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What are the main factors related to road or service configuration influencing the response behaviour of connected vehicles? How
does it evolve with respect to the Market Penetration Rate (MPR) of connected vehicles? Here are some questions raised by this
paper with a focus made on Green Light Optimal Speed Advisory (GLOSA) strategy. Such a system, based on V2I communication,
aims at providing speed advice/recommendations when approaching an intersection to adjust speed and enhance fuel consumption.
The message is displayed on the Human Machine Interface (HMI) of the connected vehicles and a response is expected from the
driver. This paper derives its interest in the response behaviour of the driver to HMI. It develops a two-stage methodology based
on (i) Field Operational Test to collect realistic inputs (e.g., response rate, delay, deceleration profile, etc.) and (ii) a simulated
environment used for extending the findings to non-observed cases (e.g. higher MPR). Besides, the methodology that is well-fitted
for generic evaluation and comparison of pilots sites’ conclusions, one further contribution lies in the process to select the explaining
factors. Factors are targeted among features of (i) the road configuration (e.g. number of lanes), (ii) the service configuration (e.g.
activation distance), or (iii) the individual route choice and traffic conditions. Among others, it is highlighted that the activation
distance plays a significant role in the response behaviour and, depending on the cycle duration, a short activation distance might
be completely inefficient, while a true environmental impact requires high MPR.

Index Terms— GLOSA / eco-driving, Connected Vehicle, Field Operational Test, microscopic simulation, response behaviour,
Regression.

I. INTRODUCTION

IN the last few decades, there has been a large-scale deploy-
ment of various sensors and data collection systems in the

road traffic infrastructure. This has helped in the development
of new technologies, such as Cooperative Intelligent Transport
Systems (C-ITS), which has also transformed the vehicles’
roles into mobile sensors, therefore creating a synergy between
information and transportation physical domain [1]. This
family of C-ITS services, enabled by vehicle-to-everything
(V2X) communication, are aimed to have a positive impact on
road traffic efficiency, environment, and safety aspects, once
deployed in the real world.

One of the widely-researched C-ITS service is the Green
Light Optimal Speed Advisory (GLOSA) a.k.a. the Eco-
Cooperative Adaptive Cruise Control (Eco-CACC), provided
to connected vehicles near signalized intersections [2]. This
service delivers tailored advice to the vehicle in order to
smoothly cross a traffic signal, with the primary objectives
of improving safety, fuel efficiency and reducing emissions.
It is achieved through a communication between the traffic
signal and the on-board vehicle unit, which is performed by
the SPAT (Signal Phases and Timing) messages broadcast to
Connected Vehicles (CV) by Road Side Unit (RSU - through
Dedicated Short Range Technology) or by Traffic Management
System (TMS - through 3G/4G/5G technologies). Since its
introduction as a concept in 2006 [3], there have been a
significant number of contributions by researchers in terms
of methodological formulations (e.g., [4], [5], [6], etc.), eval-
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uation in a wide variety of scenarios (e.g., [7], [8], etc.),
and optimization of the algorithm itself (e.g. [9], [10], [11],
etc.). Researchers have primarily relied on simulation-based
experiments (e.g. [12]), with only a few works reporting their
findings on the basis of implementation from pilot studies
(e.g. [13], [5]) or field operational tests (FOT) (e.g. [14],
[15]). Hence, there is still a significant gap in research in
developing and applying a methodological framework that
evaluates the system impacts for a wide range of scenarios
with due considerations of the realistic behaviours from the
FOTs.

In the context of human-driven connected vehicles, only a
few studies in literature have attempted to investigate driver
attitude and behaviour towards GLOSA services. For exam-
ple, Gajananan et al. [16] performed a multi-user driving
simulator-based experiment and highlighted in brief that there
are a few seconds of delay in the driver response which is
dependent on the speed difference between the vehicle speed
and the recommended speed. Olaverri-Monreal et al. [17] per-
formed qualitative evaluation of the driving experience based
on lab-controlled driving simulator experiments to understand
how much it affected the drivers in terms of distraction,
change in behaviour, satisfaction and perceived performance.
The experiment concluded with a positive attitude and general
acceptance towards the GLOSA service. These experiments
were valuable to develop a qualitative understanding of the
driver attitude towards GLOSA, in general, but were not
useful, in principle, to evaluate the actual driver response, in
terms of compliance rate, response behaviour, etc. Only one
study [5] revealed certain modifications in driver behaviour
from experiments conducted in the real world. 400 drivers
were recruited in San Jose, California, USA to investigate
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the change in the acceleration and deceleration profile of the
vehicles equipped with the GLOSA service (active trip) as
compared to the baseline or non-equipped vehicles (inactive
trip). The study revealed that there are statistically significant
differences in the profiles between the two cases with smoother
performances for the active trips. Several researchers have
performed sensitivity analysis with hypothetical data in traffic
micro-simulation to show that the factors related to driver
response have a considerable effect on the performances. Liao
et al. [18] demonstrated that the driver compliance rate to
GLOSA messages has a substantial impact on the vehicle
emissions. Karoui et al. [12] performed similar simulation-
based studies to show that increased driver reaction has a
significant detrimental effect on the traffic and environmental
efficiencies. These studies reveal both the distinct gap in
literature and the importance in considering such driver-related
factors in the evaluations of C-ITS services, in general, and
GLOSA, in particular. There is also a major research gap in
identifying the different factors that influence the response
behaviour of such drivers.

