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Abstract
Inter-variable correlations (e.g., between daily temperature and precipitation) are key statistical properties to characterise 
probabilities of simultaneous climate events and compound events. Their correct simulations from climate models, both in 
values and in changes over time, is then a prerequisite to investigate their future changes and associated impacts. Therefore, 
this study first evaluates the capabilities of one 11-single run multi-model ensemble (CMIP6) and one 40-member single 
model initial-condition large ensemble (CESM) over Europe to reproduce the characteristics of a reanalysis dataset (ERA5) 
in terms of temperature–precipitation correlations and their historical changes. Next, the ensembles’ correlations for the 
end of the 21st century are compared. Over the historical period, both CMIP6 and CESM ensembles have season-dependent 
and spatially structured biases. Moreover, the inter-variable correlations from both ensembles mostly appear stationary. 
Thus, although reanalysis displays significant correlation changes, none of the ensembles can reproduce them, with internal 
variability representing only 30% on the inter-model variability. However, future correlations show significant changes over 
large spatial patterns. Yet, those patterns are rather different for CMIP6 and CESM, reflecting a large uncertainty in changes. 
In addition, for historical and future projections, an analysis conditional on atmospheric circulation regimes is performed. 
The conditional correlations given the regimes are found to be the main contributor to the biases in correlation over the 
historical period, and to the past and future changes of correlation. These results highlight the importance of the large-scale 
circulation regimes and the need to understand their physical relationships with local-scale phenomena associated to specific 
inter-variable correlations.

Keywords  Inter-variable correlations · Climate change · Statistics · Ensembles · Climate models · Reanalysis · Large-scale 
circulation regimes

1  Introduction

Over the last few years, the interest in statistical correlations 
between climate variables has become strong in various 
domains (e.g., Sukharev et al. 2009; Bhowmik et al. 2017; 
Mengis et al. 2019; Seo et al. 2019; Tukimat et al. 2019, 

among many others). This interest comes from the fact that, 
most of the time, climate phenomena need to be character-
ised by multiple variables (precipitation, temperature, wind, 
etc.) and not only a single one, if we want to understand 
their processes and impacts. One typical example is given 
by the study of “compound events” (CEs), a growing field 
of research in the impact and climate science communities 
(e.g., Zscheischler and Seneviratne 2017; Sadegh et al. 2018; 
Zscheischler et al. 2020; de Brito 2021; Ridder et al. 2021; 
Singh et al. 2021; Zscheischler et al. 2021, among many 
others). These climate events can be defined as resulting 
from a combination of events—not necessarily extreme by 
themselves—whose simultaneous or successive occurrences 
might generate major impacts. Different types of com-
pound events have been categorised into a specific typology 
by Zscheischler et al. (2020): “preconditioned” events (a 
weather- or climate-driven preconditioning intensifies the 
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impacts); “multivariate” events (several simultaneous uni-
variate hazards create the impact); “temporally compound-
ing” events (successive hazards generate an impact); and 
“spatially compounding” events (univariate hazards in sev-
eral places cause an impact). The key statistical aspect of 
such events is the dependence characterisation of the differ-
ent univariate events that, together, form the CEs and cause 
the impacts.

In all these compound events, the dependence structure 
between the univariate variables or events (e.g., the correla-
tion matrix) has to be known or estimated in a robust way. In 
studies investigating potential changes in CE properties and 
frequencies, it is thus necessary to have both correct depend-
ence properties in the historical simulations and robust cli-
mate change signal regarding these multivariate statistical 
properties. More generally, this information is essential in 
any study relying on simulated climate data with depend-
ence structures, such as environmental studies (in hydrol-
ogy, agronomy, ecology, etc.) where the associated impact 
models and their output can strongly depend on the realism 
of the climate input, in terms of univariate properties as 
well as in terms of their dependence characteristics (e.g., 
Ines and Hansen 2006; Teutschbein and Seibert 2012; Laux 
et al. 2021). However, it is known that climate models (both 
Global or Regional ones, GCMs or RCMs) can have biases 
with respect to observations or reanalyses, not only in terms 
of marginal distributions (i.e., statistical properties of the 
variables considered separately) but also in the multivariate 
properties (e.g., dependence, such as correlations) of the 
simulations they provide (e.g., Cannon 2017; Vrac 2018; 
François et al. 2020).

