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Abstract 

 Conventional quantum mechanical characterization of photodissociation dynamics is 

restricted by steep scaling laws with respect to the dimensionality of the system. In this 

work, we examine the applicability of the multi-configurational time-dependent Hartree 

(MCTDH) method in treating nonadiabatic photodissociation dynamics in two prototypical 

systems, taking advantage of its favorable scaling laws. To conform to the sum-of-product 

form, elements of the ab initio diabatic potential energy matrix (DPEM) are re-expressed 

using the recently proposed Monte Carlo canonical polyadic decomposition method, with 

enforcement of proper symmetry. The MCTDH absorption spectra and product branching 

ratios are shown to compare well with those calculated using conventional grid-based 

methods, demonstrating its promise for treating high-dimensional nonadiabatic 

photodissociation problems.  
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I. Introduction 

The Born-Oppenheimer (BO) approximation1 is an important pillar in understanding 

chemical transformation, because it greatly simplifies the quantum mechanical description 

of molecular systems by allowing the separation of nuclear and electronic degrees of 

freedom (DOFs). This adiabatic approximation, justified by the fact that the electron mass 

is so much smaller than that of a nucleus, forms the foundation of modern quantum 

chemistry in which the electronic Schrödinger equation is solved at fixed nuclear 

geometries. For room temperature spectroscopic and dynamic problems, it is often 

sufficient to include only the ground electronic state. However, it is now increasingly 

acknowledged that the BO approximation fails in many processes where excited electronic 

states are involved, leading to transitions between different electronic states.2-6 Even for a 

ground-state process, a high-lying excited state might still exert an non-negligible effect 

through a conical intersection (CI),7 even when the energy of the system is below the 

minimum energy crossing.8, 9 These nonadiabatic processes are essential in understanding 

many chemical reactions, particularly those involving photoexcitation, such as 

radiationless decay,10 vision,11 photodamage of DNAs,12 and charge separation.13 Much 

recent effort has been devoted to a better understanding of nonadiabatic dynamics and 

photodissociation has served as a popular test ground.14-21 

Theoretically, photodissociation dynamics can be characterized by solving the nuclear 

Schrödinger equation on a single or multiple coupled potential energy surfaces (PESs).14, 
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16 In recent years, significant advances have been made in constructing PESs and multi-

dimensional diabatic potential energy matrices (DPEMs) from high-level ab initio 

calculations,22-27 which have enabled quantum mechanical characterization of nonadiabatic 

photodissociation dynamics of important prototypes.20, 26 However, such first-principles 

description of photodissociation dynamics, particularly that based on an expansion on a 

grid or a basis, remains challenging for high-dimensional systems because the 

computational costs (both memory and CPU time) increase exponentially with the size of 

the problem. Because of this so-called curse of dimensionality, most such quantum 

mechanical investigations of photodissociation dynamics have been restricted to small (<9) 

dimensions,26 which may not be sufficient to describe dynamics quantitatively in molecules 

with more than four atoms.  

Over the past decades, many attempts have been made to overcome the curse of 

dimensionality. Perhaps the most promising example is the multi-configuration time-

dependent Hartree (MCTDH) method,28-30 initially proposed 30 years ago.31, 32 MCTDH 

expresses the wave function as a sum of products (SOP) of the so-called single particle 

functions (SPFs), which greatly reduces the memory need for storing the wave function. 

Both the expansion coefficients and the SPFs are allowed to vary with time, governed by 

variationally determined time-dependent equations of motion. The most attractive feature 

of MCTDH is the use of adaptive basis, a consequence of which its scaling laws with the 

size of the problem are much more favorable than those for conventional fixed grid/basis 
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based methods. In principle, MCTDH is capable of handling much larger systems than 

conventional quantum methods, especially with the multi-layer version (ML-MCTDH).33 

This advantage has been amply demonstrated in several recent examples.34-39 

However, the MCTDH wave function prefers the Hamiltonian to be expressed in the 

same SOP form, in order to attain the optimal efficiency, although alternative implements 

of the MCTDH algorithm avoiding the SOP restriction, such as the correlated DVR (CDVR) 

scheme40 and the collocation approach,41 have also been proposed. The kinetic energy 

operator (KEO) typically fulfils the requirement, while the potential energy operator (PEO) 

often needs extra effort to conform to the SOP form. Several methods have been developed, 

among which POTFIT42, 43 and its variants44-47 are shown to be quite successful. However, 

the POTFIT method is based on the Tucker decomposition,48 in which the scaling is still 

exponential. So the transformation of the PEO is often the bottleneck that prevents the 

application of MCTDH to high-dimensional systems. Recently, a new method, namely 

Monte Carlo canonical polyadic decomposition (MCCPD),49 was proposed and 

successfully implemented for calculating the vibrational energy levels of a benchmark 

heptatomic system H5O2
+ known as the Zundel cation. Comparing to the exponential scaled 

Tucker decomposition, CPD has almost linear scaling, thus serving as a promising 

alternative to the PEO transformation in high-dimensional systems. Its efficiency is further 

improved by MC sampling. In a recent MCTDH study on carbon monoxide scattering from 
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Cu(100),39 for example, MCCPD was successfully implemented to decompose a 21-

dimensional PES.  