Therefore, it has been aimed in this study to develop
and apply a methodological framework that combines field
data- and simulation- based analysis to realistically scale up
and quantify the impacts of a particular C-ITS service. The
three important contributions are: (i) identifying the factors
that significantly influence the driver response to a GLOSA
speed advice; (ii) extracting some features related to driver
response (distribution of response time, average deceleration,
and average speed compliance) from the real-world tests and
incorporating them in a traffic micro-simulation framework;
and (iii) producing realistic impacts on traffic and environ-
mental efficiency for a wide range of scenarios by taking
into account the driver response behaviour. The study has
been carried out with reference to vehicles equipped with
GLOSA service and the connected traffic signals in the
metropolitan area of Bordeaux, France. Once some indications
were obtained with respect to driver response, it was further
attempted to incorporate the same in an integrated simulation
environment to extend the results to generic situations and to
scale up the assessed impacts. ARTERY [19] was used as the
comprehensive simulation tool for performing I2V simulations
based on ETSI ITS-G5 protocols through the coupling of
a microscopic traffic simulator, SUMO [20], and a discrete
events simulator, OMNET++ [21].

The rest of the manuscript is structured in the following four
sections. The subsequent section provides an introduction to
the methodology adopted in the present study, especially in
terms of database development for performing the analysis
of the response behaviour of the drivers and the simulation
framework adopted for scaling up. The following section
discusses the findings from the analysis and identifies the
factors which contribute to variation in the driver responses.
In the subsequent section, the aggregated response features are
incorporated in the simulation framework for performing the
scaling up and investigating the impacts of several parameters,
viz., market penetration rate, activation distance, etc. on the
traffic efficiency. Finally, the major contributions and the future
perspectives from the present study are highlighted in the

concluding section.

II. METHODOLOGY

The adopted methodology is composed of two main phases
illustrated in Figure 1. The initial phase (in orange) is dedi-
cated to the analysis of data resulting from Field Operational
Test (FOT). It aims at featuring the driving behaviour of end-
users (i.e. Connected drivers) according to the eco-driving
instructions provided on the Human Machine Interface (HMI).
The purpose of the second phase (in green) lies in the scaling-
up process. It offers to generate Key Performance Indicators
resulting from a simulated, controlled and reproducible envi-
ronment. Some indicators highlighted during initial phase are
integrated as parameters to feature the response behaviour of
the connected vehicles in the simulation. The key steps are
further described in the following subsections.

Fig. 1: The Two Phases Methodology

A. Database Development

The database has been generated from European project
C-The-Difference (CTD) [22] thanks to a large-scale FOT
which was aimed at assessing the impact of network-wide
deployment of C-ITS services. A smartphone application has
been developed that enabled to display some eco-driving
instructions to drivers and generate log-data. Log-data have
been passively and regularly collected within a database server.
By overlapping log-data tables, some explaining factors can
be intersected and evaluated. The application is built on sub-
modules of GoogleMaps/Waze, with the objective of having a
refined generation of the GPS position. As a result, no further
processing was carried out to refine the GPS positions.

The data stored on the server results from the logs generated
by the flow of exchanged data (see Figure 2a) during the
communication between Traffic Management System (TMS)
and connected vehicles (i.e. a driver equipped with an on-
board smartphone). The communication between TMS and
smartphone is only ensured by 3G/4G technology. Two types
of data are logged:

• the collection of messages (e.g. SPAT) emitted by
the road manager: On the pilot site, traffic lights are
centralized and managed by TMS (GERTRUDE). For
every equipped traffic light, SPAT messages are con-
tinuously computed within GERTRUDE’s management
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(a) (b)

Fig. 2: (a) Exchanged data flow between TMS and connected
vehicles (b) Heat-map of the spatial distribution of the GPS
positions collected on the metropolitan area of Bordeaux

system according to management strategies. For pilot’s
needs, data contained in SPAT messages are duplicated
on the server. It enables to store timestamped information
about the current state for any equipped traffic light.

• the collection of information related to the smartphone
when a use case is triggered: Each smartphone equipped
with the app continuously map-matches its GPS position
and seeks for messages associated to its current zone. It
enables the smartphone to request and collect any mes-
sage relevant to its current location and the downstream
intersection. According to the collected information, the
smartphone continuously evaluates and computes the
need to trigger one of the use cases under consideration.
When a use case is triggered, usually a message is
displayed on the HMI and a reaction of the driver is
expected. Then, some log data are collected and for-
warded to the server. These data are mainly resulting from
the Cooperative Awareness Messages (CAM) regularly
emitted by activated smartphones. For each use-case oc-
currence, data are collected from 30 seconds before to 30
seconds after the event. It enables to describe the vehicle’s
trajectory before, during and after the event. Indicators
have been calculated and stored into a synthetic table
according to use-case type. The relevant data include:
(i) the current ID of the end-user/smartphone; (ii) the
intersection ID; (iii) the timestamp; (iv) the timestamped
ID of the event enabling to follow with time the actions
on the HMI; (v) the timestamped ID of the actions applied
on HMI; (e.g. first display of the message, update of the
message, etc); (vi) the GPS position of the smartphone
with a frequency of 1Hz; (vii) some features resulting
from the GPS of the smartphone (e.g. current speed,
current heading, etc); (viii) supplementary information
about the origin of use case activation (message ID, zone
ID, GLOSA advice, etc) and context information (e.g.
message content, etc).

The smartphone application has been developed to evaluate
a wide range of C-ITS services. In the current methodology,
we focus on the drivers’ response to the GLOSA use case. This

use case is triggered when an user enters an activation zone
in the vicinity of equipped traffic light. Then, the following
sequential process takes place:

1) detection by the smartphone application of the vehicle’s
entry into the zone by geo-matching;

2) recovery of the information on the traffic light cycles of
the upcoming intersection

3) calculation of the instructions to be displayed: The
displayed instruction vary according to the situations
experimented by the driver. Five cases are identified:

• Eco-Stop (E) for stopping the engine, when the
current speed is lower than 2 kph and the time to
green is greater than 7s;

• Go (G), when the vehicle is stopped in the queue;
• Pass (P), when the current speed of the driver

enables him to cross the intersection during the
green phase;

• Stop (S), when the current speed is lower than 2
kph, but the time to green is lower than 7s, or the
computed speed advice is lower than 20 kph;

• Speed recommendation (V), when the smartphone
can compute a speed recommendation higher than
20 kph to reach the stop-line at the beginning of
next green phase.