That is why, “bias correction” (BC) methods—also called 
“bias adjustment” methods—have been developed over the 
last few decades. Any BC method relies on a transformation 
of the “raw” climate simulations so that the corrected simu-
lations possess statistical properties (e.g., mean, variance, or 
more generally their statistical distribution) similar to those 
of the reference dataset (such as observations or reanalyses). 
The correction (i.e., transformation) is estimated over a his-
torical period where both reference data and simulations are 
available. The correction is supposed to be valid in a climate 
change context and, then, applied to climate simulations over 
the projection period of interest. BC methods can be univari-
ate (i.e., working on one variable at a time for one location 
at a time) or multivariate (i.e., working on several variables 
and/or locations at the same time). In the univariate case, 
the “quantile-mapping” approach is the most widely spread 
and applied technique, via its multiple implementations and 
variants (e.g., Haddad and Rosenfeld 1997; Déqué 2007; 
Kallache et al 2011; Vrac et al. 2012, 2016; Volosciuk et al. 
2017, among many others). Such a method has various 
advantages: it is easy to implement, fast to run, and the gen-
erated corrections globally preserve the main trends of the 

simulations (e.g., Cannon et al. 2015; Hempel et al. 2013). 
Moreover, it generally respects the ranks of the simulations 
to be corrected and, thus, maintains the physical dependence 
structure of the climate model (see e.g., Vrac 2018). How-
ever, this latter point means that if the dependence structure 
in the model simulations is biased, the corrections preserve 
this biased dependence as well. This is obviously a major 
issue for compound event estimates. Indeed, Zscheischler 
et al. (2019) showed that univariate BC methods (such as 
quantile mapping methods) are generally not sufficient to 
reduce biases in multivariate hazard estimates and that 
multivariate BC methods should be favoured to account 
for dependence structures within compound events. Hence, 
multivariate bias correction (MBC) methods aim to correct 
the dependencies between the different variables of interest, 
in addition to their marginal distributions. François et al. 
(2020) have categorised MBC methods into three types of 
approaches, depending on the way the dependence struc-
ture is corrected: based on conditional dependencies (the 
“successive conditional” approach, e.g., in Piani and Haerter 
2012; Dekens et al. 2017); separately from the marginals 
(“marginal/dependence”, e.g., in Cannon 2017; Vrac 2018; 
François et al. 2021), or marginals and dependence together 
(“all-in-one”, e.g., Robin et al. 2019; Robin and Vrac 2021).

In any BC method (univariate of multivariate), one 
implicit or explicit desirable feature is that the climate 
changes that are present in the raw simulations from the 
calibration period to the projection one (e.g., change in 
mean temperature, or in its moments, or change in rainfall 
occurrence probabilities) are respected also by the corrected 
simulations. This is meant to preserve the main physical 
information provided by climate models based on a common 
assumption: Even if climate simulations have some statisti-
cal biases, the changes in the main properties are physically-
driven by processes and constraints that are relevant and, 
thus, provide reliable information on climate evolutions. 
Note that it is the same assumption made by the IPCC in its 
various reports when looking at anomalies (i.e., removing 
the seasonal cycle of each climate model, which is a very 
simple univariate BC method) to focus only on the changes 
(in temperature, precipitation, etc.) of the different model 
simulations up to the end of the 21st century. Regarding 
evolutions of usual univariate variables (such as temperature 
or precipitation separately), although uncertainties are still 
inevitably present, the climate change signal is more and 
more studied and robust (e.g., Kendon et al. 2008; Matte 
et al. 2019). However, signals of changes in multivariate 
properties or dependencies in the climate simulations have 
not received much interest so far. Yet, these changes can 
have major repercussions on multivariate BC designs, on 
compound events evolutions, or more generally on conclu-
sions brought by impact studies. Evolution of multivari-
ate dependence properties is then an essential signal from 
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the climate models that must be investigated to assess its 
reliability.

Moreover, local univariate and multivariate properties 
of climate variables are influenced by large-scale synoptic 
atmospheric circulations (e.g., Yiou et al. 2018; Jézéquel 
et al. 2020; Faranda et al. 2020; Rust et al. 2013). Hence, 
biases in modeled circulations can propagate to statisti-
cal properties of local climate. For example, Maraun et al. 
(2021) showed that synoptic circulation regimes and their 
biases have significant influences on univariate temperature 
and precipitation biases and on the capability of univari-
ate BC methods (such as quantile-mapping) to correct these 
biases. However, the influences of atmospheric circulation 
regimes on local-scale correlations or dependencies between 
temperature and precipitation have not been investigated so 
far. Assessing the influence of such regimes on changes of 
inter-variable dependence properties and correlations is thus 
an objective of the present study, as it might have important 
consequences for applicability of MBC methods.