Most existing MCTDH studies have dealt with dynamics on a single electronic state. 

In more recent work,50 its capability to handle state-to-state inelastic scattering has been 

validated by comparing with previous exact time-independent studies. Many MCTDH 

studies on non-adiabatic dynamics (Refs. 35, 51-55 to name a few) are based on vibronic-

coupling (VC) Hamiltonian,6 which is already in the SOP form. However, VC Hamiltonian 

cannot describe dissociative process, which demands ab initio determined coupled PESs.  

There have been few MCTDH treatments of nonadiabatic photodissociation processes with 

ab initio determined coupled PESs,56-61 because the difficulties of representing the PESs 

and their couplings in the SOP form are compounded by the necessity for treating multiple 

electronic states. Because of the large phase space associated with photoexcited systems, 

chaotic dynamics may significantly affect the convergence of MCTDH, casting doubt on 

its applicability in such problems. This is a particularly acute challenge in systems affected 

by long-lived resonances. In this work, we examine the application of MCTDH in 

nonadiabatic photodissociation in two prototypical systems in order to shed light on its 

applicability in high-dimensional systems.  

The two test cases investigated in this work are the photodissociation of ammonia 

(NH3) in the first band and the hydroxymethyl radical (CH2OH) in the 3s Rydberg state. In 

both cases, the excited and ground states are coupled by a CI seam, as shown in Figure 1. 
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Extensive studies on the former have been reported by us using a full-dimensional grid-

based quantum method62-67 on accurate two-state DPEMs.63, 68 Excellent agreement with 

experiment69-74 has been achieved, underscoring the accuracy of these ab initio based 

DPEMs. Although there has also been a full-dimensional MCTDH study of this system,60 

the agreement with the absorption spectrum calculated using the standard grid based 

method62 on the same DPEM was not completely satisfactory. In the hydroxymethyl case, 

the photodissociation dynamics has also been investigated by us previously using reduced-

dimensional models75, 76 on a full-dimensional ab initio DPEM.77 The agreement with 

experiment78, 79 was also quite satisfactory. The existence of experimental and previous 

theoretical studies makes these two systems an ideal proving ground for MCTDH studies. 

In this work, MCTDH was used to calculate the absorption spectrum and product 

branching ratio of the two photodissociation processes. In both systems, the elements of 

the DPEMs were refit to the SOP form using the MCCPD approach. Special attention is 

paid to enforce the permutation symmetry of the systems, which is vital for providing an 

accurate characterization of the nonadiabatic dynamics. Although NH3 has ‘only’ six DOFs, 

it is quite challenging for MCTDH due to its long-lived resonances on the excited state 

PES, which require long-time propagation, leading to accumulation of errors. We 

demonstrate that MCTDH is capable of calculating the absorption spectrum accurately and 

the NH2(A)/NH2(X) branching ratio to a lesser extent. For CH2OH, the high dimensionality 

is the challenge. The calculated absorption spectrum is in reasonably good agreement with 
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our recent work using a reduced-dimensional model75, 76 and consistent with available 

experimental data.78 With these two successful demonstrations, we establish the usefulness 

of the MCTDH method in treating nonadiabatic photodissociation dynamics in high-

dimensional systems. This work is organized as follows. Section II outlines the theoretical 

methods and their implementation. The results are presented and discussed in Section III. 

A short summary is given in Section IV. 

II. Methods 

A. MCTDH 

In MCTDH,31, 32 the time-dependent wave function for a system with f DOFs is 

expressed as sums of products (SOPs) of low-dimensional basis functions: 

( ) ( )1 1,..., , ,..., ,f mq q t Q Q tΨ ≡ Ψ ( ) ( )
1

1
1

( )
...,

1 1 1

,
m

m
p

nn m

j j j
j j

A t Q t
κ

κ
κ

κ

ϕ
= = =

=∑ ∑ ∏     

J J
J

=∑A Φ ，                                                                                         (1) 

where 1,..., fq q   are one-dimensional nuclear coordinates and 1,..., mQ Q   are generalized 

coordinates with each Qκ  consisting of either a single or multiple nuclear coordinates. The 

latter is known as mode combination.80 Note that the choice of the coordinates is system-

dependent and can significantly impact the efficiency of the MCTDH calculations.

1, , mJ j jA≡A


 are time-dependent expansion coefficients and JΦ  are products of the time-

dependent single particle functions (SPFs) ( )( ) ,j Q t
κ

κ
κϕ , where the index denotes the jκ th 
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SPF for theκ th mode. The SPFs are further represented by linear-combinations of time-

independent primitive basis functions or grids.  

