the existence of (choosing the second set)
(∂ψ1/∂y), (∂ψ2/∂y), (∂ψ3/∂y), (∂ψ4/∂y) are proportional but the corresponding calculations are much more com-
plex than in the previous subsection as the expression of t is now:

t± = tan(φ +β ) with tanφ =
v
u

sinβ =± 1
M

(25)

with, of course sinβ = 1/M for the C+and sinβ =−1/M for the C−curves.
With this expression of t and κ not being equal to zero, searching the rank of {(16), (17), (18), (19)} is much more
difficult. However, the task was successfully accomplished with the assistance of Maple, using once again (u,v,M,γ)
as independent formal variables. Rank one was indicated by Maple and the correspondence with the counterpart
characteristics for the flow seemed very sound. Knowing this result from formal calculation, its demonstration by
hand was searched for.
First, the value of t is calculated along the C+and C−curves. For β in [−π/2,π/2] (25) yields

t± =

v
u
± 1√

M2−1

1∓ v
u

1√
M2−1

=
uvM2± (u2 + v2)

√
M2−1

u2(M2−1)− v2 =
uv± c2

√
M2−1

u2− c2 =
uv± c

√
u2 + v2− c2

u2− c2 (26)

We then note that if the differential forms (16) and (19) were proportional, from the expressions of C2
1y,C

3
1y,C

2
4y and

C3
4y, the ratio between their terms would be (−H). It is then easily checked that the two non-trivial conditions for

proportionality, C1
1y =−HC4

1y and C1
4y =−HC4

4y, are equivalent to a single equality

γ1 (u+ vt)H =
(
(γ1 + γt2)u3−2u2vt− γ1tκH +(γ + γ1t2)uv2− γ1u (1+ t2) Ec

)
(27)

Wherever u , 0, this condition is equivalent to

γ1 (1+ t2) H = γ1 (1+ t2) Ec +(tu− v)2 (28)

that is, precisely, the degree two equation which roots are the values of t along the C+and C−curves (26). Along
these curves, using (27) that is now an established property along the C+and C−, these two differential forms may be
simplified as

(u+ vt±) dψ1 +(u2 + v2)(dψ2 + t±dψ3)+H(u+ vt±) dψ4 = 0, (29)

or, under the form of an ordinary differential equation,

(u+ vt±)
dψ1

ds
+(u2 + v2)(

dψ2

ds
+ t±

dψ3

ds
)+H(u+ vt±)

dψ4

ds
= 0. (30)

Comparing equations (18) – expressing the boundedness of (∂ψ3/∂y) – and (29) – its counterpart for (∂ψ1/∂y) and
(∂ψ4/∂y)) – it is easily derived that these equations are proportional on the C+and C−curves if and only if for t = t±

(tγ1H + tγ1Ec− γuκ)(u2 + v2) = ((γ +1)u2v− tγ1uv2 +(v+ut)(γ1Ec + γ1H− γu2))(u+ vt)

Wherever uv , 0, this equation is equivalent to

γ(u2 + v2) = ((γ +1)u− tγ1v)(u+ vt)+(γ1Ec + γ1H− γu2)(1+ t2)

that is found to be equivalent to equation (28), the degree two equation t which roots are the slope coefficients of the
C+and C−. Equation (18) hence also reduces to (29) along the C+and C−curves.
Finally, we consider the last differential form (17), expressing the boundedness of (∂ψ2/∂y). Whether it is propor-
tional to (29) is not straightforward in particular due to the complex expression of C2

2y and the ratio C3
2y/C2

2y that is not
9



obviously equal to t. Nevertheless, we have proven that, along the characteristic curves the differential form express-
ing the boundedness of (∂ψ2/∂x) and (∂ψ2/∂y) (equations (14) and (17)) are proportional by a minus t factor. So
we may use this property to derive a simpler expression of C2

2y or prove the proportionality of (14) with (29) along the
C+and C−curves. Whatever the approach the condition for proportionality reads

t (γ1H + γ1Ec + γvκ)(u2 + v2) = (γ1(ut + v)(Ec +H)+uv2t− γ1u2v− γv3)(u+ vt),

that is found to be equivalent to (28) wherever uv , 0.
In a final formal calculation verification, it was checked that, on the C+and C−curves, (16), is proportional to (29)
(and we already know that equations (17), (18), (19) are proportional to (16) along these curves).

2.5. Main results and extension to 3D

We have found two differential equations, (23) and (24), valid along the streamtraces S for the adjoint system:

Ec
dψ1

ds
+H(u

dψ2

ds
+ v

dψ3

ds
)+ H2 dψ4

ds
= 0

dψ1

ds
+u

dψ2

ds
+ v

dψ3

ds
+Ec

dψ4

ds
= 0.

