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Abstract

Predicting the laminar to turbulent transition is an important aspect of computational fluid dynamics because
of its impact on skin friction. Traditional methods of transition prediction do not make it possible to consider
configurations where the boundary layer develops in presence of surface defects (bumps, steps, gaps, etc.).
A neural network approach is used in this paper, based on an extensive database of boundary layer stability
computations in presence of gap-like surface defects. These computations consists on linearized Navier-Stokes
calculations and provide informations on the effect of surface irregularity geometry and aerodynamic conditions
on the transition to turbulence. Physical and geometrical parameters characterizing the defect and the flow are
provided to a neural network whose outputs inform about the effect of a given gap on the transition through the
Δ𝑁 method.

1 Introduction

In a global context where the general trend is to reduce
greenhouse gas emissions, it has become necessary to
reduce fuel consumption of future aircrafts. One of the
solutions lies in the NLF (Natural Laminar Flow) strat-
egy, which consists on ensuring that pressure gradients
on a profile are optimized in order to delay the transition
to turbulence. Despite extensive research is carried out
about NLF, a laminar boundary layer is hard to obtained
due to its high sensitivity to surface imperfections (rivets,
junctions, etc.) inherent to the manufacturing processes.

The e𝑁method [13, 15] is one of the most efficient tool
to predict correctly the transition location. The 𝑁 factor
represents the amplification of the boundary layer insta-
bilities and transition occurs when the 𝑁 factor reaches
a critical value 𝑁tr. A surface irregularity usually has a
localized effect on the vicinity of the defect and is respon-
sible of a 𝑁 factor shift. Many studies have looked for
empirical correlations linking the type of defect and its
geometric characteristics to the Δ𝑁 shift. Wind tunnel
experiments were conducted by Crouch et al. [4] on gaps
and by Wang and Gaster [16] on Backward-Facing Steps
(BFS). These studies showed that the Δ𝑁 corresponded
to 0.12𝑏∗ tanh(36 ℎ∗

𝑏∗ ) for the gaps and 4ℎ∗ − 1.40 for the
BFS, where ℎ∗ and 𝑏∗ denote the non-dimensional step
height and step width respectively. These empirical re-
lations have the advantage of being simple to implement
and not requiring additional experimental or numerical
calculations in addition to those required for a smooth

surface. On the other hand, each correlation corresponds
only to a particular defect geometry and often applies only
in a certain range of parameters.

Traditional numerical methods used to predict the tran-
sition, such as Local Stability Theory (LST) [11] or Parab-
olized Stability Equations (PSE) [14], have given sat-
isfactory results for dealing with smooth cases or with
surface defects of restricted dimensions. However, the
effect of a surface irregularity on the transition is poorly
taken into account by these methods because of the as-
sumptions made on the base flow. To overcome these
limitations, Worner et al. [17] and Edelmann and Rist [5]
used Direct Numerical Simulations (DNS) to study the
impact of humps and Forward-Facing Steps (FFS) respec-
tively on the transition. More recently, Franco Sumariva
et al. [6] introduced the Adaptive Harmonic Linearized
Navier-Stokes (AHLNS) method which they coupled with
PSE upstream and downstream of the region with strong
streamwise flow variations to study the effect of humps on
the transition. A similar technique is used by Hildebrand
et al. [9] to study backward-facing steps, by coupling PSE
at the inlet domain with Harmonic Linearized Navier-
Stokes (HLNS) in the vicinity of the defect.

Nowadays, the rise of Neural Networks (NN) makes
it possible to predict instabilities by taking into account
many input parameters in a robust manner. Crouch et al.
[3] used NN for determining the instability growth rates
for calculating the 𝑁 factors to predict transition caused
by crossflow and Tollmien-Schlichting (TS) waves insta-
bilities. Lately, Giannopoulos and Aider [7] predicted the
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dynamics of a BFS flow using velocity fields as inputs for
a NN. More recently, Zafar et al. [18] proposed a tran-
sition model based on convolutional neural networks to
predict the growth rates of instabilities in two-dimensional
incompressible boundary layers. The same authors also
developed a transition model based on recurrent neural
networks to predict the 𝑁 factor envelope as well as the
transition position for different wing profiles [19]. The
use of artificial NN could allow, due to their architecture,
to take into account more complex relations between the
geometrical characteristics of a defect in the evaluation of
the Δ𝑁 compared to the previous empirical correlations.