4) display of the instructions on the HMI
5) optional: acknowledgement of the instructions by the

driver
6) optional: interpretation and decision making by the

driver
7) optional: driver action on vehicle controls (deceleration)

Steps 1 to 4 are automated and can be estimated to be less
than two seconds. The evaluations made in the present study
are concerned with steps 4 to 7, i.e., from the time the
instruction is displayed (and logged) on the HMI until a driver
performs some action resulting in a significant slowdown.
From the data collected, it is only possible to estimate this
elapsed time, rounded to 1s, due to the temporal resolution
of the Cooperative-Awareness Messages with reference to the
position and speed information of the driver.

The database under study has been developed over 8 months
on the metropolitan area of Bordeaux (France), where 580
intersections were managed via 4G, while 546 of them have
been mapped for GLOSA use case (see Figure 2b). It results
in 600 untrained drivers generating around 3 million GPS
positions during the experiment. As the experiment is fully
crowd-funded, the panel characteristics were unknown. Within
the database, we can register around 30,469 GLOSA use
cases. The study is focused on the drivers receiving a speed
recommendation (around 22,198) and, especially, their adopted
behaviour. Some intersection configurations (around 5%) were
vulnerable to generate false-positive cases (i.e., GLOSA is
triggered when it should not be) due to grade-separated facility,
like a road overpass, (vertical confusion) and/or a narrow
crossroad, like a configuration with closely placed traffic
signals for the mainline and merging traffic (horizontal con-
fusion). With the available GPS accuracy, it was not possible
to filter these cases effectively, except for removing vehicles
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travelling with high speed and/or the suspicious intersections.
In order to identify and filter them more accurately, it will be
necessary to modify the cartography, to take into account the
altitude parameter as well (for vertical confusion) and adopt a
highly accurate positioning system (for horizontal confusion).

To enrich the database and refine the analysis, some land-
use data have been integrated. This open-data are produced
by the French Geographical Institute [23]. It gives access to
geographical description of the road segments with features
about the road type, the number of lanes, the free flow
speed, the average speed, and the existence of bike or Public
Transport lane. This dataset is geographically referenced by a
multi-line string depicting the road segments. In order to merge
the land-use data with the ones resulting from the data server,
the GPS position of any first GLOSA message displayed on
the HMI is map-matched with the geographical segment of the
land-use data by applying the two steps: (i) a spatial request
with a tolerance of 50m, which is performed on the geometry
of the road and the position of the first GLOSA message; (ii) a
request to match the intersection ID the two databases: the one
of the GLOSA message and the one with road characteristics.
It may be mentioned that due to the General Data Protection
Regulation (GDPR) of the European region, it was not possible
to obtain the socio-economic profiles and characteristics (e.g.,
age, gender, experience, etc.) of the individual drivers which
may have further enriched the analysis.

To evaluate the consistency of response behaviour over
time, the CoopITS database resulting from C-ROADS project
[1] has been used. The only major difference between both
databases lies in the stakeholders and the period of imple-
mentation. Both database are generated on the metropolitan
area of Bordeaux with the collection of the log-data resulting
from a smartphone app. Both experimentation ensure the
communication through 3G/4G and the implementation of the
GLOSA algorithm has been developed by the same provider.
Some differences occur in the logged indicators, but most of
them are shared and enable to produce significant comparison.
While the CTD database was generated during September
2017 – April 2018, the CoopITS database is more recent and
has been generated on 5 months since February 2021.

B. Data Pre-Processing

Several filters were necessary to obtain the optimal condi-
tions for evaluating the response behaviour and minimizing
the effect of congestion or other masked phenomena. The
specific behaviour of interest is to identify when there is a
speed reduction after receiving the first speed advice which
imply slowing down. The slowdown can result either from the
use of the engine brake or from the use of the mechanical
brake. In the case of Bordeaux, the terrain maybe considered
to be flat, making it possible to retain the hypothesis of a
perceptible slowdown during engine braking (versus sloping
terrain). The response behaviour was, therefore, analysed after
filtering the recorded events (trajectories):

• Filter 0: GLOSA Advice = ‘Va’: The case which indi-
cates a slowdown with a speed advice.

• Filter 1: Duration of Trajectory ≥ 4 seconds available
before the broadcast of first message: This is to charac-
terize the driver profile prior to receiving a speed advice.
The intention was to ensure that the trajectory upstream
of the first advice is not too short while maintaining
a sufficient size of the dataset. A sensitivity analysis
revealed that, with 4 seconds an inflection appears in
terms of eligible trajectories, while few changes are
observed on the response rate and response time of the
drivers beyond 4 seconds.

• Filter 2: Minimum message duration of ≥ 10 seconds:
Majority of the trajectories, i.e., 90%, are having a
message duration in the range [10s , 60s]. A message
duration of less than 10s is considered too short for
obtaining a response as the instruction is provided when
the driver is too close to the intersection.

• Filter 3: Vehicle speed at the time of first message
broadcast ≥ 20 km/h: It directly results from the GLOSA
algorithm since no speed instruction below 20 kph is
provided on the HMI.

• Filter 4: Upstream slowdown < - 3 km/h between
(time of first broadcast - 4 seconds) and (time of first
broadcast): This is to ensure that the vehicle is not
already in the process of slowing down before receiving
first advice.The value results from a sensitivity analysis
highlighting an inflection with regard to several aspects
(e.g., the total amount of eligible trajectories, the total
amount of responses, etc).

• Filter 5: Speed after first message broadcast ≥ 10 km/h:
It is aimed at removing the vehicles involved in queue
or congestion between the emergence of the message on
the HMI and the intersection. Since the lowest speed
instruction provided is 20 kph, a speed of 10 kph is the
threshold considered to highlight congested states. Such
consideration is justified by a recent study [24] focusing
on the relationship between driver’s cognitive fatigue and
driver’s speed variability. For the present case, it can be
derived that in the worse case the driver’s speed might
reach 10 kph for a tired and inattentive driver with the
lowest speed instruction (20 kph).