Therefore, the goal of the present paper is to assess how 
climate models reproduce the key inter-variable dependence 
between temperature (TAS) and precipitation (PR), as well 
as their changes over time. Since this correlation is impor-
tant globally to get realistic situations, we do not focus on a 
specific event to drive our analyses. However, it is clear that 
the good or bad representation of this correlation in climate 
simulations can have major consequences on various spe-
cific events. For examples, joint heatwaves and droughts are 
obviously driven by some parts of the correlation between 
TAS and PR. This is also the case of convective phenomena, 
associating temperature and heavy rainfall, which, without 
a proper correlation, cannot be correctly modeled or char-
acterized. Indeed, the Clausius–Clapeyron relation implies 
a correspondence between temperature and precipitation 
(e.g., Lenderink and Van Meijgaard 2008; Luu et al. 2022). 
More generally, a realistic correlation between temperature 
and precipitation is needed, even for non-extreme events, in 
order to correctly simulate basic day-to-day variability of 
the two marginal variables (e.g., wet/dry spells probabili-
ties, temperature auto-correlation) while, at the same time, 
accounting for the physical realism of the joint (TAS, PR) 
daily situations. We first investigate how two climate model 
ensembles (CMIP6 multi-model ensemble and CESM multi-
run ensemble) compare to reference reanalysis data in terms 
of historical change (i.e., evolution) of inter-variable correla-
tions. In addition to basic comparisons, we assess various 
contributions to the historical changes in temperature–pre-
cipitation correlations, as well as to the biases of historical 
changes in correlation. This is done first by defining synoptic 
circulation regimes and then, conditionally on each regime, 
by separating the marginal distributions, the rank correla-
tions (linking the marginal distributions) and the circulation 
regimes frequencies, which all influence the inter-variable 

correlations. In a second step, the conditional contributions 
(given the circulation regimes) to future correlation changes, 
up to the end of the 21st century, are also explored.

The rest of this article is structured as follows: Sect. 2 
describes the reanalysis references and climate simulations 
used in this study. Section 3 assesses whether tempera-
ture–precipitation correlations from climate model simu-
lations are consistent with those from a reanalysis dataset 
over a historical time period. This is done first based on 
direct comparisons. Next, atmospheric circulation regimes 
are defined and basic assessments of the capability of the 
climate models to reproduce the regimes defined on reanaly-
sis data are provided. Evaluations of the changes in inter-
variable correlations are made via a decomposition of cor-
relations conditional on the large-scale circulations regimes. 
Section 4 characterises future changes up to the end of the 
21st century in the simulated correlations. Finally, conclu-
sions and discussions are provided in Sect. 5.

2 � Data

Over the historical period, the reference data used in this 
study come from the ERA5 daily reanalysis (Hersbach 
et  al. 2020) over the 1979–2019 period. For tempera-
ture (hereafter TAS) and precipitation (PR), the western 
Europe domain, defined as [10◦W, 30◦E] × [30◦N, 70◦N] , 
is extracted. We select a North Atlantic basin domain 
( [80◦W, 30◦E] × [30◦N, 70◦N] ) for geopotential heights at 
500 hPa (hereafter z500).

Two ensembles of climate model simulations are con-
sidered. The first one is a multi-model ensemble made of 
11 Global Climate Models (GCMs) contributing to the 6th 
exercise of the “Coupled Models Intercomparison Project” 
(CMIP6, Eyring et al. 2016). This selection was dictated 
by the availability of Z500, temperature and precipitation 
fields on daily time scales at the time of analyses: we have 
only selected models whose data were fully available for 
the whole period 1979–2100. The list of the GCMs is pro-
vided in Table 1. The second ensemble contains 40 members 
(i.e., runs) from a single GCM, the “Community Earth Sys-
tem Model” (CESM, Kay et al. 2015) developed at NCAR/
UCAR (USA). The use of these two ensembles (multi-model 
or multi-run) will allow to distinguish inter-model variability 
from internal variability in our investigations about change 
in correlations. From each of these two ensembles, the same 
variables (i.e., TAS, PR, z500) have been extracted for the 
same geographical domain as for ERA5 reanalyses, over 
the 1979–2014 period for the historical runs and over the 
2015–2100 period under the shared socioeconomic path-
ways 585 (SSP585) scenario (Riahi et al. 2017). Hence, for 
each run of each ensemble, we consider continuous simula-
tions from 1979 to 2100, which we separate into 1980–2019 
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to characterise the historical period—and that will be cut 
in 1980–1999 and 2000–2019 for historical evaluations—
as well as into four 20-year future periods: 2021–2040, 
2041–2060, 2061–2080, 2081–2100. Moreover, to ease the 
comparisons between the different datasets, all temperature, 
precipitation and Z500 fields have been regridded to a com-
mon spatial resolution of 1◦ × 1◦.