The aim of this paper is to use NN methods taking into
account different geometric and aerodynamic parameters
of several types of gap-like surface defects to generate
new Δ𝑁 models and to make the prediction of the tran-
sition to turbulence of a two-dimensional incompressible
boundary layer more accurate.

2 Computational strategy

2.1 Governing equations
The flow considered is a boundary layer developing on
a flat plate with surface defect and governed by the in-
compressible two-dimensional Navier-Stokes equations:

∇· 𝒖 = 0, (1a)

𝜕𝑡𝒖 + (𝒖 · ∇) 𝒖 = − 1
𝜌
∇ 𝑝 + aΔ𝒖, (1b)

where 𝒖 is the velocity vector, 𝑝 is the pressure, 𝜌 is the
fluid density and a is the kinematic viscosity. The state
vector 𝒒 = (𝒖, 𝑝) is decomposed into a steady base flow
𝑸 = (𝑼, 𝑃) plus an unsteady small perturbations field
𝒒′ = (𝒖′, 𝑝′) in the form:

𝒒(𝒙, 𝑡) = 𝑸(𝒙) + Y𝒒′ (𝒙, 𝑡), Y ≪ 1, (2)

where 𝑥 and 𝑦 are the streamwise and normal components
of the position vector 𝒙 respectively, and 𝑡 represents time.
Introducing this decomposition into (1), the steady Navier-
Stokes equations governing the base flow are obtained:

∇·𝑼 = 0, (3a)

(𝑼 · ∇)𝑼 = − 1
𝜌
∇ 𝑃 + aΔ𝑼. (3b)

At the first order, the LNS equations governing the dy-
namic of the perturbations developing onto the base flow
are written in the form:

∇· 𝒖′ = 0, (4a)

𝜕𝑡𝒖
′ + (𝑼 · ∇) 𝒖′ + (

𝒖′ · ∇)
𝑼 = − 1

𝜌
∇ 𝑝′ + aΔ𝒖′. (4b)

The set of equations (4) is used to calculate the evolution
of a small perturbation 𝒒′ in the boundary layer in a linear
regime. Perturbations and forcing term are assumed to be
harmonic in time as follow:

𝒒′ (𝒙, 𝑡) = �̂�(𝒙) e−𝑖𝜔𝑡 , (5)

where𝜔 = 2𝜋 𝑓 is the real angular frequency of the pertur-
bations and 𝑓 is the disturbance frequency. Introducing
this decomposition into (4), the governing equations of the
spatial structure of the perturbations (�̂�, �̂�) are obtained:

∇· �̂� = 0, (6a)

−𝑖𝜔�̂� + (𝑼 · ∇) �̂� + (�̂� · ∇)𝑼 = − 1
𝜌
∇ 𝑝 + aΔ�̂�. (6b)

2.2 N factor and 𝚫𝑵 method
Assuming that the TS modes are dependent on both 𝑥 and
𝑦 directions, their amplification can be quantified by an
infinity norm 𝐴(𝑥), i.e. the maximum absolute value of
the longitudinal velocity along the wall normal coordinate
at each position in streamwise direction, as follows:

𝐴(𝑥) = max
𝑦

|�̂�(𝑥, 𝑦) | . (7)

This method is similar to an e𝑁method when taking the
logarithm of this normalized amplitude:

𝑁 𝑓 (𝑥) = ln
(
𝐴(𝑥)
𝐴0

)
, (8)

where 𝐴0 is the initial wave amplitude at point 𝑥0 (the crit-
ical point at which the instability starts to amplify). Each
𝑁 𝑓 factor curve is defined for a given non-dimensional
reduced frequency F defined as

𝐹 =
2𝜋 𝑓 a
𝑈2∞

× 106. (9)