C. Data Analysis

Once the database was filtered, the refined database with the
eligible use-cases was employed to obtain the average response
rate, the average speed compliance and the distributions of
response time and deceleration performance of the connected
drivers. After filtering, 1328 eligible use-cases were obtained
from the CTD database and 130 eligible use-cases were
obtained from the CoopITS database. On this filtered data,
a response was registered, if:

1) A slowdown greater than 1 km/h/s is observed. This
corresponds to a minimum observed deceleration rate
of around 0.25 m/s/s for an approach speed of 40-50
km/h [25].

2) The slowdown is for a minimum duration of 3 seconds.
In order to select this filter, the dataset was explored
to observed the distribution of speed difference between
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the initial speed of the vehicle and the speed advice. The
15-th percentile speed difference, was found to be 3 kph.
So, considering a minimum deceleration of 1 km/h/s, we
considered a minimum duration of 3s., and

3) The slowdown starts during the first 10 seconds of the
message broadcast. Initially, the entire distribution of
response time was observed without considering any
cut-offs. It was observed that the distribution exhibits
a long tail beyond 10s. However, they correspond to
less than 15% of the cases. In perception-reaction time
studies, researchers generally report the 85-th percentile
value [26], which in the present case is 10s. There-
fore, based on this consideration, a filter of maximum
response time of 10s, for performing the analysis by
excluding the outliers, was adopted.

Further, in order to develop additional insights and explain
the variations in the response rate and the response behaviour
of the connected driver, several factors were taken into con-
sideration. The factors selected as the independent variables
include aspects related to the road and traffic conditions, and
the status of the user. These are as follows:

• Time of day (tpeak): This explains at what time of day
the user was provided the speed instruction, and was
classified as during the peak or off-peak period of the
day. The peak hours were identified based on relating
historical information with the timestamp on the CA
messages generated by the vehicle.This variable was
dummy-coded (0=off-peak hour).

• Number of lanes (Nb): This factor considers the number
of available lanes in the direction of travel (ranging from
1 to 4).

• Average travel speed (Spav): This factor considers the
daily average traffic speed on the particular road section
(a continuous variable).

• driver route (RouCV ): This factor includes whether the
driver is moving through, or turning left or right at the
intersection. This variable was dummy-coded with the
through movement considered as the base level.

• Distance to stop-line at first speed advice (DSL): This
is the distance of the connected vehicle from the
stop-line when the first speed advice was displayed on
the HMI and was considered as a continuous variable,
also considered as activation distance.

• Driving operation (Accel): This factor considers the as-
pect whether the driver was increasing speed (acceler-
ating) before and/or just after receiving the first speed
advice and was considered as a dummy variable (1=ac-
celerating; 0 otherwise).

• Driving speed (SpCV ): This is the speed of the vehicle
(in kph) at the instant when speed advice was displayed
on the HMI.

• Speed advice (Spadv): This is the advised speed (in kph)
displayed on the HMI.

• Speed difference (Spdiff ): Instead of the previous two
variables, the difference between the vehicle speed and
advised speed (in kph) may also be considered as a single
independent variable.

An attempt was made to observe the effects of different
factors on the response rate (Resp) as the dependent variable
(1=response; 0=no response). A logit model [27] was devel-
oped with the model specified in Eq. 2. Furthermore, multiple
linear regression models [28] were developed to investigate
the effects on response time (tresp), deceleration (Decel),
and speed compliance (Spcompl) as continuous dependent
variables with the model specifications as shown in Eqs. 3,
4 and 5 respectively. tresp was defined as the time elapsed
(s) from the time of display of the first speed advice to the
time when the driver begins to reduce speed. Decel is the
average deceleration (m/s2) that the driver performs while
continuously and gradually reducing the speed after receiving
the first speed advice. Spcompl matches with the difference in
the final speed (after slowdown, SpendCV ) and SpCV expressed
as a fraction of Spdiff as shown in Eq. 1.

Spcompl =
SpCV − SpendCV

Spdiff
(1)

YResp = αresp + βt0 ∗ tpeak + βnb0 ∗Nb + βspav0 ∗ Spav+
βr0 ∗RouCV + βd0 ∗DSL + βacc0 ∗Accel+
βspdiff0 ∗ Spdiff

(2)

tresp = αt + βt1 ∗ tpeak + βnb1 ∗Nb + βspav1 ∗ Spav+
βr1 ∗RouCV + βd1 ∗DSL + βacc1 ∗Accel+
βspdiff1 ∗ Spdiff

(3)

Decel = αdec + βt2 ∗ tpeak + βnb2 ∗Nb + βspav2 ∗ Spav+
βr2 ∗RouCV + βd2 ∗DSL + βacc2 ∗Accel+
βspdiff2 ∗ Spdiff

(4)

Spcompl = αcompl + βt3 ∗ tpeak + βnb3 ∗Nb + βspav3 ∗ Spav+
βr3 ∗RouCV + βd3 ∗DSL + βacc3 ∗Accel+
βspdiff3 ∗ Spdiff

(5)

D. Scaling-up

Once the response of the drivers were available from the
FOT, the next stage was to incorporate this response behaviour
in simulation tools to bring out the realistic impacts for more
generic traffic, control conditions and at the network scale.
The microscopic traffic simulator, SUMO [20], was selected
to simulate the traffic operations. It is able to replicate the
driving behaviour of a road user and its interactions with
the surroundings. It is composed of several component layers
which can interact with each other: the environment layer
corresponds to the supply side with the features of the road
network, the agents layer includes the driver, vehicle and
road manager features, the sensor layer allows to collect
information about the environment through various types
of traffic sensors, and finally there is the communication
layer where the agents can receive and disseminate messages
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which is very important to replicate the connected vehicles.
The communication layer results from a coupling between
the traffic model and a communication model, OMNET++
[21], through a TCP-based client/server architecture, called
TraCI. OMNET++, through the help of TraCI, can extract
vehicle-state information from SUMO at each time-step and
give instructions to alter the current vehicle state within the
same time-step. The coupling is concretely operated within
a framework, i.e., a set of OMNET++ modules respectively
named Veins, INET and SimuLTE, which is overlaid to include
a wide range of communication technologies. The resulting
tool, ARTERY [19], offers the possibility to simulate vehicles
equipped with ITS-G5 and LTE protocol stacks.