3 � Historical changes in inter‑variable 
correlations

3.1 � Evaluations of historical biases and changes 
in inter‑variable correlations

As a first assessment of the capability of the various cli-
mate models to reproduce the reference inter-variable cor-
relations, Fig. 1 displays the maps of the ERA5 TAS–PR 
correlations ( �ERA5 ) over the 1980–1999 period, for both 
winter and summer (Fig. 1a, d respectively). This figure also 
shows the maps of the correlation mean biases with respect 
to ERA5 (i.e., mean of �model − �ERA5 for all models or runs 
in a given ensemble) from CMIP6 (second column, Fig. 1b, 
e) and CESM runs (third column, Fig. 1c, f). One can won-
der if these correlation biases are driven by biases in one of 
the two univariate variables more predominantly. Even with 
perfect marginals, i.e., without any bias for the TAS and 
PR variables separately, the correlation value can still be 
strongly biased due to a wrong dependence structure (copula 
function) linking TAS and PR. However, biases in the mar-
ginal distributions can also reinforce the bias in correlation. 

To investigate if this is the case, for each GCM (or run), 
each season, each grid-cell and each variable, we have per-
formed a Cramer–von Mises test (Darling 1957) to compare 
the univariate (TAS or PR) distributions of the simulations, 
to the distribution of the ERA5 reanalyses. A p value lower 
than 0.05 indicates that, with a confidence of 95%, we reject 
the null hypothesis that the two distributions (from simula-
tions or from reanalyses) are the same. A p value higher 
than 0.05 indicates that we cannot reject (i.e., we accept) the 
equality of the distributions, with a confidence of 95%. The 
results are given in the supplementary material figure SM.1 
showing the boxplots of the mean p values (among the 11 
CMIP6 GCMs or the 40 CESM runs) of CMIP6 and CESM 
temperature and precipitation, over the 4 seasons. Based on 
this figure, it is clear that, for both TAS and PR, the univari-
ate variables are biased, as most of the obtained p values are 
below 0.05. This means that the modelled distributions are 
often significantly different from the ERA5 ones. There is 
not one variable that appears to be more responsible (i.e., 
more biased) than the other. Yet, surprisingly, PR distribu-
tions seem to be slightly more often considered as similar 
to ERA5 PR distributions, or at least with higher p values 
than for temperature, for both CMIP6 and CESM ensembles.

Yet, the central question of this study is the capability 
of the simulations to provide changes in TAS–PR correla-
tions over time. Hence, for each grid-cell of the domain, 
the change of correlation, Δ , is calculated as the difference 
between the 2000 and 2019 correlation, �2000−2019 , and the 
1980–1999 correlation, �1980−1999 , i.e.,

for each model run ( Δrun ) or for ERA5 ( ΔERA5 ). For each 
ensemble (CMIP6 or CESM), the mean change of the dif-
ferent runs is computed to get ΔCMIP6 and ΔCESM  . Then, the 
bias in change of correlation is defined as

where “ENS” is either CMIP6 or CESM. The last two 
rows of Fig. 1 show, for winter and summer, the maps of 
these “biases in changes” of inter-variable correlations 
from 1980–1999 to 2000–2019, with respect to the change 
observed in ERA5. The equivalent maps for spring and fall 
are provided as supplementary materials in Figure SM.2. 
Regarding ERA5 correlations (Fig. 1a, d), a seasonal effect 
is clearly visible on the spatial patterns of the correlation. 
This seasonal effect is also visible in the CMIP6 (Fig. 1b, 
e) or CESM (Fig. 1c, f) biases of correlation, with positive 
and negative patterns distributed differently according to the 
season. In general, correlation biases seem more pronounced 
with the CESM ensemble than with the CMIP6 one. This 
reflects the fact that, although the CESM ensemble is com-
posed of 40 runs, as only a single climate model is used 

(1)Δ = �2000−2019 − �1980−1999,

(2)BENS
Δ

= ΔENS − ΔERA5,

Table 1   List of CMIP6 simulations used in this study, their run, 
approximate horizontal resolution and references

Simulation name Run Atmospheric 
resolution 
(km)

Data reference

BCC-CSM2-MR r1i1p1f1 100 Wu et al. (2018)
CanESM5 r10i1p1f1 500 Swart et al. (2019)
CNRM-CM6-

1-HR
r1i1p1f2 100 Voldoire (2019)

CNRM-CM6-1 r1i1p1f2 250 Voldoire (2018)
CNRM-ESM2-1 r1i1p1f2 250 Seferian (2018)
INM-CM4-8 r1i1p1f1 100 Volodin et al. (2019)
INM-CM5-0 r1i1p1f1 100 Volodin et al. (2019)
IPSL-CM6A-LR r14i1p1f1 250 Boucher et al. 