Since there is no a priori knowledge on which frequency
will be responsible for triggering transition, an envelope
curve of the maximum 𝑁 𝑓 factors over a large range of
frequencies is defined as:

𝑁 (𝑥) = max
𝑓

𝑁 𝑓 (𝑥). (10)

The 𝑁 factor method assumes that the transition occurs
at a position 𝑥tr for which the envelope curve 𝑁 reaches a
certain threshold value 𝑁tr. The Δ𝑁 method enables the
extension of the e𝑁method to cases including a surface
defect: the 𝑁 factor for a smooth case configuration is
artificially shifted by an additional amplification caused
by the defect with a value of Δ𝑁:

𝑁 = 𝑁sm + Δ𝑁, (11)

where 𝑁sm is the 𝑁 factor evaluated for a smooth surface.
The transition position is therefore shifted upstream as the
threshold value 𝑁tr is reached earlier.
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2.3 Flow configuration and numerical
method

Equations in Section 2.1 are solved by the Onera’s code
Pims2d and the numerical methods used are presented
here.

2.3.1 Defect configuration

Different geometries of steps and gaps are studied in this
work. The generic parameters defining such defects are
two heights ℎ1 and ℎ2, the width 𝑏 and the incompressible
boundary layer displacement thickness for a flat plate at
zero pressure gradient at the defect location 𝛿1,d. The
value of 𝛿1 at a given position 𝑥 is given by the semi-
analytical Blasius solution 𝛿1 (𝑥) = 1.72

√︃
a𝑥
𝑈∞ . This set of

4 parameters is shown in Fig. 1 and aims to geometrically
represents any type of gap-like surface defect (cavity, BFS,
sequence of BFS and FFS, etc.) in order to standardize
the existing correlations linking the geometric parameters
to the Δ𝑁 . In the rest of this study, the geometrical
dimensions of the gap are made non-dimensional by 𝛿1,d
and will be denoted hereinafter ℎ∗1, ℎ∗2 and 𝑏∗, and the
aerodynamic parameter defining the position of the defect
𝛿1,d will be the Reynolds number Re𝛿1,d .

𝑈∞

ℎ1 ℎ2

𝑏

𝛿1,d

Figure 1: Surface defect parameters.

2.3.2 Base flow

The computational domain extends in the 𝑥-direction from
an abscissa corresponding to Re𝛿1,in = 350 to an ab-
scissa corresponding to Re𝛿1,out = Re𝛿1,d + 1000, and in
the 𝑦-direction over a height 𝐻 = 30𝛿1,out. A boundary
layer develops and encounters a gap with non-dimensional
heights ℎ∗1 and ℎ∗2 and non-dimensional width 𝑏∗ at an ab-
scissa corresponding to Re𝛿1,d . No-slip boundary condi-
tion is imposed at the wall while a free-slip condition with
zero normal-stress is prescribed as an outflow condition.
A self-similar boundary layer profile with displacement
thickness 𝛿1,in is imposed at the inlet boundary.

A two-dimensional triangulation of the domain is per-
formed with the FreeFem++ finite element library [8] with

a Delaunay–Voronoi algorithm. Equations (3) are dis-
cretized with Taylor-Hood finite elementsP2 for the veloc-
ity field and P1 for the pressure. The non-linear solution
of the base flow is solved with a classical Newton method,
by gradually decreasing the value of the kinematic viscos-
ity from a = 1 m2 s−1 until the value corresponding to the
desired Reynolds number Re𝛿1,d is reached.

2.3.3 LNS computation

Once the base flow is calculated, the TS waves are ar-
tificially excited by introducing a volume force term in
the LNS equations (4). The computational domain for
the LNS calculations is similar to the base flow domain,
but has a reduced height of 𝐻 = 15𝛿1,out to avoid having
a too large number of vertices. The base flow is thus
interpolated on the new mesh and equations (6) are dis-
cretized with Taylor-Hood finite elements P2 for the ve-
locity field and P1 for the pressure. LNS calculations are
performed both on a smooth surface and on a surface with
defect, for 91 non-dimensional reduced frequencies in the
range 𝐹 ∈ [25, 160] to generate the 𝑁 factor curve. This
frequency zone is chosen because it delimits the locally
unstable region of a Blasius boundary layer.