The first step was to check the performance of the traffic
micro-simulator with the default values of the car following
and lane-changing models to understand whether calibration
was necessary. To achieve this, the traffic performance in terms
of travel time was extracted during the peak hour for an urban
arterial (Figure 3a) in the city of Lyon, France with a network
of traffic signals. The traffic signal, road geometry, speed limit
and traffic demand information were obtained and coded in the
simulator. A comparison of the simulated and observed travel
time during the peak period (Figure 3b) indicated statistically
similar results with the root-mean squared error less than
10% which ensured that further model calibration was not
necessary.

Fig. 3: (a) Urban Arterial in Lyon, France; (b) Simulated and
Observed Travel Time

In the next step, a GLOSA algorithm, similar to the one im-
plemented in the Bordeaux metropolitan network, was devel-
oped in the Artery simulation framework. The algorithm was
further augmented to incorporate additional parameters related
to the distribution of driver response time, average deceleration
rate and the average speed compliance. This helped to have

a realistic representation of the driver’s response to GLOSA
messages. Finally, an experiment was designed to investigate
the effect of different factors, that include:

• traffic factors, viz., demand (in terms of degree of satu-
ration): [0.50; 0.75; 0.90],

• market penetration rate (%): [0 (i.e., baseline); 10; 30;
50; 75; 100],

• road and control factors, viz.: (i) number of lanes: [1;
2],(ii) cycle length (s): [60; 90],

• a factor related to operation of GLOSA, viz., activation
distance (m): [300; 500; 1000].

The key performance indicators (KPIs) are selected consid-
ering the focus on evaluating the impacts on traffic and en-
vironmental efficiency. For traffic efficiency, average stopped
delay and average number of stops per vehicle are considered
as the main KPIs. For evaluating environmental efficiency, the
selected KPIs are average CO2, NOx emissions, and fuel
consumption per vehicle-km travelled.Similar KPIs have been
selected in some recent studies related to GLOSA or eco-
CACC services (e.g., [11], [12]). PHEMLight emission model
[29] integrated with SUMO has been used for estimating the
pollutant emissions. It is an instantaneous vehicle emission
model developed by the TU Graz and is pre-calibrated for
the European vehicle fleet. For the sake of simplicity and
uniformity, all the vehicles have been assumed to be passenger
cars operating with Euro-IV gasoline.

III. FOT DATA ANALYSIS

This section is focused on the driver response behaviour
of the connected vehicles as observed from FOT. In the first
stage, an analysis was made to explore the factors responsible
for initiating a response among the connected drivers and in
the second stage the behaviour of the drivers who actually
displayed a response were investigated in further detail. These
are discussed in the following subsections.

A. Response Rate

An analysis of the C-The-Difference and CoopITS datasets
revealed that about 70% of the eligible use-cases displayed a
response to GLOSA speed advice in both the cases. Out of
1328 and 130 eligible use-cases for each dataset respectively,
933 and 91 users displayed a response. Pearson’s Chi-square
test was performed and chi-square statistic (=0.0054) and p-
value (=0.941) shows that there is no statistically significant
difference between the two datasets. This shows a consistent
attitude by the connected drivers to both the smartphone
applications in terms of response rate, when conditions enable
to apply the recommendations. In order to develop further
insights, binary logistic regression was carried out considering
the response variable (1=response; 0=no response) with the
model as specified in Eq. 2. It may be mentioned that the
following models have been developed using the C-The-
Difference database only as they provided sufficiently large
sample size. A future scope may be to validate or refine
the models using the more recent CoopITS database once
sufficient data is available.
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The model results are summarized in Table I. The results
show that there is a significant impact of the driving oper-
ation (Accel) on the response rate. The drivers who were
accelerating prior to a speed advice were observed to have a
statistically higher response rate as compared to other drivers.
The activation distance (DSL) was also observed to have
a significant impact on the response rate; the negative sign
indicates that higher the activation distance, lower is the
probability to display a response to GLOSA speed advice. On
the other hand, higher the speed difference between the driver
speed and the speed advice (Spdiff ), higher is the probability
of a response. Other variables (e.g., tpeak, Spav , etc.) could
not display any significant effect on the response rate.

TABLE I: Logit model estimates with the factors influencing
Resp

Variable Coefficient S.E. z P>| z|
Intercept 1.4566 0.409 3.565 0.000

tpeak -0.0559 0.217 -0.257 0.797

RouCV
LT -0.2368 0.197 -1.201 0.230
RT -0.0054 0.209 -0.026 0.979

Nb -0.1357 0.125 -1.089 0.276
Spav -0.0035 0.006 -0.545 0.586
DSL -0.0036 0.001 -4.835 0.000
Accel 0.5612 0.145 3.862 0.000
Spdiff 0.0167 0.008 2.202 0.028
No. of Observations = 1328
Log-likelihood = -770.21
Degrees of Freedom = 8

While initially DSL and Spdiff were incorporated as con-
tinuous variables in the model, an attempt was further made
to explore whether there is any non-linear effect of these
variables on the dependent variable. Fig. 4 shows that there is
a parabolic relationship of the two variables with the response
rate. Therefore, the logit model was augmented by considering
different levels for DSL and Spdiff and considering a DSL

value of 0-100 m and a Spdiff value of 0-5 kph as the
reference levels respectively. The levels were partitioned with
equal intervals, e.g. 50 m in case of DSL parameter, and 5
kph in case of Spdiff parameter. Likelihood Ratio Test [30]
was conducted to compare the model pairs with linear and
non-linear specifications. Upon comparing the two models,
we obtain Likelihood Ratio, LR = 2(770.21 – 756.63) = 27.16,
with degrees of freedom = 3 (modified model adds 3 additional
parameters), and critical value (at 0.05 significance level) =
7.815, which establishes that the modified model provides a
statistically significant better fit.