They are the counterpart of the constant total enthalpy and constant entropy properties for the flow. They may be
combined (for example to derive again U .∇ψ1−HU .∇ψ4 = 0) or their coefficients may be expressed differently
using the well-known equations satisfied by steady inviscid flows along a streamtrace. Let us finally note that their
straightforward 3D extensions (with natural notations),

Ec
dψ1

ds
+H(u

dψ2

ds
+ v

dψ3

ds
+w

dψ4

ds
)+H2 dψ5

ds
= 0

dψ1

ds
+u

dψ2

ds
+ v

dψ3

ds
+w

dψ4

ds
+Ec

dψ5

ds
= 0,

are valid. This is the subject of Appendix C. The demonstration used in 3D also provides another method for deriving
the 2D equations.
We have found one differential equation for the C+and one differential equation for the C−, equation (30) with
relevant value of t± for each curve (26)

(u+ vt±)
dψ1

ds
+(u2 + v2)(

dψ2

ds
+ t±

dψ3

ds
)+H(u+ vt±)

dψ4

ds
= 0.

t+ =
uv+ c

√
u2 + v2− c2

u2− c2 for a C+ t− =
uv− c

√
u2 + v2− c2

u2− c2 for a C−

They are the counterpart of the differential forms satisfied by primitive flow variables along the C+and C−. In the
simpler cases, where the classical angular relations (4) are valid, these relations may be used to express differently the
coefficients. We do not expect these relations involving a 2D slope, t, to admit an extension in 3D.

3. Assessment of the adjoint ODEs

3.1. Consistency with known flow perturbation mechanisms

The adjoint vector is known to express the influence of a flow perturbation on the associated QoI. Although discrete
and continuous adjoint methods are nowdays common tools for shape optimization, flow control and receptivity-
sensitivity-stability analysis, adjoint vectors are not easily interpreted. The reason is that a single adjoint component,
at a given location, is the rate of the change in the QoI to the amplitude of a local perturbation in the corresponding
flow equation only (eg for the first component, mass injection without perturbation of the momentum and energy
equations). These individual equation perturbations, of course, do not correspond to any realistic possibility. A
second complementary point of view, already mentioned in the introduction, consists in calculating the dot product of
the adjoint components with the vector of a realistic perturbation and discuss the map of the actuation influence [4, 9].
Plots of individual adjoint components for Euler flows appear in a 2002 publication by Venditti and Darmofal [19]
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(fig. 19 and 26). The discussion of a x-momentum CL-adjoint plot in [19] mentions a singularity in the adjoint along
the stagnation streamline and a weak discontinuity upstream of the primal shock on the upper surface. (With a finer
mesh, the latter would have been identified as a C−impinging the upperside shock-foot). Although not discussed
by the authors of [19], a corresponding plot for a supersonic flow about two airfoils, strongly suggest backward
information propagation along the S , C−and C+curves from the support of the QoI. Concerning transonic airfoil
flows, reference [20] describes the mechanism by which locally perturbing one component of the flow along the
C−(resp. C+) impinging the upperside (resp. lowerside) shock-foot results in a strong change in the lift and drag:
the flow perturbation propagates along the C−(resp. C+) and results in a displacement of the shock.
The evaluation of the influence of physical source terms on the lift or drag of a profile goes back to Giles and Pierce
[4] who introduced the four physical local source terms recalled in section I. Consistently with equations (23), (24)
and (30) the results obtained with this approach also support adjoint information propagation along the S , C−and
C+, from the support of the QoI (backwards w.r.t. the direction of flow perturbations). Regarding the specific goal of
acting at a shockfoot and the four aforementioned source terms [4], the authors of [9] demonstrate that the first two
source terms (mass source at stagnation conditions, and normal force) may displace the shock and strongly alter near-
field forces if located along the C+/ C−of the shock-foot whereas the fourth source (change in stagnation pressure
at fixed static pressure and total enthalpy) may displace the shock-foot if located along the stagnation streamline or
along the wall upwind the shock.
The demonstrated ODEs along the S , C−and C+curves are hence consistent with known lines of specific influence
on drag or lift of classical steady Eulerian flows. These lines also appear in the search of optimal forcings in control
studies [21, 22] but we do not extend on this aspect due to the different base equations.

3.2. Consistency with the analytical adjoint field of 2D supersonic constant flow areas and the equations for the
adjoint gradient at shocks

In reference [20] Todarello et al. derived the mathematical expression of the 2D Eulerian adjoint vector in a
supersonic zone with constant flow (typically upwind the detached shockwave created by an airfoil). The angle of
attack being α and Mach number M, this formula reads

ψ(x,y) = ϕα(x sin(α)− y cos(α))λ α
0 +ϕα+β (x sin(α +β )− y cos(α +β ))λ

α+β

0

+ ϕα−β (x sin(α−β )− y cos(α−β ))λ
α−β

0 , (31)

where β = sin−1(1/M), ϕα , ϕα−β , ϕα−β are three scalar functions, the λ
µ

0 are left eigenvectors[9] of Asin(µ)−
Bcos(µ)