2.4 Code validation
To validate Pims2d in presence of surface imperfection,
the configuration studied by Hildebrand et al. [9] is repro-
duced. The boundary layer meets a BFS of slope \ = 75◦
and height ℎ∗ = 0.72 at the abscissa 𝑥𝑑 = 0.30 m. The
flow has the following characteristics: a freestream ve-
locity 𝑈∞ = 28 m s−1, a displacement thickness at the
defect location 𝛿1,d = 6.90 × 10−4 m and a freestream
unit Reynold number Re∞ = 1.86 × 106 m−1. Figure 2
compares the 𝑁 factor curves for different frequencies
obtained by our method to those obtained by Hildebrand
et al. [9]. The results match perfectly with the HLNS cal-
culations and validate Pims2d in the presence of surface
irregularities.

3 Study of a critical step and gap
The study of a critical gap which parameters are detailed
in Table 1 is done in this section in order to detail the
database generation process for a particular case.

Table 1: Aerodynamic and geometric parameters.

Re𝛿1,d ℎ∗1 ℎ∗2 𝑏∗

1795.52 1.72 0.47 7.54

Figure 3 shows the pressure distribution at the wall
and exhibits a favorable pressure gradient upstream of

3



−200 0 200 400 600 800 1000 1200
0

2

4

6

8

10

(𝑥 − 𝑥𝑑) /𝛿1,𝑑

𝑁

Pims2d
Hildebrand et al. [9]

Figure 2: 𝑁 factor curves for the frequencies 𝑓 = 300 Hz
( ), 𝑓 = 500 Hz ( ), 𝑓 = 700 Hz ( ) and enve-
lope curve ( ) for a boundary layer in presence of a
BFS.

the gap, followed by a a region with strong adverse pres-
sure gradient and finally a zone with again a favorable
pressure gradient approaching towards zero at the infinite
downstream of the defect. These pressure variations are
responsible for a separation bubble and have an impact
on the boundary layer thickness. This one becomes thin-
ner just upstream of the gap when the pressure gradient
is negative, and then thickens in the defect. At a certain
distance from the gap, the boundary layer recovers the
behavior of an unperturbed Blasius boundary layer.

−300 −200 −100 0 100 200 300

−10
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0
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10
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𝑃
wa

ll
[ P
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Pims2d
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Figure 3: Pressure distribution at the wall within the
boundary layer.

Once the base flow is calculated, equations (6) are
solved for 91 non-dimensional reduced frequencies in the
range 𝐹 ∈ [25, 160] and the TS wave amplification curves
at the specified frequencies are obtained. The maximum

of these amplifications gives the 𝑁 factor curve shown in
Fig. 4. This curve is compared to the 𝑁sm curve obtained
for a smooth case and allows to visualize quantitatively
the effect of a groove on the transition.

At the upstream infinity, the amplification of the pertur-
bations is equivalent with or without irregularity. Slightly
upstream of the defect, the favorable pressure gradient
region tends to stabilize the disturbances by thinning the
boundary layer. However, just after the gap, the 𝑁 fac-
tor increases abruptly to an 𝑁max value and recovers the
behavior of the flat plate configuration at the downstream
infinity but has been shifted by a Δ𝑁far factor.

It is usual to consider that the transition to turbulence
occurs when the value of the 𝑁 factor reaches the thresh-
old value 𝑁tr = 9 in flight conditions for TS transition
scenario. The case considered here is therefore critical in
that it triggers turbulence at the defect due to the value
of the Δ𝑁max, while the smooth case is always below 𝑁tr
and therefore remains laminar. The different Δ𝑁 values
for this case are reported in Table 2.

Table 2: 𝑁max and Δ𝑁 values for a critical case.