The modified model provides further insights related to
the dynamics of the driver response. Based on the results
summarized in Table II, drivers were observed to be most
responsive when the first speed advice is displayed between
200m and 150m from the stop line. Similarly, the response rate
also maximises when the difference between SpCV and Spadv
is between 20 and 10kph and decreases if the Spdiff is higher
or lower than this range. These findings are interesting as
they tend to highlight that there may be an optimal activation
distance and optimal range of speed where GLOSA advice
may trigger more frequent responses among the connected
drivers.

Fig. 4: Variations of Response Rate with (a) DSL; (b) Spdiff

TABLE II: Modified Logit model estimates with the factors
influencing Resp

Variable Coefficient S.E. z P>|z|
Intercept -0.6542 0.383 -1.709 0.088

Accel 0.5286 0.148 3.582 0.000

DSL

300m -0.0541 0.394 -0.137 0.891
250m 0.7197 0.396 1.816 0.069
200m 0.9203 0.376 2.450 0.014
150m 1.2139 0.375 3.238 0.001
100m 0.9219 0.380 2.425 0.015

Spdiff

25kph 0.2313 0.245 0.943 0.346
20kph 0.3355 0.233 1.438 0.150
15kph 0.6177 0.216 2.857 0.004
10kph 0.5315 0.192 2.768 0.006
5kph 0.1828 0.175 1.046 0.296

No. of Observations = 1328
Log-likelihood = -756.63
Degrees of Freedom = 11

B. Response Behaviour

The next task was to investigate the type of response
displayed by the connected drivers in terms of response time,
deceleration rate and speed compliance. Again, as can be
observed from Fig. 5, for both smartphone applications a
similar response was observed in terms of response time with
a mean of around 5s and 4.7s and a standard deviation of about
2.5s in both cases. Welch’s t-test was performed to compare
mean response time and 2-sample K-S Test was performed to
compare the distribution of response time. For the first test, the
test statistic was 1.21 (p=0.226) and the second case, the test
statistic was obtained as 0.08 (p=0.594). This shows that the
mean and distribution of response time are statistically similar
for the two datasets which emphasizes that both response rate
and response behaviour are stable and similar across different
applications. However, since the CoopITS database had very
few observations, they were not used for subsequent analysis.

The response time was observed to follow a normal dis-
tribution (Fig. 6a) while the deceleration with an average
value of 0.61m/s2 indicated closer similarity to a log-normal
distribution (Fig. 6b). A similar deceleration distribution were
also observed from the field operational tests conducted in San
Jose, California [5]. In terms of speed compliance, a Spcompl

value of 0.75 was observed among the connected drivers. The
aggregated response behaviour, viz., distribution of response
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Fig. 5: Distribution of response time as observed by two
GLOSA smartphone applications

time, the average deceleration and the average compliance rate
were taken as direct inputs for the simulation-based analysis
as response characteristics for the drivers of the connected
vehicles.

Fig. 6: (a) Response Time; (b) Deceleration

A deeper investigation revealed that the response behaviour
changes with respect to different factors. In fact, Fig. 7a-d
show the variations of response time with respect to different
factors, such as DSL, SpCV , Spadv and Accel. Therefore,
multiple linear regression was adopted to explore the effect
of different factors on each aspect of the response behaviour.
Initially a correlation matrix was developed to check for
collinearities between the independent variables and a strong
correlation(=0.60) was observed between SpCV and Spadv .
Therefore, Spdiff was selected instead and the correlation
matrix is displayed in Fig. 7. The detailed findings with respect
to each aspect of response behaviour are discussed in the
following subsections.

Fig. 7: (a) Variation of response time with DSL; (b) Variation
of response time with SpCV ; (c) Variation of response time
with Spadv; (d) Variation of response time with Accel; (e)
Correlation Matrix for selected independent variables

1) Response Time
An MLR (Multi-Linear Regression) model of response time

based on Eq. 3 was first developed, taking into account the
non-linear effect of DSL and Spdiff variables considering
the observations made from the analysis of response rate. The
results, as summarized in Table III, show that the response
time, in general, increases with DSL with certain variations.
Accel naturally shows a highly significant effect indicating
that the vehicles, which are in acceleration at the time when
the first speed advice is displayed, take a longer duration to
respond to the message. The response time was observed to
be significantly lower if the Spdiff becomes higher than 20
kph.

TABLE III: Model estimates with the factors influencing
response time

Variable Coefficient S.E. t P>|t|
Intercept 3.4995 0.608 5.76 0.000

Accel 0.9969 0.16 6.224 0.000

DSL

300m 1.6071 0.654 2.458 0.014
250m 1.4983 0.634 2.365 0.018
200m 1.6094 0.609 2.644 0.008
150m 1.1652 0.603 1.933 0.054
100m 0.6429 0.61 1.053 0.292

Spdiff

25kph -0.547 0.329 -1.664 0.096
20kph -0.5396 0.299 -1.804 0.072
15kph -0.2382 0.26 -0.917 0.36
10kph -0.1461 0.239 -0.612 0.541
5kph -0.2662 0.236 -1.128 0.26

No. of Observations = 933
Log-likelihood = -226.5
Degrees of Freedom = 11

2) Average Deceleration
With respect to Decel, Eq. 4 was augmented to include the

non-linear effects of DSL and Spdiff in a way similar to the
analysis of tresp. Table IV shows that the connected drivers
appeared to perform a significantly stronger deceleration in
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cases where they were accelerating during receipt of the first
speed advice (Accel=1) and cases where the average speed
level (Spav) of the road is higher. A gradual increase in the
deceleration was observed with an increase in the speed dif-
ference between SpCV and Spadv . The analysis also revealed
that the connected vehicles performed smoother decelerations
if the DSL is higher. Another interesting observation was
that, during the peak hour, the connected vehicles performed
stronger deceleration (around 90%CI), as compared to the
other times of the day.