(2018)
MIROC6 r1i1p1f1 250 Shiogama et al. 

(2019)
MRI-ESM2-0 r1i1p1f1 100 Yukimoto et al. 

(2019)
UKESM1-0-LL r1i1p1f2 250 Tang et al. (2019)
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Fig. 1   First two rows: a, d maps of 1980–1999 ERA5 inter-variable 
(temperature, precipitation) correlations; b, e Biases of CMIP6 inter-
variable correlations with respect to ERA5 correlations; c, f Biases of 
CESM inter-variable correlations with respect to ERA5 correlations. 
Last two rows: g, j maps of changes (from 1980–1999 to 2000–2019) 
in ERA5 inter-variable (temperature, precipitation) correlations; h, k 

biases of CMIP6 in changes of inter-variable correlations; i, l biases 
of CESM in changes of inter-variable correlations. First row (a–c) 
and third one (g–i) correspond to winter results, while second (d–f) 
and fourth (j–l) ones correspond to summer results. The equivalent 
maps for spring and fall are provided as supplementary materials in 
Fig. SM.2
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here, the runs are consistent within the ensemble and, thus, 
the correlations (and their biases) are similar from one run 
to another. For CMIP6 model simulations, the variability 
of the correlations is larger and then reduces the mean cor-
relation biases. This difference in internal vs. inter-model 
variability of correlation is illustrated in Fig. SM.3, showing 
the seasonal variance maps of the (TAS, PR) correlation 
values within the CMIP6 ensemble (first column) and within 
the CESM ensemble (second column). The third column of 
Fig. SM.3 shows the ratio of the CESM variance of correla-
tions over the CMIP6 variance of correlations. This ratio 
allows us to quantify the proportion of the inter-model vari-
ability in correlations explained by the internal CESM vari-
ability of correlations. This figure illustrates that, for all sea-
sons, the CESM ensemble shows a quite reduced variability 
in correlations, with respect to the CMIP6 variability. Then, 
the inter-model differences found in the present study cannot 
be explained by the internal variability alone, because the 
latter represents only a small part of the inter-model one, 
about 30% of variance on average.

When looking at ERA5 correlation changes (Fig. 1g, 
j), the changes also appear season-dependent. This is thus 
also true for the associated CMIP6 (Fig. 1h, k) and CESM 
(Fig. 1i, l) biases. However, here, the intensity of the biases 
are not stronger for one ensemble. Interestingly, the spatial 
structures of these biases in correlation changes are rather 
similar for the two ensembles. These biases are neither uni-
form nor close to zero, indicating that CESM and CMIP6 
simulations do not reproduce the ERA5 correlation changes. 
Moreover, they both look like the “negative pictures” of 
the structures of change seen from ERA5. This means that 
neither CMIP6 nor CESM simulations provide correlation 
changes between 1980–1999 and 2000–2019. Indeed, these 
“negative picture” patterns imply that the (TAS, PR) correla-
tions issued from CMIP6 and CESM are mostly stationary 
(i.e., they do not evolve much in time) while they should 
show some non-stationarity as indicated by ERA5. Hence, 
neither CMIP6 nor CESM capture the historical changes in 
correlations.

Note that significant changes in inter-variable correlations 
in ERA5 can be caused either by internal low-frequency 
variability or by climate change. In ERA5, the contributions 
of the two factors cannot be dissociated (at least easily). In 
the CESM ensemble, the climate change signal can be esti-
mated since averaging the results obtained from different 
runs reduces the effect of the internal variability. However, 
results on CESM cannot be directly transposed to ERA5 as 
CESM can also be biased with respect to ERA5. To consider 
model biases, it is important to analyse the CMIP6 ensemble 
as it provides an idea of the inter-model variability. Hence, in 
order to investigate more these biases—and more precisely 
the biases in changes of correlations—it is important to take 
advantage of the ensembles and consider the distribution of 

changes in inter-variable correlations, rather than only the 
mean changes across the various runs.