λ
α−β

0 =


c
ρ

(
1+ γ1

2 M2)
1
ρ

(
sin(α−β )− γ1

u
c

)
1
ρ

(
−cos(α−β )− γ1

v
c

)
γ1
ρc

 , λ
α+β

0 =


c
ρ

(
1+ γ1

2 M2)
− 1

ρ

(
sin(α +β )+ γ1

u
c

)
− 1

ρ

(
−cos(α +β )+ γ1

v
c

)
γ1
ρc

 λ
α
0 =


−1− γ1

2 M2

γ1u
c2 + 2 cos(α)

cos(α)u+sin(α)v
γ1v
c2 + 2 sin(α)

cos(α)u+sin(α)v
− γ1

c2 .

 (32)

which formulas [23] have been simplified here using the null eigenvalues relations valid in this specific context:
u sin(α)−v cos(α) = 0, u sin(α−β )−v cos(α−β )+c = 0, u sin(α +β )−v cos(α +β )−c = 0. Equation
(31) is the mathematical formula for the three stripes field depicted in figure 2. Each ϕ scalar function expresses the
combined variation in the amplitude of the adjoint components normally to the stripe direction. Each stripe is crossed
by the characteristic lines oriented in the direction of the other two and we question whether equation (23), (24), (30)
provide new information on the ϕ functions.
Considering the stripe oriented in the α − β direction, we first note that equation (30) with the t− value, is auto-
matically satisfied in its geometrical domain since ϕα−β (x sin(α−β )− y cos(α−β ))λ

α−β

0 induces no variation of
the ψ components in the C−direction. Regarding the conditions for satisfying (23) and (24) along an S curve, and
satisfying (30) along a C+curve where they cross the α−β stripe (as in fig. 2 right), we introduce the three functions

Γ
1
S(s) = Ecψ1 +Huψ2 +Hvψ3 +H2

ψ4

Γ
2
S(s) = ψ1 +uψ2 + vψ3 +Ecψ4

ΓC+(s) = (u+ vt+)ψ1 +(u2 + v2)(ψ2 + t+ψ3)+H(u+ vt+)ψ4,
11



with s the curvilinear abscissa along the curve mentioned in the index. It is proven in appendix D that

dΓ1
S

ds
= 0

dΓ2
S

ds
= 0

dΓC+

ds
= 0

without condition on the ϕ functions. As the flow is constant, this is equivalent to the satisfaction of the ODEs along
the S and the C+curves. The other possible crossing of the stripes and the curves also do not provide conditions
on the ϕ functions. We hence have not gained information on the analytical adjoint field of 2D supersonic constant
flow zones but this automatic consistency establishes a link, via a series the orthogonality properties, between the
coefficients of the differential equation (23), (24), (30) and the relevant left eigenvectors of the Euler flux Jacobian
(32).

Regarding shock-waves, it is know that, for classical QoIs like pressure integrals at the wall, the adjoint vector is
continuous at shocks although the flow is not, whereas the adjoint gradient may be discontinuous. In most common
cases, although a shockwave only makes the normal component of the velocity subsonic, the C+and C−curves end
at the shock and the most interesting discussion regards the consequences of (23), (24). As they are valid both sides
of the shock, the jump operator may be applied to them across the discontinuity Σ:

~Ec
dψ1

ds
+H(u

dψ2

ds
+ v

dψ3

ds
)+ H2 dψ4

ds
�= 0 ~

dψ1

ds
+u

dψ2

ds
+ v

dψ3

ds
+Ec

dψ4

ds
�= 0,

where all terms but H may be discontinuous. Unfortunately, it does not seem possible to reduce these equations to the
simpler ones for the adjoint gradient discontinuity [8, 9] where the derivatives in the two directions of the local frame
of reference attached to the shock appear independently. Conversely, we note that in the case of a normal shock, the
equations derived in [8] prove the previous two jump equations.

Figure 2: Left: Sketch of lift/drag adjoint field for a supersonic flow about an airfoil. Individual stripes (blue) and superimposition of the three
stripes (grey) in the constant flow zone ; nonzero adjoint zone downwind the shockwave (green). Right: C−stripe crossed by a S and a C+curve

3.3. Numerical assessment method
The numerical assessment method consists in computing flow and adjoint fields over a very fine mesh, and calcu-

lating the following integrals:

KOS1 =
∫

S

(
Ec

dψ1

ds
+H(u

dψ2

ds
+ v

dψ3

ds
)+ H2 dψ4

ds

)
ds (33)

KOS2 =
∫

S

(
dψ1

ds
+u

dψ2

ds
+ v

dψ3

ds
+ Ec

dψ4

ds

)
ds (34)

KOC+ =
∫

C+

(
(u+ vt+)

dψ1

ds
+(u2 + v2)(

dψ2

ds
+ t+

dψ3

ds
)+H(u+ vt+)

dψ4

ds

)
ds (35)

KOC− =
∫

C−

(
(u+ vt−)

dψ1

ds
+(u2 + v2)(

dψ2

ds
+ t−

dψ3

ds
)+H(u+ vt−)

dψ4

ds

)
ds. (36)
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Here the intermediate subscript O stands for the output functional of interest ; it is subsequently replaced by L (for the
lift, CLp) and D (for drag, CDp, consistently with the adjoint vector placed on the right-hand side.