TABLE IV: Model estimates with the factors influencing
deceleration

Variable Coefficient S.E. t P> | t |
Intercept 0.4492 0.082 5.478 0.000

tpeak 0.0506 0.032 1.586 0.113
Spav 0.0026 0.001 2.764 0.006
Accel 0.0424 0.018 2.365 0.018

DSL

300m -0.1832 0.074 -2.466 0.014
250m -0.1372 0.072 -1.9 0.058
200m -0.0462 0.069 -0.666 0.506
150m -0.0019 0.069 -0.027 0.978
100m 0.0478 0.07 0.687 0.492

Spdiff

25kph 0.171 0.036 4.687 0.000
20kph 0.0186 0.034 0.554 0.58
15kph 0.0702 0.029 2.41 0.016
10kph 0.0541 0.027 2.023 0.043
5kph 0.0154 0.026 0.582 0.561

No. of Observations = 933
Log-likelihood = -76.624
Degrees of Freedom = 13

3) Speed Compliance
An analysis of the Spcompl based on Eq. 5 augmented

with the level-based coding of DSL and Spdiff revealed
statistically significant effects of several variables (Table V).
It was interesting to note lower speed compliance levels
for right turning vehicles (RouCV =RT) and with increase in
the number of lanes (Nb) in the direction of travel. Higher
flexibility of travel space with respect to lane availability
apparently reduces the compliance to the speed advice. The
speed compliance is also reduced for vehicles which are in a
state of acceleration prior to receiving the speed advice. More
significant speed compliances were observed when the DSL

is between 200-100m (as compared to the reference level of
0-100m) which again reveals the fact that drivers tend to show
better acceptance to the speed advice when they are closer to
the stop-line. The speed compliance gradually decreases with
the increase in Spdiff but then increases marginally if the
Spdiff is too high (greater than 25 kph).

IV. SCALING-UP

The aggregated response behaviour (response time distri-
bution, average decelerate and average speed compliance)
observed from the FOT were incorporated in the integrated
SUMO and ARTERY simulation framework for scaling up.
These are as follows:

• The response time was incorporated as a constrained
normal distribution in the range of [0s;10s] with mean
of 5s and standard deviation of 2.5s.

• The deceleration was considered as 0.6m/s2.
• The speed compliance rate was adopted as 0.75 (or 75%).

TABLE V: Model estimates with the factors influencing speed
compliance

Variable Coefficient S.E. t P>|t|
Intercept 0.9448 0.075 12.552 0.000

RouCV RT -0.067 0.028 -2.385 0.017
Nb -0.0348 0.018 -1.964 0.05
Accel -0.0842 0.018 -4.806 0.000

DSL

300m 0.0538 0.072 0.743 0.458
250m 0.0394 0.07 0.56 0.576
200m 0.093 0.068 1.373 0.17
150m 0.1141 0.067 1.698 0.09
100m 0.1252 0.068 1.843 0.066

Spdiff

25kph -0.3462 0.036 -9.722 0.000
20kph -0.4063 0.033 -12.406 0.000
15kph -0.2386 0.028 -8.403 0.000
10kph -0.1687 0.026 -6.465 0.000
5kph -0.0678 0.026 -2.625 0.009

No. of Observations = 933
Log-likelihood = -52.970
Degrees of Freedom = 13

A. Impact of Activation Distance and MPR

The comprehensive impacts on traffic and environmental
efficiencies are summarized in Fig. 8 which illustrates the
percentage improvements in average number of stops and
emissions with GLOSA speed advice over the baseline. With
the incorporation of driver response time and the speed com-
pliance rates, an activation distance of 300m appears to be too
short to generate a considerable positive impact even at high
market penetrations of CV, especially with long cycle duration
(i.e., 90s). With the increase in the activation distance to
500m, there is a considerable improvement in terms of traffic
efficiency even at low MPR and the point of inflection can be
observed around an MPR value of 30%. These observations
are in line with Karoui et al. [12] where the benefit in the
stopped time gain is deteriorated beyond MPR of 25% when
a driver response time is taken into account. However, the
improvement is less drastic when an activation distance of
1000m is considered. For example, for a 90s traffic cycle
and at 0.75 degree of saturation on a single lane road, an
activation distance of 300m provides only 3% improvement in
stops at 30% MPR while, in comparison, about 62% and 75%
improvements are observed for activation distances of 500m
and 1000m respectively under similar conditions. Additionally,
it may be observed that, at low traffic demands, there are
significantly higher number of stops made by non-connected
vehicles in lieu of the CVs at a market penetration of 30%
or below. This shows that, under such conditions, the CVs
are unable to influence the traffic stream, as a whole. In the
same line, although the environmental efficiency of CVs are
improved at all levels of market penetration, a benefit in terms
of environmental efficiency for the entire traffic stream is
observed only when the MPR exceeds 30%, with a further
improvement if the activation distance is around 1000m. For
example, upto an MPR of 30%, the environmental benefits
are in the range of 3-5% which goes up to 10% at 50%
MPR and more than 15% in a fully connected environment.
Similar observations were also made by Gajanan et al. [16]
where they suggested a penetration rate of more than 40% is
necessary to achieve a significant reduction in CO2 emissions.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS CLASS FILES, VOL. XX, NO. NN, MONTH YEAR 10

The unequipped vehicles are likely to contribute to high traffic
oscillations at low MPR and in denser traffic conditions,
causing more frequent speed change and higher emissions
[31]. Additionally, while the general trend is similar for CO2

and NOx emissions, the improvement is higher for the latter.
For example, while there is a reduction of up to 5% in CO2

emissions at 30% market penetrations of CV, the same is
more than 15% in terms of NOx emissions. With reference
to increasing activation distance, the improvement in emission
gain with respect to NOx emissions is also higher as compared
to CO2.