3.2 � Distributions of changes in correlations 
over historical period

We investigate the distributions of changes in correlations 
from the CMIP6 and CESM ensembles and evaluate if they 
are compatible with the historical changes seen with the 
ERA5 reanalyses. Therefore we define the probability �ERA5 
that corresponds to the probability that the change in cor-
relations—from one reference period ( p1 = 1980–1999) to a 
period of interest ( p2 = 2000–2019) as defined in Eq. (1)—is 
lower than or equal to the correlation change provided by 
ERA5:

with

where N is the number of members of the ensemble “ENS” 
of interest ( N = 40 for CESM and N = 14 for CMIP6). In 
the following, the correlation change from an ensemble is 
said to be “compatible” at a 90% confidence level with the 
ERA5 correlation change if 0.05 < 𝜋ERA5 < 0.95 , i.e., if 
ΔERA5 lies in the 90% central part of the ΔENS distribution. 
If 𝜋ERA5 < 0.05 , the distribution of changes seen from the 
ensemble is mostly (or completely) above the ERA5 change. 
Conversely, if 𝜋ERA5 > 0.95 , the ensemble distribution from 
the ensemble is below the ERA5 change.

To visualize the results, Fig. 2 shows the winter and 
summer maps of �ERA5 probabilities for CMIP6 and CEMS, 
where only �ERA5 values higher than 0.95 (with upper trian-
gles) or lower than 0.05 (lower triangles) are plotted. Where 
no triangles are plotted, the correlation change from the 
ensemble is compatible with the ERA5 change.

To interpret these results, it is important to know where 
the ERA5 change in correlation is significant. Thus, a Fisher 
test (with a 95% confidence level) is performed based on 
Fisher’s z-transformation (Fisher 1915; Hotelling 1953) to 
assess if the ERA5 correlations changed from one period 
to another. Hence, significant changes are also plotted in 
colours in the maps of Fig. 2, while non-significant ERA5 
changes are left white. The major result conveyed by Fig. 2 
is that, in general, for both CMIP6 and CESM, the ensem-
ble distribution of changes is not compatible with an ERA5 
correlation change when the latter is significant. Indeed, 
for many of the coloured grid cells (i.e., with significant 
correlation change), a triangle is also present. For negative 
ERA5 changes (blue), a lower triangle is visible, while for 
positive ERA5 changes (yellow–red), it is an upper triangle. 
Conversely, most of the domains where the distributions of 

(3)�ERA5 = Pr(ΔENS
≤ ΔERA5)

(4)ΔENS = {Δi = �(p2, runi) − �(p1, runi)}i=1,…,N
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changes are compatible with ERA5 corresponds to non-
significant changes. Therefore, CMIP6 and CESM do not 
seem to be able to reproduce the main ERA5 changes in 
inter-variable correlations.

3.3 � The role of circulation regimes in historical 
changes

One can wonder how much these disagreements (between 
ERA5 and models) in terms of change of correlations are 
influenced by the disagreements in frequencies between 
ERA5 and simulated circulations. Do the partial disagree-
ments in changes of correlations come from the biased simu-
lated regime frequencies? Or from biases in the marginal 
properties (of temperature and precipitation) conditionally 

on the regimes? From biased conditional temperature–pre-
cipitation correlations, given a regime? If they come from a 
combination of such features, what are their relative contri-
butions? To answer such questions, it is necessary to define 
these regimes.

3.3.1 � Circulation regimes: definition and basic GCM 
assessment

For each of the four seasons separately (winter: DJF; spring: 
MAM; summer: JJA; fall: SON), the ERA5 daily z500 fields 
are pre-processed in two steps: (1) they are first deseasonal-
ized and detrended. For that, the seasonality is estimated 
and removed by fitting a smoothing spline over the spatially 
averaged z500 over all years as a function of the day in the 

Fig. 2   Colours: significant changes in ERA5 (temperature vs. precipi-
tation) Pearson correlations from 1980–1999 to 2000–2019. Symbols: 
upper triangles show where the ERA5 change in correlation is higher 
than the 95th percentile from the ensemble of correlation changes; 

lower triangles correspond to ERA5 change in correlation lower than 
the 5th percentile. Results are shown for CMIP6 (a, b) and CESM (c, 
d), for winter (a, c) and summer (b, d). Results for spring and fall are 
given in Fig. SM.4 of the supplementary materials
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year. The temporal trend is then computed and removed as 
a smoothing spline of the deseasonalized Z500 as a function 
of time; (2) a Principal Component Analysis (PCA) is per-
formed on the detrended and deseasonalized fields. The prin-
cipal components (PC) explaining 90% of the total variance 
are kept (12 PCs in DJF, 14 in MAM and SON, 17 in JJA).