The integration is performed in the forward sense for the adjoint, that is, backwards w.r.t. the direction of the flow
information propagation. The integration domain for the above line integrals extends to the interior of the disk of
radius 3c centred at (0.5c,0), chosen for plotting readability, while the flow computational domain itself extends to
150c. It may be shorter, in particular in the transonic case where the C+and C−curves are limited to the supersonic
bubble(s). The four quantities KOS1,..., KOC− are expected to be close to zero and, to avoid any error in scale, also
calculated and plotted are the corresponding subparts, that is, for KOS1 for example,

KOS1
1 =

∫
S

(
Ec

dψ1

ds

)
ds KOS1

2 =
∫

S

(
Hu

dψ2

ds

)
ds

KOS1
3 =

∫
S

(
Hv

dψ3

ds

)
ds KOS1

4 =
∫

S

(
H2 dψ4

ds

)
ds.

The sum of the four terms is expected to be much smaller than each one of them individually. All the integrals are
calculated backwards, along a finely discretized characteristic curve, simply by the trapezoidal rule.
The discrete flows and adjoints were available from former computations [9] in which the Jameson-Schmidt-Turkel
scheme [24] was applied, and using the discrete adjoint module of the elsA code [25, 26]. Of course when trying to
assess properties of exact adjoint fields from numerical discrete solutions, it is desirable to work either with continuous
adjoints or with dual consistent discrete adjoints[27, 28, 29]. Precisely in [9], it was demonstrated for structured
meshes how to slightly modify the scheme’s Jacobian (in the derivative of the dissipation flux, for the next to wall
faces) to get a dual consistent linearization. This slight modification of the exact scheme Jacobian is retained here to
work with adjoint fields that are consistent with the continuous equations discussed in §2. Note also that these adjoint
fields have also been satisfactorily verified by a posteriori discretization of the continuous adjoint equation[9].
Only the solutions calculated over the finest mesh defined in reference [30] (structured 4097×4097 mesh) are used
here. The iso-Mach number lines, iso-first component of CLp adjoint and the extracted curves may be seen for all
cases in figure 3.

3.4. Numerical assessment of the ODEs for a supersonic flow about the NACA0012 airfoil
The retained flow conditions are M∞ = 1.5 , α = 1o. We first assess the streamtraces equations (23) (24). The

KDS1, KDS2, KLS1, KLS2 integrals and their subparts are calculated along the trajectory passing through (c,0.1c). The
integration indeed leads to very small values of KDS1, KDS2, KLS1, KLS2 along the curve w.r.t. their subparts. It is
well-known for this of kind of flow that the exact lift- and drag- adjoint is equal to zero downstream the backwards
flow-characteristics emanating from the trailing edge (since no perturbation downstream those two lines can affect the
pressure on the aerofoil and, consequently, the lift or the drag – see for example fig. 6 and A21 in [9]). This property
is well satisfied by discrete adjoint fields and, as the integration is performed backwards along the streamtrace, null
values of KDS1, KDS2, KLS1, KLS2 and all their subparts are observed above a specific x corresponding to the inter-
section of the streamtrace with this trailing-edge C−. The integration of (23) and (24) reveals (i) the discontinuity of
the integration variables (the adjoint components) at x ' 0.85 that appears as a discontinuity in the subpart curves ;
(ii) a discontinuity of the integration coefficients, when crossing the detached shock wave at x ' −0.08, that results
in strong gradients in the subparts curves. None of those discontinuities alters the almost null values of KDS1 KDS2,
KDL1 and KLS2. The strong adjoint gradients in the subsonic bubble (approximately x ∈ [−0.08,0.05]) also clearly
translate the KS curves. Finally, note that for x lower than'−0.05 the flow is constant (so the streamtrace is a straight
line) and for x lower than '−1 the backward streamtrace enters a zone of constant adjoint along its direction (see fig.
2 left and equation (31)). This theoretical property is well translated in constant sections of the curves. The results are
equivalently accurate for lift and drag. They are presented for the drag in figure 4.
A C+and a C−curve are then extracted using equation (4). The selected C+is initiated at x' 0.3 upper side and the

retained C−starts at the same abscissa but on the lower side. This choice was guided by the extraction method and
the observation that k+ (resp. k−) is almost constant on the lower (resp. upper) side. The KDC+, KLC+, KDC−,KLC−

terms and their subparts have been computed. The results appear to be very satisfactory. Also observed is the equality
of KDC+