Fig. 8: Summary of Realistic Impacts of GLOSA on Traffic
and Environment Performance

B. Impact of Cycle Length

Fig. 9 shows the evolution of the traffic and environmental
performances with respect to two different traffic signal cycles
of 90s and 60s. It clearly shows that the GLOSA speed advice
can still be effective with an activation distance of 300m if
there is a reduction in cycle length. This highlights the fact
that where it is infeasible to provide a long activation distance,
it may be necessary to consider reducing the cycle time to
achieve some meaningful impact. Moreover, in terms of CO2

emissions, while a more-or-less linear reduction is observed
with respect to increasing MPR for 90s cycle time, there is
a visible non-linear effect with 60s cycle lengths. This again
shows that it is necessary to have a high market-penetration
of connected vehicles in order to have a meaningful impact
on emission reduction.

C. Impact of Road Geometry

Increase in the number of lanes indicates an opportunity
for non-connected vehicles to overtake the connected vehicles
when they comply to the GLOSA advice to reduce the speed.
As a result, a reduced benefit is expected in traffic efficiency
and the same can be observed in Fig. 10, especially at low
degrees of saturation and low market penetration of CVs
giving a higher opportunity for overtaking by the unequipped

Fig. 9: Impact of Cycle Length on GLOSA Performance

vehicles. The impact becomes similar only at very high MPR
and it also varies linearly for 2-lane roads without any visible
inflection point as was observed for 1-lane. In terms of
emissions also, there is a stronger reduction in the emissions
with increase in MPR for single lane roads, although the
average CO2 emissions per vehicle-km travelled is lower for
2-lane roads (refer Fig. 8). Moreover, when there are more than
one lane available, a shorter activation distance appears to be
more effective as it provides lesser opportunity to overtake.

Fig. 10: Impact of Lane Availability on Number of Stops



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS CLASS FILES, VOL. XX, NO. NN, MONTH YEAR 11

V. CONCLUSIONS AND PERSPECTIVES

This paper is one of the first contributions to make some
specific and meaningful observations related to the driver
response behaviour of connected vehicles from the field
operational tests of a C-ITS service, GLOSA. It was very
interesting to bring out the variations in response rate, response
time, deceleration and speed compliance behaviour. Significant
impacts on driver response were observed with respect to
several factors, the most important of which include the
activation distance, the difference of the advised speed with
the instantaneous speed of the driver and whether the driver
was accelerating when the speed advice was displayed on the
HMI.

The response rate was observed to generally decline and
the response time was observed to increase with increase in
activation distance. But at the same time, the speed compliance
was improved and the drivers performed smoother deceleration
with longer activation distances. This suggests that the activa-
tion distance should be neither too close to nor too far from
the stop-line. On the other hand, the simulation results show
that a short activation distance with long cycle length will
significantly restrict the positive impacts of GLOSA service.
Therefore, when short activation distances are maintained, the
signal cycle lengths have to be adjusted accordingly to enhance
the benefits in terms of traffic and environmental efficiencies.

If there is a high difference between the instantaneous
and the advised speed, then there are less chances of drivers
showing a response or adhering to the speed instructions by
decelerating to the necessary speed. As a consequence, even
if they show a response, they will be forced to come to a stop
at the intersection. Therefore, the speed of the driver should
be taken into account before offering a speed advice. In cases
where the difference is too high (e.g., higher than 20 kph), a
speed advice should not be provided, rather the driver should
only be provided an instruction to come to a gradual stop
to avoid hard braking near the intersection. The drivers who
are accelerating at the instant when the speed instruction was
provided are more likely to show a response in terms of speed
reduction, but the response time will be naturally higher in
such cases. In a few cases, several other factors, such as time
of the day, the number of lanes available in the direction of
travel, etc. were also observed to have an effect on the driver
response.

An interesting research direction will be to explore the
refinement of GLOSA algorithm to provide an optimal speed
advice by taking into account the driver response features and
observe if it enhances the impacts on traffic flow performance.

The aggregated driver response features were incorporated
in the simulation framework and is an important contribution
to the existing scholarship to generate more realistic impacts
for different scenarios. One of the most interesting aspects was
to observe that with long traffic signal cycles, a short activation
distance was more-or-less ineffective to bring out a substantial
impact on the traffic efficiency. Therefore, where short acti-
vation distances cannot be avoided, it may be meaningful to
reduce the cycle length to obtain more benefits from GLOSA
service. Also in cases of multi-lane urban roads, a higher MPR

is necessary to achieve the same benefits as compared to the
single-lane roads. In terms of environmental efficiency, high
market penetration is necessary as well to achieve a significant
emission reduction.

While some interesting observations have come out from
the present work, it is still an open research question on how
to more accurately predict a driver response to the speed
instructions, and accordingly optimize GLOSA algorithm to
achieve the maximum impact. Although, significant impacts
were observed on the response behaviour with respect to
several parameters, there were a lot of unexplained variations
in the response variables which may be due to the individual
behaviour of the driver, their socio-economic profiles, and real-
time driving conditions. Therefore, in the future, with further
sensorization of urban road spaces, there will be a scope to
enrich the database with more relevant factors and improve
the model performances.

Although the two database (C-The-Difference and Coo-
pITS) display statistical similarity based on the aggregate
response behaviour, further enrichment of the newer database
may help to validate and refine the disaggregate models.
Moreover, the simulation-based analysis in the present study
takes into account only the aggregated response behaviour.
Therefore, with improved empirical models, the disaggregate
impacts of some individual parameters on the response be-
haviour can also be incorporated as a further refinement of
the simulation analysis.

The present work has been focused on GLOSA or eco-
driving use case for urban traffic environment with interrupted
flow facilities. It will be interesting to apply a similar approach
to observe and characterize the response behaviour from FOTs
for other use-cases and traffic environments.
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