Then, for each of the four seasons separately, based on 
the PCs retained, the k-means clustering algorithm is applied 
to define K = 4 regimes. Here, this number K = 4 is arbi-
trarily selected to be consistent with circulation regimes 
found in the literature (e.g., Michelangeli et al. 1995; Corti 
et al. 1999; Yiou and Nogaj 2004). The k-means algorithm 
is performed with the Hartigan–Wong algorithm (Harti-
gan and Wong 1979) with a maximal number of iterations 
equal to 100. Since the algorithm is sensitive to the cluster 

initialization, the algorithm is performed for 10 random 
cluster initialisations. The clustering for which the inter-
nal sum of squares is minimum is kept. The four resulting 
ERA5 composite maps for Winter are shown in Fig. 3. We 
obtain the four traditional circulation regimes in winter: 
map Fig. 3a corresponds to the “Blocking” regime, Fig. 3b 
to the “Atlantic Ridge” one, Fig. 3c to the positive phase of 
the North Atlantic Oscillation (NAO+) and Fig. 3d to its 
negative phase.

Each CMIP6 and CESM daily Z500 field is next attrib-
uted to one of the ERA5 regimes. The following steps are 
performed: 

1.	 The daily Z500 fields from the models are pre-processed 
by removing the average temporal trend and seasonality 
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Fig. 3   Composite maps of the four ERA5 winter clusters obtained 
from the k-means algorithm applied to daily fields of z500 over the 
north Atlantic region. Colours correspond to z500 anomalies and 

contours to raw z500. The equivalent composite maps for the other 
seasons are given as supplementary materials in Figs. SM.5–SM.7
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over North Atlantic in the same way as for ERA5. Note 
that the trend and seasonality is estimated individually 
for each dataset (i.e., run).

2.	 Each detrended and deseasonalized daily Z500 field 
is projected onto the selected principal components 
defined from the ERA5 dataset, in order to get the daily 
time series of PCs. The projection is made thanks to the 
PCA rotation matrix obtained with the ERA5 dataset.

3.	 Finally, a day is attributed to a given circulation regime 
if the Euclidean distance between the PCs of this day 
and the PCs of the centroid representing the regime is 
minimum.

Hence, the circulation regimes are forced to be the same 
for the model simulations and for the reanalyses. By 

construction, the CESM and CMIP6 composite maps 
obtained for each regime are very close to those from ERA5 
(not shown). Note that the CESM and CMIP6 historical sim-
ulations do not represent the chronology of observations but 
it is assumed that each model simulates its own meteorol-
ogy that its consistent with the chronology of natural and 
anthropogenic forcings. Therefore, although the chronologi-
cal sequences are different, it is expected that the statistics 
are comparable. This must be reflected in the regimes and 
their frequencies. So, it is meaningful to compare ERA5’s 
regimes to CMIP6/CESM’s, even if the chronologies are 
not the same. However, a basic evaluation of the frequen-
cies of each regime indicates some differences between the 
frequencies from the ERA5 regimes and those from CESM 
or CMIP6, as shown in Fig. 4 for the four seasons.
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Fig. 4   For each season, boxplots of frequencies of z500 regimes occurrences for CMIP6 (in red) and CESM simulations (in green). The blue 
segments correspond to the ERA5 frequencies of the regimes
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At first sight, the frequencies from models appear to be 
biased with respect to the reference ERA5 frequencies. 
However, the ranges of frequencies in Fig. 4 are quite tight, 
visually emphasising the biases. Generally, the inter-model 
variability of the frequencies from the CMIP6 models is 
slightly higher than the single-model internal variability 
brought by the CESM runs, in particular in summer and 
fall. Nevertheless, most of the time, the frequency biases are 
somehow equivalent for CMIP6 models and CESM runs: 
they generally both either overestimate or underestimate the 
ERA5 frequencies, with the exception of cluster 4 in win-
ter. These biases in frequencies can be quite pronounced. 
In many cases, the reference ERA5 frequency is out of the 
inter-quartile interval (e.g., C3 in winter among others), 
and even out of the whole boxplot (i.e., distribution), as in 
regime C2 for CESM, or in regime C3 in fall for both CMIP6 
and CESM. Corti et al. (1999) speculated that the increase in 
temperature over the Northern Hemisphere may be due to a 
change in the frequency of the regimes. In the present arti-
cle, the influences of the regimes are investigated in terms 
of changes of (temperature–precipitation) inter-variable cor-
relation, instead of change of temperature as done by Corti 
et al. (1999).

Even if the conditional temperature–precipitation correla-
tion given this regime is correct (which is not assessed so 
far), the frequency biases can have major consequences on 
the overall inter-variable correlation.