 The equations of motion for JA   and ( )
jκ
κϕ   are derived from the Dirac-Frenkel 

variational principle and given by: 

J J L L
L

i =∑A Φ H Φ A ，             (2a) 

( )( ) 1 ( )( ) ( ) ( )1i κκ κ κ κ−
= −φ P ρ H φ ，           (2b) 

( )( ) ( ) ( )
1 , ,

T

nκ
κ κ κϕ ϕ=φ  . The Hamiltonian H is system-dependent and defined below. ( )κH , 

κρ are the mean-field matrix and the density matrix, respectively: 
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Where the origin of the SOP form is evident. 

( )κP  is a projection operator for the space spanned by the SPFs: 

( ) ( ) ( ) .i i
i

κ κ κϕ ϕ=∑P               (4) 

Detailed derivations of these equations can be found in a review28 and more 

comprehensively in a recent book,29 so are not given here. 

B. Expressing DPEM with MCCPD 

i. MCCPD 
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The Hamiltonian is required to be in the SOP form for efficiency, especially for high-

dimensional problems. As mentioned above, the KEO typically assumes naturally this form, 

but the PEO needs be refit. In this work, the newly proposed MCCPD method49 was 

implemented for the latter. We first consider a scalar PEO, which could be either an 

adiabatic PES or an element of a DPEM. This multi-dimensional function of the chosen 

coordinates can be approximated in MCCPD by canonical polyadic decomposition 

(CPD):49 

( ) ( ) ( ) ( ) ( )(1) ( )
1 1 1 1

1
,..., ,..., ,..., .

R
CPD m

f m m r r r m
r

V q q V Q Q V Q Q c v Q v Q
=

≡ ≈ =∑     (5) 

Note that the relations between 1,..., fq q  and 1,..., mQ Q  are the same as define above. Here 

R is the rank of the CPD tensor, rc  is the expansion coefficient and ( )( )
rv Qκ

κ  is a one-

dimensional function dependent only on coordinate Qκ , which is called the single particle 

potential (SPP). The SPPs are assumed to be normalized but not necessarily orthogonal.  

In a grid representation, the SPPs become vectors and PEO a tensor of rank R: 

1 1

(1) ( ) ( )
, , , , ,

1
,

m m

R
m

i i i r i r i r i r
r

V c v v v
κ κ

κ

=

= ∑
 

               (6) 

where iκ  denotes the ith grid point of the κ th mode. The grid points are commonly chosen 

as discrete variable representation (DVR)81 points of the corresponding mode. The 

alternating least squares (ALS) algorithm can be used to obtain both the coefficients and 

SPPs by minimizing the following functional for each mode:49 
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( )2 2 2
, ,CPD

I I I r I r I
I r I

J W V V c Wκ κ
κ ε= − + Ω∑ ∑ ∑          (7) 

with the additional definition ( )( )
,

i
r I rv Q κκ

κ
κ

Ω =∏  , where the subscript I is a combined 

index of the iκ   as: ( )1, , mI i i=   . IW κ   is a positive and coordinate-dependent weight 

function. The weight function is used to emphasize important regions of the PES where 

high accuracy is needed and also serves as a distribution function of sampling points when 

the complete sum over I is later replaced by Monte Carlo sampling. Finally, a regularization 

parameter, ε , is introduced to prevent potentially ill-conditioned matrices in minimization. 

To minimize Jκ , its functional derivative with respect to one SPP and coefficient of 

the iκ  grid is given as: 

 ( ) ( )
, , , , ,( )

,

2 2 2 0,I I r I r' i r' r r' r i r r r
r'Ir i r

J W V c v S c v S
c v κ κ κ κ

κ
κ

κ κ κ κ κ κκ
κ

δ ε
δ

= − Ω + + →∑ ∑      (8) 

where the abbreviations , , ,r r' I r I r' I
I

S W
κ κ κ

κ

κ κ κ κ= Ω Ω∑ and ( )
, ,'

'
r I i r

'

v
κ κ

κ κ

κ κ≠

Ω =∏  have been used. This 

leads to the following working equation: 

( )
, , , ,1 ,I I r I r r' r r' r i r

r'I

W V S c v
κ κ κ

κ

κ κ κ κεδ Ω = + ∑ ∑            (9) 

for obtaining the SPPs and expansion coefficients. 

Note the solution of Eq. (9) for mode κ  depends on the solutions of all other DOFs, 

thus it must be done iteratively. The Monte Carlo (MC) method is used in calculating the 

multi-dimensional quadrature over I κ . In the MC approach, the weight functions serve as 

the distribution function of the sampling points { }κς , which are drawn randomly from the 

quadrature points { }I κ . Thus , 'r rSκ  and Eq. (9) can be evaluated as: 
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, , ,
,r r' r r'

S κ κ
κ

κ κ κ
ς ς

ς

≈ Ω Ω∑                (10) 

( )
, , ,, ,

1 ,r r' r r' r i ri r
r'

V S c vκ κ
κκκ

κ κ κ
ς ς

ς

εδ Ω ≈ + ∑ ∑            (11) 

Note that the MC sampling is applied to all modes except κ , but all quadrature points for 

κ th mode are included. Naturally, the quality of the minimization depends largely on the 

sampling of the quadrature points. The details of the minimization algorithm can be found 

in Ref. 49.  