1 and KDC+
4 , KLC+

1 and KLC+
4 and along the C+and correspondingly along the C−curves. This is due to the

fact that ψ1 = Hψ4 (for Euler flows and for pressure-based integrals along the wall that is well satisfied at the discrete
13



Figure 3: Simulations over the 4097×4097 mesh of [30]. iso-Mach number lines (upper three plots) and iso-ψ1
CLp lines (lower three plots) and

extracted curves. Left, subsonic case: streamline. Middle, transonic case: streamline, C+, C−(black) and sonic line (violet). Right supersonic
case: streamline, C+(upper side), C−(lower side)

Figure 4: M∞ = 1.50, α = 1o, (4097×4097 mesh [30]) Numerical assessment of equation (23) (left) and (24) (right) for the lift. Method of
verification: the black curve should ideally coincide with the x axis
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level – see for example [9] fig. A21, A22, A23) and to the expression of the dψ1 and dψ4 terms in (29). Figure 5
presents the verification plots for the two functions along the selected C+.

Figure 5: M∞ = 1.50, α = 1o, (4097×4097 mesh [30]) Numerical assessment of equation (29) for the lift (left) and for the drag (right). Method of
verification: the black curve should ideally coincide with the x axis

3.5. Numerical assessment of the ODEs for a transonic flow about the NACA0012 airfoil

The flow conditions are M∞ = 0.85 , α = 2o. Careful verification of the streamstraces equations (23) (24) has
been performed for the streamtrace passing through (c,0.1c) and very satisfactory results have been found. As in the
previous section, the intersection of the S curve with the shockwave results in the subsparts curves in very strong
gradients but does not affect the almost null value of KDS1, KDS2, KLS1, KLS2. As similar results have been presented
in the previous and the next subsections, we focus here on the C+and C−curves. A C+and a C−curves have been
extracted taking care to select the longest possible curves (and to avoid, for the C−the curve passing by the shock-foot
where numerical divergence of the adjoint may be observed). The selected C+(resp. C−) is passing approximately
through the point (0.197,0.057) (resp. (0.954,0141)). The verification of the consistency of the numerical solutions
w.r.t. (29) is satisfactory although the largest observed errors appear in this case, for the C−curve, for the lift, in the
vicinity of the inlet of the supersonic bubble – see figure 6. This largest observed error is about 2% of the largest
absolute value of the four subparts. The integrals along the C−are regular, whereas those along the C+exhibit a sharp
peak close to x' 0.52, at the intersection with the C−passing by the shockfoot. We refer to §3.1 for the reason of the
corresponding strong adjoint gradient.

3.6. Numerical assessment of the streamtrace ODEs for a subsonic flow about the NACA0012 airfoil

We expect relations (23) and (24) to be valid along the trajectories of a subsonic flow. The retained flow conditions
have been M∞ = 0.4 , α = 5o. The KDS1, KDS2, KLS1, KLS2 integrals and their subparts are calculated along the
trajectory passing through (c,0.1c). The integration indeed leads to very small values of KDS1, KDS2, KLS1, KLS2

along the curve w.r.t. their subparts. The results are equivalently good for lift and drag and are presented in figure 7
for the lift. The lower left plot of figure 3 presents the typical aspect of subsonic lift or drag adjoints indicating that
an actuation able to significantly alter these QoIs is to be applied in the immediate vicinity of the wall. This property
translates in weakly varying curves far from the profile in our verification plots for this test case.

4. Conclusion

Ordinary Differential Equations have been derived for the adjoint Euler equations using in a first step the method
of characteristics in 2D. The differential equations satisfied along the streamtraces in 2D have then been extended
to 3D and the combination of equations method used for the derivation in this case also provides a simpler proof of
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Figure 6: M∞ = 0.85, α = 2o, (4097×4097 mesh [30]) Numerical assessment of equation (29) for the lift (left) and for the drag (right), for the
selected C−(up) and C−(down). Method of verification: the black curve should ideally coincide with the x axis

Figure 7: M∞ = .40, α = 5o, (4097×4097 mesh [30]) Numerical assessment of equation (23) (left) and (24) (right) for the lift. Method of
verification: black curve should ideally coincide with the x axis
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the corresponding 2D equations. All these ODEs are non linear differential equations that cannot be integrated for
non-constant flows.
The adjoint vector expresses the sensitivity of its corresponding scalar QoI to a local perturbation in the flow equa-
tions. Its variations in the fluid domain are often difficult to analyse as it precisely avoids the calculation of the flow
perturbation that causes the change in the QoI. Nevertheless lift and drag adjoint fields have been examined since a
long time, and the presented equations for 2D problems clarify their highest values and the strong sensitivity of their
associated QoIs to perturbations located along specific lines [19, 20, 8, 9].
These findings have been illustrated with flows, lift-adjoints, and drag-adjoints over the classical NACA0012 airfoil
using a very fine mesh and a dual-consistent adjoint method. The conducted tests lead to very satisfactory results
(although minor deviations in our transonic case close to the inlet of the upper side supersonic bubble). The demon-
strated equations (23),(24), and (30) hence also provide a verification tool for discrete adjoint fields.