𝑁max Δ𝑁max Δ𝑁far

10.10 5.59 3.63

4 Neural network model

4.1 Definition

An artificial neuron is a non-linear function that associates
to an input vector x = (x1, . . . , x𝑛) an output y, as follow:

y = 𝜎

(
𝑛∑︁
𝑖=1

w𝑖x𝑖 + b𝑖

)
, (12)

where 𝜎 is an activation function, w = (w1, . . . ,w𝑛) is
the vector of connection weights and b is a bias. The
activation function introduces non-linearity, allowing the
neuron to represent arbitrarily complex functional rela-
tions between the input variables and corresponds in this
study to a rectified linear unit (ReLU) function defined
below:

𝜎(𝑧) = max(0, 𝑧). (13)

A Neural Network (NN) is a structure composed of
successive hidden layers between the input layer and the
output layer, where the output of a neuron becomes the
input of all the units of the next layer. The learning of the
NN consists in iteratively adjusting the weights and biases
of the network by minimizing a loss function L.
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Figure 4: 𝑁 factor envelope curve with defect ( ) and for the same aerodynamic configuration but without defect
( ). The figure also shows the amplification curves for all calculated frequencies ( ) as well as that of the most
amplified frequency ( ).

4.2 Generation of training data
Inputs of the NN are Re𝛿1,d as aerodynamic variable and
ℎ∗1, ℎ∗2 and 𝑏∗ as geometric parameters. The range of
parameters are detailed in Table 3 and have been selected
to represent both stable and critical cases that can trigger
the transition, according to the criteria defined by Beguet
et al. [1]. For each sample of input parameters generated,
Pims2d provides as output the values Δ𝑁max and Δ𝑁far,
which will be the outputs to be predicted by the NN.

Table 3: Statistical description of the database with 750
observations.

Parameter Min Max

Re𝛿1,d 901.53 1999.41
ℎ∗1 0.10 3
ℎ∗2 0 2.90
𝑏∗ 0.52 14.98

Δ𝑁max 0.03 10.71
Δ𝑁far 0.01 6.51

4.3 Database analysis
Figure 5 illustrates the influence of the input geometrical
parameters on the Δ𝑁 for each case in the database. Anal-
ysis of Fig. 5(a) shows that the Δ𝑁max is higher the closer
the defect configuration is to a BFS, i.e. the higher ℎ∗1 is
and the lower ℎ∗2 is. As illustrated in Fig. 5(b), the high-
est values of Δ𝑁max correspond to the highest 𝑏∗ when
Δℎ = |ℎ∗1 − ℎ∗2 | < 0.5. On the other hand, beyond this
threshold, the width does not seem to play a determining
role and a correlation seems to exist between the heights
difference Δℎ and the value of Δ𝑁max. Moreover, the

Δ𝑁max seems to reach a limit around 2 for Δℎ < 0.5, i.e.
for cavities with same heights, while a geometry closer to
BFS (high Δℎ) is more destabilizing. There also appears
to be a strong linear relation between theΔ𝑁max andΔ𝑁far
values, as shown in Fig. 5(c). This could translate in fu-
ture studies into the need to know only one of the two Δ𝑁
to predict the other.

4.4 Neural network predictions and valida-
tion

4.4.1 Implemented neural networks

Neural network with different structures regarding the
number of hidden layers and the number of neurons in
each layer are considered. The structure of these networks
is detailed in Table 4. Each training of the network is done
on a normalized training dataset representing 80% of the
total dataset (i.e. 600 samples) and randomly selected,
while the validation is done on the remaining 20% which
have never been seen by the network (i.e. 150 samples).
The loss function to be minimized by the network during
the training is defined as the Mean Square Error (MSE)
between the real values y(𝑖) and the values predicted by
the neural network ỹ(𝑖) :

L =
1
𝑛

𝑛∑︁
𝑖=1

(
ỹ(𝑖) − y(𝑖)

)2
. (14)

In order to evaluate the model, the metric used is the Mean
Absolute Error (MAE) 𝜖MAE described below:

𝜖MAE =
1
𝑚

𝑚∑︁
𝑖=1

���y(𝑖) − ỹ(𝑖)
���, (15)

where 𝑚 is the size of the validation dataset. The results
obtained for each network are listed in the Table 4.
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Figure 5: (a)-(b) Evolution of Δ𝑁max as a function of geometric parameters and (c) evolution of Δ𝑁far as a function of
Δ𝑁max.
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Figure 6: Neural Model methodology.