Two kinds of sampling methods were proposed in MCCPD. One is called uniform MC 

sampling with equal weight (W=1) for all quadrature points. The other is the Metropolis 

MC sampling, in which the choice of the quadrature points is weighted by the Boltzmann 

factor W=exp(-E/kBT), with kB and T as the Boltzmann constant and hypothetic temperature 

in Kelvin. This Metropolis method is useful for systems near potential wells, as lower 

energy points are sampled more frequently. However, it may not be optimal for 

photodissociation because the dynamics explores a large phase space. In addition, fit PESs 

might contain artificial holes at unphysical structures, due to the lack of ab initio points. 

The Boltzmann weight can easily result in bias towards these regions, leading to poor 

convergence. Thus, an optimal way is to take advantages of both methods, using the former 

to cover the dissociative pathway and the latter for important local regions.    

ii. Permutation symmetry adaptation 

An important issue is concerned with the complete nuclear permutation and inversion 

(CNPI) symmetry82 for systems containing identical nuclei, such as NH3. As the symmetry 



13 
 

operators commute with the Hamiltonian, symmetry adaptation is both advantageous and 

necessary for the evolution of the nuclear wave function. For NH3, for example, the parity 

is used to label the ground state tunneling doublet and predissociative resonances on the 

excited state that form the peaks in the absorption spectrum. The permutation symmetry of 

the diagonal/off-diagonal terms of the DPEM for this system has been extensively 

discussed in the past.63, 77, 83 While the diagonal terms of the DPEMs are totally symmetric, 

the off-diagonal terms are antisymmetric with respect to the exchange of two H atoms. The 

symmetrization of the former is enforced in MCCPD as discussed below,49 but the latter 

needs a special treatment to impose the antisymmetry.  

 ˆ ,CPD CPD
i iV PV=                (12) 

where îP  is the symmetry projection operator for the ith irrep: 

( )1 ˆˆ ,symN i
i n nn

sym

P G G
N

= Γ∑             (13) 

where symN  is the number of group elements, ˆ
nG  and ( )i

nGΓ  are the group operator and 

character for the corresponding group element nG  in the ith irrep. If the coordinate system 
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is amenable to the symmetry operations of a CNPI group, the element of the tensor has a 

one-to-one mapping under the action of ˆ
nG . This is realized by the following form: 

 ,
ˆ ˆˆ ,n n nκ

κ

ω ωΩ = ∏                (14) 

where ,
ˆ

nκω  is a symmetry operator that exclusively operates on the DOFs within the mode 

κ  and the operator ˆnω  consecutively performs operations between different modes.  

Additional rules can be introduced for efficient implementation of symmetry projection 

on a tensor in the CPD form. Since the final symmetrized tensor CPD
iV  has a total rank R, 

we can generate it with the following procedure. We start with l terms of ( )
, , 1r i rc v r l

κ

κ

κ

=∏  , 

where  
sym

Rl
N

= . The action of each ˆ
nΩ  on these terms will result in l additional terms, so 

that the final rank of the symmetrized tensor CPD
iV  defined in Eqs. (12) and (13) remains 

to be R. The symmetrization is performed at each minimization MCCPD step, as described 

in Ref. 49.  

For each symmetry operator, one can express how ( ) ˆi
n nΓ Ω Ω  acts on a particular rth 

term for Ith element of the CPD tensor IV  as: 

( ) ( )( )1

( ) (1) ( ) ( )
, , ' , ' , ' , '

ˆˆ ,
m

i i m
n n n r i r r j r n j r j rc v c v v v

κ κ

κ κ
κ

κ κ

ω ωΓ Ω = Γ Ω∏ ∏        (15) 

with ( 1)r' = r + n - l ,  

'

( ) ( )
, ,ˆ '

n i r j r'v v
κ κ

κ κω =  and ( ) ( )
, , ,

ˆ .n i r j r'v v
κ κ

κ κ
κω =            (16) 

where the 'κ κ→  and 'i jκ κ→  mapping in the first equation and the i jκ κ→  mapping in 

the second equation are defined by the symmetry operators of a specific system. Besides, 
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when ( ) 1i
nΓ Ω = − , where to put the factor 1−  depends on the coordinate system and mode 

combination. The detailed implementation for NH3 and CH2OH can be found in Table S2 

and Table S3, respectively.  

 The symmetry adaptation in the original MCCPD method was restricted to the totally 

symmetric irrep, but the strategy can be readily extended to non-totally symmetric irreps, 

as discussed above. We emphasize that symmetry adaptation is only possible with a proper 

choice of the coordinate system. Since chemical bond cleavage is a necessity in 

photodissociation, it is often difficult to define a coordinate system that can fully take 

advantage of the CNPI symmetry. Under such circumstances, one can work with a 

subgroup in symmetry adaptation.  