SUPPLEMENTARY MATERIAL
Supplementary material consists of:
– five python scripts allowing to check the algebraic expressions of the Cl

mx and Cl
my coefficients w.r.t. their definition

as determinants and one python script allowing the numerical verification of the results of IIIB ;
– six outputs of Maple scripts checking the rank of the sets of differential forms satisfied along the streamtraces, C+,
and C−.
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A. Calculation and expressions of the Ck
i j coefficients

Two or three of the vectors (−B1 + tA1), (−B2 + tA2), (−B3 + tA3) and (−B4 + tA4) appear in the formulas of the
Ck

i j coefficients expressed as the determinant of a 4×4 matrix. They may be precalculated as

−B1 + tA1 =


0
t
−1
0

 −B2 + tA2 =


t γ1 Ec−uκ

−v+ t(3− γ)u
−u− tγ1v

tγ1



−B3 + tA3 =


−γ1 Ec− vκ

γ1u+ tv
−(3− γ)v+ tu

−γ1

 −B4 + tA4 =


(γ1 Ec−H)κ

tH− γ1uκ

−H− γ1vκ

γκ
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The expressions of the Cl
1x, Cl

2x, Cl
3x, Cl

1y, Cl
2y, Cl

3y, Cl
4y are gathered below (the Cl

4x being given in §2.2). We recall that,
with our notations, the null differential form along the S , C−and C+derived from the existence of, e.g. (∂ψi/∂y),
reads C1

iydψ1−C2
iydψ2 +C3

iydψ3−C4
iydψ4 = 0

• The coefficients Cl
1x are expressed below

C1
1x = −dx3

κ ((2tu+(t2−1)v)(γ1H + γ1Ec + γvκ)− (u+ vt)(γ1tH + γ1uκ + γvκt))

C2
1x = dx2dy γ1 κ (u2 + v2) H

C3
1x = −dx2dy γ1 κ t (u2 + v2) H

C4
1x = dx2dy γ1 κ (u+ vt) H2

• The coefficients Cl
2x are expressed below

C1
2x = −dx2dy κ (γ1H + γ1Ec + γvκ)

C2
2x = −dx3

κ (γ1u2v−uv2t + γv3− γ1(ut + v)(Ec +H))

C3
2x = dx2dy κ (γ1u2v−uv2t + γv3− γ1(ut + v)(Ec +H))

C4
2x = dx2dy H κ (γ1H + γ1Ec + γvκ)

• The coefficients Cl
3x are expressed below

C1
3x = dx2dy κ (tγ1H + tγ1Ec− γuκ)

C2
3x = −dx2dy κ ((γ +1)u2v− tγ1uv2 +(v+ut)(γ1Ec + γ1H− γu2))

C3
3x = dx3

κ ((tv2−uκ)(−γ1u+(γ +1)tv)− (ut− (1+2t2)v)(γ1Ec + γ1H− γv2))

C4
3x = −dx2dy H κ (tγ1H + tγ1Ec− γuκ)

• The coefficients Cl
1y are expressed below

C1
1y = dx3

κ
(
(γ1 + γt2)u3−2u2vt− γ1tκH +(γ + γ1t2)uv2− γ1u (1+ t2) Ec

)
C2

1y = −dx3
γ1 κ (u2 + v2) H

C3
1y = dx3

γ1 t κ (u2 + v2) H

C4
1y = −dx3

γ1 κ (u+ vt) H2

• The coefficients Cl
2y are expressed below

C1
2y = dx3

κ (γ1H + γ1Ec + γvκ)

C2
2y = −dx3

κ ((vκ +u2)(vt− (γ1 + γt2)u)− (vt− (2+ t2)u))(γ1Ec + γ1H + γvκ))

C3
2y = −dx3

κ (γ1u2v−uv2t + γv3− γ1(ut + v)(Ec +H))

C4
2y = −dx3 H κ (γ1H + γ1Ec + γvκ)

• The coefficients Cl
3y are expressed below

C1
3y = −dx3

κ (γ1tEc + γ1tH− γuκ)

C2
3y = dx3

κ ((γ +1)u2v− tγ1uv2 +(v+ut)(γ1Ec + γ1H− γu2))

C3
3y = −dx3tκ((γ +1)u2v− tγ1uv2 +(v+ut)(γ1Ec + γ1H− γu2))

C4
3y = dx3

κ H (γ1tEc + γ1tH− γuκ)
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• The coefficients Cl
4y are expressed below