Table 4: Details of networks architectures and results.
Architecture of the network corresponds to the number of
neurons in each layer.

Network Architecture Parameters 𝜖MAE

A [4 - 80 - 2] 562 0.07
B [4 - 20 - 20 - 2] 562 0.09
C [4 - 15 - 15 - 15 - 2] 587 0.08

4.4.2 Validation of neural network results

Once validated on the validation dataset, the NN model
is compared to the experimental results of Crouch et al.
[4]. These authors experimentally studied the effect of
gaps with identical depths on the transition, for ranges
of non-dimensional heights up to 5 and widths up to 50.
According [2], the uncertainty on the experimental Δ𝑁
value is assumed to be ±0.15 (±10 mm on the transition
position). An empirical Δ𝑁 is proposed from the experi-
ments, which takes into account both the height of the gap
and its width. This correlation has the advantage of cap-
turing the limiting behavior between a deep and shallow
gap:

Δ𝑁Cr ≈ 0.12𝑏∗ tanh
(
36

ℎ∗

𝑏∗

)
. (16)

The comparison between the experimental results, the re-
sults from the correlation (16) and the results from the
model generated by the neural network B is shown in
Fig. 7. Since the authors of the experimental data did not
provide all the data necessary to reproduce their study,
the Reynolds number Re𝛿1,d is chosen as Re𝛿1,d = 1700,
and the widths chosen are 𝑏∗ = 4.3, 10, 14, 23 and 45
depending on the width range considered. A good agree-
ment is observed between the experimental data and the
NN prediction as long as we stay in the range of heights
and widths studied by the networks. Outside this range,

i.e. in the yellow and hatched zones of the graph, cor-
responding to ℎ∗ ≥ 3 and 𝑏∗ ≥ 20, the results are more
balanced. For widths studied by the network, the predic-
tions for heights greater than those in the dataset match the
experimental results. On the other hand, when the width
of the surface irregularity moves away from the range of
values known by the network, this one does not predict
correctly the Δ𝑁max anymore. However, the experimental
points corresponding to Δ𝑁max > 6 probably do not cor-
respond to the transition due to TS waves as explained by
the authors, but rather to a bypass transition phenomenon.
These points correspond to defect geometries located in
the critical zone defined by Beguet et al. [1]. Moreover, as
explained by Crouch and Kosorygin [2], a difficulty lies in
comparing the values of an experimental Δ𝑁 to the values
of a numerical Δ𝑁 . Indeed, the latter is determined by the
global change of the amplification factor in the vicinity of
the defect without the knowledge of the actual transition
location, while the experimental Δ𝑁 is related to the spe-
cific modes responsible for the transition. Δ𝑁max results
from the NN model seems to reproduce the experimental
Δ𝑁 whereas one should expect an better agreement with
the Δ𝑁far. Unfortunately, only one streamwise position of
the gap on the flat plate is available in these experiments.
A second position would have give insights on which Δ𝑁
to be considered.

Recently, Methel et al. [10] have investigated the effect
of gaps and forward facing steps on transition on a flat
plate with wall suction at a position corresponding to
Re𝛿1,d = 1640. Some cases without suction have been
extracted to be compared to the NN predictions. The
agreement between the Δ𝑁Exp obtained experimentally
and the Δ𝑁far predicted from the NN is good considering
the 𝜖MAE value of each neural network. This comparison
can be found in Table 5. The last two gaps are out of the
training range.