C. Coordinates and Hamiltonians 

The nuclear Hamiltonian defined in a diabatic representation for characterizing the 

nonadiabatic dynamics of NH3 or CH2OH is given in the general matrix form: 

ˆ ,T= +H I V                 (15) 

where I  is a 2×2 identity matrix and V is the 2 2×  DPEM, 11 12

21 22

V V
V V
 

=  
 

V . The existing 

DPEMs of ammonia63 and hydroxymethyl77 were determined by a simultaneous fitting-

and-diabatizing approach26 from high quality ab initio data, including energies, gradients 

and derivative couplings, with proper adaption of CNPI symmetry. They are transformed 
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to the SOP form by decomposing the diagonal and off-diagonal terms separately using the 

MCCPD algorithm discussed above.  

The (2+1) Radau-Jacobi coordinates84 are used for NH3. As shown in Figure 1, 1r


 and 

2r


 are two Radau vectors and 3r


 is a Jacobi vector which defines the z axis of the body-

fixed (BF) frame. 1,3ir=   and 1 3iµ = −   are the length and mass factor for the corresponding 

vector ir


 , respectively. 1θ  ( 2θ  ) is the polar angle between 1r


 ( 2r


 ) and 3r


 . φ   is the relative 

azimuthal angle between the two Radau vectors in the BF frame. Here =1,2iu  and =1,2iυ  are 

defined as ( )= cosi iu θ  and ( )sini iυ θ= , 1, 2i = . The machine readable form of the KEO 

is given in SI. While this coordinate system is not amenable to full CNPI group, it is 

suitable for a subgroup, as discussed SI in detail. We emphasize that this coordinate system 

is superior to the Jacobi coordinate systems used in the previous full-dimensional MCTDH 

calculation,60 because symmetry adaptation can be enforced to resolve the two parities.  

iR


( ), ,i i i iR R θ ϕ=


. Likewise, we define ( )cosi iu θ= . The central vector, 1R


 defines the zBF 

axis and the (x, z; z>0) half-plane in the BF is defined such that 2R


 is within this half-plane. 

Since 1 1 2 0θ ϕ ϕ= = =   in this BF frame, there are nine internal coordinates 

( )1 2 3 4 2 3 4 3 4, , , , , , , ,R R R R u u u ϕ ϕ , where iR  is the bond distance of each valence vector iR


, 

2,3,4iθ =   are defined as the polar angles between 2,3,4iR =



  and 1R


 . The angles 3,4iϕ =   are the 

spherical dihedral angles of 3,4iR =



 in the BF frame. The TANA program87-89 was used to 
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generate the KEO terms, which are also given in SI in the machine readable format. Note 

that a subgroup permutation symmetry can be easily imposed with this coordinate system. 

The transformations of the nine coordinates under the CNPI operations in this coordinate 

system are given in SI, but they are not implemented here because the dissociation 

dynamics is restricted to the O-H bond cleavage.  

D. Numerical Details 

We used DVR81 as the primitive basis and some coordinates are combined together. 

The details of the grid parameters, mode combinations and numbers of SPFs are 

summarized in Table I and Table II for NH3 and CH2OH, respectively. The mode 

combinations are given in the Tables, for example, ( 1r  , 2r  )  means that 1r   and 2r   were 

combined into a composite mode. Specifically for NH3, we have three two-coordinate 

modes ( 1r , 2r ), ( 1u , 2u ), and ( 3r , φ ). For CH2OH, five modes R1, (R2, 2u ), (R3, R4), ( 3u , 3φ ) 

and ( 4u , 4φ ) were used.  

The number of sampling points in the MCCPD decomposition of the DPEMs, as well 

as those for testing the quality of refits, are listed in Table III. As discussed above, we prefer 

uniform sampling in some coordinates, as opposed to the Metropolis sampling 

recommended in previous work,49 because the dynamical relevant region in our cases 

covers a relatively larger configuration space than that is needed for vibrational energy 

level calculations. So, the strategy here is to define the dynamically relevant region, in 

which each coordinate is limited to a certain range and those points with energies higher 
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than a threshold are excluded. Then, the points are sampled uniformly within the dynamical 

region. In some cases, the sampling is augmented by Metropolis sampling to improve the 

description of energy minima. The ultimate convergence of the refitting was checked with 

the convergence of dynamic properties such as the absorption spectrum and product 

branching ratio.  

For NH3, the ground electronic state PES is dominated by a double well along the 

inversion of the NH3 umbrella coordinate. Since the tunneling splitting of the lowest 

vibrational level is sensitive to the quality of the ground state PES, some points were 

selected using the Metropolis sampling to provide an optimal description of the PESs near 

its ground state minima. This group of points, which is denoted in Table III as Sampling 1, 

was augmented with second group of points that were obtained by uniform sampling, 

denoted as Sampling 2. Additional points were added to cover the dissociation channels, 

and they are denoted as Sampling 3. All three groups of points were used in the MCCPD 

fitting. For CH2OH, a single region was defined and all grids were uniformly sampled. As 

shown in our previous work on CH2OH photodissociation,76 most modes are inactive thus 

only relative small ranges of grids were needed. 