C1
4y = −dx3

γ1 κ (u+ vt)

C2
4y = dx3

γ1 κ (u2 + v2)

C3
4y = −dx3

γ1 κ t (u2 + v2)

C4
4y = dx3

κ
(
(γ1 + γt2)u3−2u2vt− γ1tκH +(γ + γ1t2)uv2− γ1u (1+ t2) Ec

)
B. General properties of the Cl

mx and Cl
my coefficients

Equation (6) refers to the limit of small space steps and the search of characteristic curves ; nevertheless, the
expressions of the Cl

mx and Cl
my coefficients may be considered for an arbitrary direction and an arbitrary norm of

vector (dx,dy). Without any assumption linking (dx,dy) and (u,v), the relations between the coefficients of the same
differential forms are:

C4
1x = HC1

1x C3
1x = tC2

1x ; C4
2x =−HC1

2x C3
2x =−tC2

2x ; C4
3x =−HC1

3x ; C3
4x =−tC2

4x (37)
C4

1y = HC1
1y C3

1y = tC2
1y ; C4

2y =−HC1
2y ; C4

3y =−HC1
3y C3

3y =−tC2
3y ; C3

4y =−tC2
4y (38)

Besides, twelve of the sixteen coefficients of the differential forms for the x and y derivatives are proportional by a
(−t) factor:

C2
1x = −t C2

1y C3
1x =−t C3

1y C4
1x =−t C4

1y (39)

C1
2x = −t C1

2y C3
2x =−t C3

2y C4
2x =−t C4

2y (40)

C1
3x = −t C1

3y C2
3x =−t C2

3y C4
3x =−t C4

3y (41)

C1
4x = −t C1

4y C2
4x =−t C2

4y C3
4x =−t C3

4y (42)

Finally, the C1
1l and C4

4l coefficients are equal

C1
1x =C4

4x C1
1y =C4

4y (43)

C. Streamstrace ODEs in dimension 3

From 2D equations (23) and (24), we can infer corresponding candidate equations for the adjoint vector along the
streamtraces in 3D:

Ec
dψ1

ds
+H(u

dψ2

ds
+ v

dψ3

ds
+w

dψ4

ds
)+ H2 dψ5

ds
= 0 (44)

dψ1

ds
+u

dψ2

ds
+ v

dψ3

ds
+w

dψ4

ds
+Ec

dψ5

ds
= 0. (45)

Could these equations be possibly proven from the 3D Euler adjoint equations

−AT ∂ψ

∂x
−BT ∂ψ

∂y
−CT ∂ψ

∂ z
= 0, (46)

where the 3D transposed Jacobian of Euler fluxes read

AT =


0 (γ1Ec−u2) −uv −uw (γ1Ec−H)u
1 −γ1u+2u v w (H− γ1u2)
0 −γ1v u 0 −γ1uv
0 −γ1w 0 u −γ1uw
0 γ1 0 0 γu

 BT =


0 −uv (γ1Ec− v2) −vw (γ1Ec−H)v
0 v −γ1u 0 −γ1uv
1 u −γ1v+2v w (H− γ1v2)
0 0 −γ1w v −γ1vw
0 0 γ1 0 γv
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CT =


0 −uw −vw (γ1Ec−w2) (γ1Ec−H)w
0 w 0 −γ1u −γ1uw
0 0 w −γ1v −γ1vw
1 u v −γ1w+2w (H− γ1w2)
0 0 0 γ1 γW


s being the curvilinear abscissa along a trajectory in the direction opposite to the flow displacement, the differentiation
w.r.t. s may be expressed as

d
ds

=− u
‖U‖

d
dx
− v
‖U‖

d
dy
− w
‖U‖

d
dz

First considering (45), the equation with the simpler coefficients, this equation is satisfied in the fluid domain if and
only if

(u
dψ1

dx
+ v

dψ1

dy
+w

dψ1

dz
) +u(u

dψ2

dx
+ v

dψ2

dy
+w

dψ2

dz
)

+v(u
dψ3

dx
+ v

dψ3

dy
+w

dψ3

dz
) +w(u

dψ4

dx
+ v

dψ4

dy
+w

dψ4

dz
)

+Ec(u
dψ5

dx
+ v

dψ5

dy
+w

dψ5

dz
) = 0 (47)

(where we have removed the norm of the velocity and the minus sign thanks to the homogeneity of the equation). We
now search if a combination of the lines of (46) that would result in (47). For the required ψ1 terms to appear, the
combination (−uL2− vL3−wL4) (L j denoting the j-th line of (46)) needs to be calculated:

[u (−2γ1Ec +2u2) 2uv 2uw (Hu−2γ1uEc)]
∂ψ

∂x

+[v 2uv (−2γ1Ec +2v2) 2vw (Hv−2γ1vEc)]
∂ψ

∂y

+[w 2uw 2vw (−2γ1Ec +2w2) (Hw−2γ1wEc)]
∂ψ

∂ z
= 0

Subtracting the first line, calculating (−L1−uL2−vL3−wL4), almost fixes the expected coefficients for the ψ1 to ψ4
derivatives:

[u (−γ1Ec +u2) uv uw −γ1uEc]
∂ψ

∂x

+[v uv (−γ1Ec + v2) vw −γ1vEc]
∂ψ

∂y

+[w uw vw (−γ1Ec +w2) −γ1wEc]
∂ψ

∂ z
= 0

Finally forming (−L1−uL2− vL3−wL4−EcL5) yields

[u u2 uv uw uEc]
∂ψ

∂x

+[v uv v2 vw vEc]
∂ψ

∂y

+[w uw vw w2 wEc]
∂ψ

∂ z
= 0

that is exactly equation (47).
In order to demonstrate (44), we first form the combination −((2Ec−H)L1 +uEcL2 +vEcL3 +wEcL4) of the lines of
the 3D adjoint Euler equations. This results in
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[uEc (u2H− γ1HEc) uvH uw −γHuEc +H2u
]∂ψ

∂x

+[vEc uvH (v2H− γ1HEc) vw −γHvEc +H2v
]∂ψ

∂y

+[wEc uwH vwH (w2H− γ1HEc) −γHwEc +H2w
]∂ψ

∂ z
= 0

Adding −Ec H L5 yields

[uEc u2H uvH uwH H2u
]∂ψ

∂x

+[vEc uvH v2H vwH H2v
]∂ψ

∂y

+[wEc uwH vwH w2H H2w
]∂ψ

∂ z
= 0

that is equivalent to (44).

D. Demonstration of the properties presented in §3.2

The differentiation of the functions Γ1
S, Γ2

S and ΓC+ appearing in section §3.2 uses the expression of the adjoint
field where the (α−β )-oriented stripe is non superimposed with the two other:

ψ(x,y) = ϕα−β (x sin(α−β )− y cos(α−β ))λ
α−β

0

dΓ1
S

ds
= Ec

dψ1

ds
+Hu

dψ2

ds
+Hv

dψ3

ds
+H2 dψ4

ds
dΓ1

S
ds

=

(
Ec(

c
ρ
(1+

γ1

2
M2))+Hu(

1
ρ
(sin(α−β )− γ1

u
c
))+Hv(

1
ρ
(−cos(α−β )− γ1

v
c
))+H2(

γ1

ρc
)

)
dϕα−β

dξ

dξ

ds

dΓS

ds
=

(
γ1Ec

ρc
+

c2u
γ1ρ

sin(α−β )− c2v
γ1ρ

cos(α−β )− γ1Hu2

ρc
− γ1Hv2

ρc
+

H2γ1

ρc

)
dϕα−β

dξ

dξ

ds

( using u sin(α−β )− v cos(α−β )+ c = 0 and H = Ec +C2/γ1)

dΓ1
S

ds
=

(
− c3

γ1ρ
+

γ1

ρc
(H−Ec)

2
)

dϕα−β

dξ

dξ

ds

( using u sin(α−β )− v cos(α−β )+ c = 0)

dΓ1
S

ds
= 0

dΓ2
S

ds
=

dψ1

ds
+u

dψ2

ds
+ v

dψ3

ds
+Ec

dψ4

ds
dΓ2

S
ds

=

(
c
ρ
(1+

γ1

2
M2)+u(

1
ρ
(sin(α−β )− γ1

u
c
))+ v(

1
ρ
(−cos(α−β )− γ1

v
c
))+Ec(

γ1

ρc
)

)
dϕα−β

dξ

dξ

ds

dΓ2
S

ds
=

(
γ1Ec

ρc
− γ1u2

ρc
− γ1v2

ρc
+

γ1Ec

ρc

)
dϕα−β

dξ

dξ

ds

( using u sin(α−β )− v cos(α−β )+ c = 0)

dΓ2
S

ds
= 0

Besides
dΓC+

ds
= (u+ vt+)

dψ1

ds
+(u2 + v2)

dψ2

ds
+(u2 + v2)t+

dψ3

ds
+H(u+ vt+)

dψ4

ds
dΓC+

ds
= ((u+ vt+)(

c
ρ
(1+

γ1

2
M2))+(u2 + v2)(

1
ρ
(sin(α−β )− γ1

u
c
))

+(u2 + v2)t+(
1
ρ
(−cos(α−β )− γ1

v
c
))+H(u+ vt+)(

γ1

ρc
))

dϕα−β

dξ

dξ

ds
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It is easily checked that the first and fourth terms in the bracket are equal. After lengthy calculations using the
null eigenvalues properties and then the formulas for the difference of cos and difference of sin, it appears that
dΓC+/ds = 0. For the sake of brevity, the detail of the calculations is not shown here.
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