Table 5: Comparison between Methel et al. [10] experi-
mental results without wall suction on a gap and the Δ𝑁far
predicted by the neural networks

ℎ∗ 𝑏∗ Δ𝑁Exp Δ𝑁far A Δ𝑁far B Δ𝑁far C

1.90 3.80 0.15 −0.06 −0.06 0.17
1.90 12.70 0.34 0.46 0.47 0.58
1.90 22.20 0.96 1.24 1.10 1.50
1.90 28.60 2.20 1.74 1.12 2.28

In order to verify the network’s ability to correctly pre-
dict the Δ𝑁 outside of its training area, Wang and Gaster
[16] experimental results on BFS are replicated. The pa-
rameter ℎ∗2 is set to zero, while the parameter 𝑏∗ is set to
zero in a first step and set to 20 in a second step, to ap-
proximate as closely as possible the geometry of a BFS.
A case with 𝑏∗ = 0 is geometrically close to a BFS, while
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Figure 7: Comparison of the Δ𝑁 obtained experimentally by Crouch et al. [4] ( ), by the correlation (16) and by the Δ𝑁max
predicted by the neural network B ( ). The yellow area ( ) and shaded areas correspond to range of heights and widths
that has not been trained by the network.

the 𝑏∗ = 20 case allows us to know if a large distance
between a BFS and an FFS amounts to simulating a BFS.
Both cases are situated outside the learning area of the
networks. The results are plotted in Fig. 8 and show rea-
sonable agreement between the experiment and the neural
predictions, keeping in mind that the network has not been
trained with a pure BFS configuration. It is interesting to
note that the neural results with 𝑏∗ = 20 seem slightly
closer to the experimental results when ℎ∗1 < 1.2, while
beyond this limit the neural results with 𝑏∗ = 0 seem
better. In both cases, the observed differences are small
and suggest that a "pure" BFS and a succession of BFS
and FFS separated by a distance 𝑏∗ = 20 have a similar
impact on the boundary layer stability. The NN results
corresponding to Re𝛿1,d > 2000, located outside the train-
ing region for the Reynolds number, are represented by
filled symbols to differentiate them and have a larger error
compared to the experimental results. It is interesting to
note that our results are located between the curves cor-
responding to the Wang and Gaster [16] and Hildebrand
et al. [9] correlations on BFS, recalled below:

Δ𝑁Wang = 4ℎ∗1 − 1.4, (17a)
Δ𝑁Hild = 3ℎ∗1 − 0.55. (17b)

5 Conclusion
A new method for predicting the transition to turbulence
of incompressible two-dimensional boundary layers in the
presence of gap-like surface defects has been presented.
This method is based on the e𝑁 method and a NN is used
to determine the value of the Δ𝑁 generated by the surface
irregularity. The proposed model relies on four distinct

parameters defining the geometry of the defect and its
aerodynamic environment which are its two heights, its
width and the Reynolds number based on the displace-
ment thickness of a Blasius boundary layer at the defect
position.

The database was generated with the Pims2d code
whose advantage is to be quite flexible in the creation
of the studied groove mesh, allowing to easily implement
boundary layer stability calculations, while the currently
existing methods for the prediction of the transition in
presence of defects are rather complex to implement. This
code has been validated in the case of a boundary layer
around a BFS, showing a good agreement with results
from AHLNS calculations.

The average error committed by the model is around
8 × 10−2 on the Δ𝑁 , which allows a fairly robust predic-
tion of the criticality of the surface irregularity. Contrary
to the empirical correlations already existing in the liter-
ature, the model generated by the NN generalizes to any
type of gap insofar as the characteristics of the defect are
within the range of parameters studied by the network.
The parametrization of the surface defects enables to ex-
tend the model to other defects, for instance for BFS.
Encouraging results have been presented in this sense.

This work can be followed up by a comparison between
the results obtained by the NN model and experimental re-
sults on step and gap defects carried out in Onera’s wind
tunnels. The database will be progressively extended to
other types of surface defects and will be expanded to
take into account the effects of compressibility and pres-
sure gradients.
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Supplementary material
The three networks developed in this pa-
per are available at the following address:
https://doi.org/10.5281/zenodo.6074956 [12]. This
repository also contains a python script Main.py and a
jupyter script Main.ipynb containing explanations and
examples on how to use these NN.
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