The standard constant mean-field (CMF) integration scheme28 implemented in the 

Heidelberg MCTDH code90 was used with the short-iterative Lanczos integrator91 to 

propagate the time-dependent expansion coefficients and Bulirsch–Stoer (BS) method to 

propagate the SPFs. Complex absorption potentials (CAPs)92 were placed near the edges 
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of the dissociative coordinate, namely r1, r2, r3 for NH3 and R2, R3, R4 for CH2OH. The 

absorption spectrum was calculated from the Fourier transfer of the time-dependent 

autocorrelation function. The flux to the product asymptote was analyzed based on the 

CAPs42 to obtain the branching ratio for NH3. The energy spectrum of the flux was obtained 

by Fourier transform.42 The initial wave functions, namely the eigenfunctions on the 

ground electronic state, were obtained by a relaxation method93, 94 for both NH3 and 

CH2OH, in which the wave packet was propagated in imaginary time. The influence of the 

transition dipole is ignored within the Condon approximation. All the calculations were 

done using the Heidelberg MCTDH Package.90  

III. Results and Discussion 

NH3 

To test the accuracy of the MCTDH method in treating nonadiabatic photodissociation 

dynamics, we focus on two quantities, namely the absorption spectrum and product 

branching ratio. The MCTDH results are compared with those obtained using a grid method 

with the Chebyshev propagator95 (denoted below as Chebyshev), as reported in our earlier 

publications.63, 64 The grid-based Chebyshev method is considered exact because of the 

exponential convergence properties of the DVR grid and Chebyshev propagator.96, 97  

The fitting quality of the DEPM is given in the Table V. As mentioned above, the 

MCCPD fitting for NH3 was done with three groups of sampling points. On the ground 

state PES, the energy splitting of the tunneling doublet was calculated to be 0.67 cm-1, 
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which agrees well with the experimental value (0.793 cm-1)98 and the theoretical value 

(0.45 cm-1) obtained on the original PES63 by a grid based method. We emphasize that the 

clear resolution of the small splitting is made possible by our ability to impose the CNPI 

symmetry in the MCCPD PES and the MCTDH wave packet, which allows separate 

calculations with different parities. The minor difference between the MCTDH and 

Chebyshev values is presumably due to the remaining errors in transforming the original 

ground state PES into the SOP form.  

The absorption spectrum of NH3 features a series of peaks with finite widths due to 

long-lived resonances in the umbrella vibration, thanks to the pyramidal-to-planar 

transition. These Feshbach resonances are above both dissociation limits (H + 

NH2(X)/NH2(A)), but energy flow to the dissociation coordinate is slow. The long lifetime 

of these resonances made the MCTDH treatment challenging because of the accumulation 

of errors in a long propagation. Indeed, the previous MCTDH study of the same system 

failed to reproduce quantitatively the absorption spectrum,60 presumably due to the lack of 

symmetry in the coordinates used. Figure 2(a) shows the comparison of the absorption 

spectrum obtained from the MCTDH calculation and the previous Chebyshev method63 for 

even parity levels. (The agreement with the odd parity levels is equally good, but not shown 

here.) This agreement is almost perfect, which demonstrates the accuracy of both the 

refitted DPEM and the MCTDH propagation. Here, we emphasize that the symmetry of 
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the DPEM has been correctly treated so the parity is conserved in the propagation, 

evidenced by the absence of peaks for the odd parity levels in Figure 2(a).  

Figure 2(b) shows the comparison of product branching ratio (NH2(A) / NH2(X)) 

ranged from 6.5 to 8.0 eV between the MCTDH and Chebyshev results. The black arrows 

indicate the peak positions in the absorption spectrum. The overall agreement is 

satisfactory especially near the peaks, but the MCTDH result is more oscillatory. The errors 

are mostly near the spectral troughs, suggesting uneven performance of MCTDH in 

spectral regions with small amplitude.  

To gain insights into the origin of the errors, we plot the energy spectra for both the 

NH2(X) and NH2(A) channels in Figure 3, the ratio of which gives the product branching 

ratio shown in Figure 2(b). It is clear that the energy spectrum for the NH2(A) channel is 

in good agreement with the Chebyshev results, but the agreement for the NH2(X) channel 

is not as good, particularly in the troughs where a background is present in comparison 

with the Chebyshev method. We attribute the errors in the NH2(X) channel to the multiple 

crossings at the CI seam, because of the long-lived nature of the resonances. The huge 

phase space accessible in the ground state would require a large number of SPFs to 

converge the flux calculation, which we cannot afford due to much increased 

computational costs. To confirm this hypothesis, we performed a calculation without the 

off-diagonal coupling terms in the DPEM to approximate the dissociation dynamics on the 

diabatic PES V22. The corresponding spectrum is also displayed in Figure 3(a). Since V11 
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is not involved in this hypothetical diabatic dynamics, the dissociation is fast and the 

spectrum is well converged comparing with the Chebyshev result. This is further confirmed 

by the much smaller population of the higher natural orbital in the single PES calculation 

than the coupling DPEM results, as shown in Table IV.   

CH2OH   

 The fitting quality of the CH2OH DPEM can be found in Table V. Figure 4 displays 

the calculated absorption spectrum as a function of photon energy using a full-dimensional 

MCTDH model covering all nine internal DOFs. The agreement with the experiment78 is 

reasonable within the measured range. The agreement is also quite satisfactory with our 

previous result,75 which used a four-dimensional (4D) grid based model. The absorption 

spectrum of CH2OH is quite broad due to the fast dissociation dynamics on the largely 

repulsive excited state PES, which several weak resonance peaks superimposed on the 

broad background.75 These general features are reproduced by the 9D MCTDH spectrum. 

The small but recognizable shift relative to the 4D spectrum can be rationalized by the 

difference of zero-point energies of the ground and excited states when more DOFs are 

included.  

As pointed out in our previous work,75 the dissociating wave packet makes facile 

nonadiabatic transitions near the CI seam, which is located within the Franck-Condon 

region. The residual population on the upper diabatic state revisits the Franck-Condon 

region and the weak recurrence in the autocorrelation function leads to the broad 
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resonances.75 The energy gap between the weak resonance peaks corresponds to the 

stretching of the C-O bond, which is significantly shorter on the excited electronic state 

than the ground state due to the n←π* transition.75 Indeed, the absorption spectrum with 

the off-diagonal DPEM terms switched off has no such structure, as shown in the same 

figure, underscoring the importance of nonadiabatic transitions.  

 Figure 5 displays the time evolution of populations in the two diabatic states (labeled 

as P2 and P1), with comparison with those obtained in the 4D Chebyshev calculation.75 P2 

decays rapidly, which reflects the fast nonadiabatic transitions to the lower state and the 

weak recurrence can also be seen near 20 and 50 fs. The nonadiabatic population transfer 

is completed within 100 fs, evidenced by the vanishing P2. Hence, all dissociation is 

expected to yield the H + H2CO(X) products. This is qualitative consistent with the 4D 

model, suggesting the validity of the reduced-dimensional model. The slow decay of P1 

after 10 fs is artificial due to the absorption of the wave packet by the CAPs at the large R 

region.  

IV. Conclusions  

In this work, we performed full quantum dynamics investigations on two prototypical 

nonadiabatic photodissociation systems using the MCTDH method, made possible by the 

recently proposed MCCPD method for expressing the PEO in the SOP form. One such 

system is the photodissociation of NH3 in the first band, a relatively small but difficult 

system to deal with by MCTDH, due to the presence of long-lived resonances. For this 
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system, the absorption spectrum calculated using the exact Chebyshev method is 

reproduced with near perfection, which represents a significant improvement over the 

previous MCTDH treatment. In addition, the agreement on the branching ratio is 

satisfactory. Detailed analysis suggests a much larger number of SPFs might be needed to 

provide quantitatively accurate results, due apparently to the chaotic dynamics in the huge 

phase space of the ground state and the long lifetime of the resonances. The other system, 

namely the photodissociation of CH2OH in the 3s Rydberg state, is challenging with nine 

DOFs. In contrast to the NH3 case, the non-adiabatic dynamics is fast, leading to a broad 

absorption spectrum superimposed with weak resonance peaks. The full-dimensional 

results validate the earlier reduced-dimensional models. These studies lay the foundation 

of the future extension of the MCTDH treatment of nonadiabatic photodissociation 

dynamics to the state-to-state level where the product state distribution is resolved.  
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Table I. Parameters for the primitive basis for NH3. More details about the DVR bases can 

be found in Appendix B in Ref. 28. 

Coordinate Range                Grid points Primitive 
basis 

Mode 
combination 

Number of 
SPFs (State 
1, State 2) 

1r  1.3~ 4.5 Bohr 18 HO-DVR ( 1r , 2r )  (35, 35) 

2r  1.3~ 4.5 Bohr 18 HO-DVR   

1u  -0.95~ 0.8 25 HO-DVR ( 1u , 2u )  (65, 65) 

2u  -0.95~ 0.8 25 HO-DVR   

3r  1,3~ 8.0 Bohr 55 Sine-DVR ( 3r , φ )  (95, 120) 
φ  0~ 2𝜋𝜋 50 HO-DVR   
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Table II. Parameters for the primitive basis sets for CH2OH. More details about the DVR 

bases can be found in Appendix B in Ref. 28. 

Coordinate Range Grid points Primitive 
basis 

Mode 
combination 

Number of 
SPFs (State 1, 
State 2) 

R1 1.7~ 3.5 Bohr 16 HO-DVR R1 (12, 12) 
R2 1.2~8.0 Bohr 80 sine-DVR (R2, 2u ) (25, 25) 

2u  -0.75~ 0.98 25 sine-DVR   
R3 1.3~ 4.0 Bohr 36 sine-DVR (R3, R4) (15, 15) 
R4 1.3~ 4.0 Bohr 36 sine-DVR   

3u  -0.95~0.65 25 sine-DVR ( 2u , 3φ ) (20, 20) 

3φ  0~ 2𝜋𝜋 Rad. 50 sine-DVR   

4u  -0.95~0.65 25 sine-DVR ( 4u , 4φ ) (20, 20) 

4φ  0~ 2𝜋𝜋 Rad. 50 sine-DVR   
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Table III.  Sampling methods, points for decomposing the DEPM of NH3 and CH2OH. 

Note for each sampling group, the larger number in parentheses are used for testing the 

fitting quality.  

NH3: 

Sampling 1: 30000 (300000) points, Metropolis, 𝑘𝑘𝐵𝐵𝑇𝑇= 1000 cm-1 for V11 

30000 (300000) points, Metropolis, 𝑘𝑘𝐵𝐵𝑇𝑇= 62589 cm-1 for V22  

              10000 (100000) points, Metropolis, 𝑘𝑘𝐵𝐵𝑇𝑇= 2000 cm-1 for V12 

Sampling 2: 100000 (1000000) points, uniform for V11, V22 and V12. Threshold 

< 10 eV 

Sampling 3: 90000 (900000) points, uniform, dynamical region r1 and r2 [1.7, 

3.4] Bohr, r3 [1,4, 8.0] Bohr, u1 and u2 [-0.6, 0.0], φ  [2,2, 4.08] Rad. Threshold 

< 10 eV 

CH2OH: 

Sampling : 80000 (1000000), points, uniform dynamical region, R1 [2.3, 3.9] 

Bohr, R2[1.3, 8.1] Bohr, R3 and R4 [1.6, 2.8] Bohr, u2 [0.0, 0.6], u3 and u4 [-0.6, 

0.4], 3φ [2.0 3.7] Rad., 4φ [5.0 2π ] Rad. and 4φ  [0, 1.0] Rad. Threshold < 8 eV 

 

  



28 
 

Table IV. Maximum population over time of the highest natural orbital in NH3 

photodissociation. 

Mode Diabatic state 1 Diabatic state 2 Single diabatic state 
without coupling 

( 1r , 2r ) 4.2 ×10-5 2.5 ×10-5 6.5 ×10-6 

( 3r , φ ) 1.5 ×10-4 6.5 ×10-5 3.9 ×10-7 

( 1u , 2u ) 1.9 ×10-4 1.5 ×10-4 1.1 ×10-5 
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Table V. Fitting errors (cm-1) for decomposing the DEPMs of NH3 and CH2OH. The root 

mean square error (RMSE) is defined as ( )21 CPD
s ss

C

V V
N

−∑ , where CN is total number 

of testing points given in Table III, and the subscript s is the index for each testing grid.  

NH3 RMSE 
Sampling1 

RMSE 
Sampling 2 

RMSE 
Sampling 3 

RMSE 
Total 

V11 15.7  270 92.2  191 
V22 411 501          90.9         371 
V12 501  365 43.1 283 

 

CH2OH RMSE 
V11 141.05 
V22 73.97 
V12 78.87 
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Figure 1. Upper panel: The 2+1 Radau-Jacobi coordinate system used for NH3 (left) and 

the valence coordinates for CH2OH (right). In the former, X is the canonical center of 

Radau vectors, Y and Z are the NH2 center of mass and the center of mass of the two H 

atoms, respectively. The canonical center of Radau vectors is defined as 
2

XZ OZ YZ= ⋅
  

. In 

the latter, the origin of the BF frame is defined at C and the C-O axis is along the zBF and 

O-H axis is contained in the xBF-zBF plane. Lower panel: (left) The adiabatic PESs of the 

two electronic states of NH3 in the 3r   and φ   coordinates with others are fixed at their 

equilibrium.  (Right) The adiabatic PESs of the two electronic states of CH2OH in the 2R  
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and 2θ  coordinates with 1R , 3R  and 4R  fixed at its equilibrium, 3 4 2 / 3θ θ π= = , 3 / 2ϕ π=  

and 4 3 / 2ϕ π= , so that 2θ is an out-of-plane angle of OH bond with respect to the plane 

defined by CH2O. 
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Figure 2. Comparison of the MCTDH absorption spectrum (a) and product branching ratio 

(b) with the Chebyshev results for NH3 photodissociation. The absorption spectra in (a) are 

normalized to the highest peak. The black arrows in (b) indicate the positions of the peaks.  
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Figure 3. Comparison of the energy spectrum of the MCTDH flux in the NH2(X) (a) and 

NH2(A) (b) product channels with the Chebyshev results. The spectra are scaled to the most 

intensive peak for comparison. 
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Figure 4. Comparison of the 9D MCTDH absorption spectrum of CH2OH with a 4D model 

calculated with the Chebyshev method75 with  and without the off-diagonal DPEM 

elements. The experimental absorption spectrum78 is also included for comparison. Ehv is 

the photon energy. 
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Figure 5. Comparison of the 9D MCTDH populations in two diabatic states of CH2OH as 

a function of time with those calculated using a 4D Chebyshev model.75  
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