Hence, it is interesting to look at the conditional biases 
of the inter-variable (temperature vs. precipitation) correla-
tions given the weather regimes, as well as the conditional 
biases of changes in inter-variable correlations, given the 
weather regimes. For winter, biases of correlations are given 
in Fig. 5, while biases in changes of correlations are provided 
in Fig. SM.11 of the supplementary materials section. The cor-
relation biases results for the other three seasons are given in 
Figures SM.8–SM.10 and the biases in correlation changes for 
the four seasons in Figs. SM.12–SM.14 of the supplementary 
materials section. Roughly speaking, the spatial structure of 
the ERA5 correlation maps (first column of Fig. 5) is rather 
similar for unconditional or conditional calculations, with, 
in winter, a latitudinal gradient, going from strong positive 
correlation values towards the North, e.g., along the Norwe-
gian coast, to strong negative correlations towards the South, 
e.g., over the Mediterranean region. However, the magnitude 
of these correlations varies from one circulation regime to 
another, reflecting their influences. For example, winter regime 
2 (Fig. 5g) induces the strongest TAS–PR correlations over 
Finland and mild ones over France, while regime 3 (Fig. 5j) 
displays mild correlations over Finland and the weakest corre-
lations over France. The spatial structures of the CMIP6 maps 
of winter mean biases are also quite similar for unconditional 
and conditional calculations whatever the regime: a central 
band going from Spain and France to the East (to Poland and 

Belarus) shows correlation biases close to zero or slightly 
negative, while out of this band (i.e., to the North or South), 
most of the biases are positive. Nevertheless, as for ERA5 cor-
relation maps, the biases show some variability. For example, 
winter regime 2 (Fig. 5h) is the only circulation type present-
ing almost no bias (or slightly negative) over Finland, and quite 
strongly positive biases over Greece. The spatial structure of 
the CESM TAS–PR correlation mean biases (third column) is 
quite different and more pronounced than that of CMIP6 aver-
age. As for CMIP6, although some variability is visible, the 
winter CESM pattern of biases is relatively the same from one 
regime to another. However, the magnitude of the mean biases 
is much stronger, inversely following the ERA5 correlations: 
highly negative biases (i.e., underestimating the correlations) 
to the North and highly positive biases (i.e., overestimating the 
correlations)to the South.

Regarding ERA5 conditional changes of correlations (Figs. 
SM.11–SM-14, (a, d, g, j, m)), here, the weather regimes 
conditioning brings signals different from the unconditional 
changes of correlations, with a high variability of change 
from one regime to another. More pronounced changes—
both increasing or decreasing—are visible with spatial struc-
tures appearing when looking at changes conditional on the 
circulation regimes, for example, for winter regimes 2 and 
4 (Fig. SM.11(g,m)), or for fall regime 4 (Fig. SM.14(m)). 
Regarding CMIP6 or CESM conditional biases in changes of 
correlation, they are somehow equivalent to each other. Inter-
estingly, as already observed for the unconditional case, they 
mostly correspond to the “negative pictures” of the ERA5 
maps of changes, indicating that CMIP6 and CESM ensembles 
do not see much of the historical changes and tend to have sta-
tionary TAS–PR correlations from 1980–1999 to 2000–2019, 
both in the unconditional and conditional cases.

3.3.2 � Conditional decomposition of correlation

In order to investigate the role of the defined circulation 
regimes in the (historical or future) changes of inter-variable 
correlations, we rely on a decomposition of the correlation that 
is applicable when the statistical population (our daily time 
series) is composed of clusters (here, circulation regimes). 
This decomposition of correlation was introduced by Char-
ter and Alexander (1993). Based on a bivariate time series 
(xi, yi)i=1,…,N (here, temperature and precipitation at a given 
gridcell) that is clustered in K groups (here, K = 4 circulation 
regimes) of size (nk)k=1,…,K , the correlation between X and Y 
can be decomposed into:

where 

(5)� =
NΣXY − (ΣX)(ΣY)

√
NΣX2 − (ΣX)2

√
NΣY2 − (ΣY)2
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∙	� N =
∑K

k=1
nk is the total sample size,

∙	� ΣX =
∑K

k=1
(nkXk) and ΣY =

∑K

k=1
(nkYk),

∙	� ΣX2 =
∑K

k=1
nk(Xk

2

+ S2
Xk
) and ΣY2 =

∑K

k=1
nk(Yk

2

+ S2
Yk
)

,

∙	� ΣXY =
∑K

k=1
nk(�kSXk

SYk + Xk Yk),

 where �k is the kth subgroup correlation between X and Y, SXk
 

and SYk are the kth subgroup standard deviations, and Xk and 

Yk are the kth subgroup sample means. Thus, based on equa-

tion (5), it is possible to calculate the unconditional correla-

tion between X and Y if we know � = {nk}k=1,…,K (i.e., sizes 

of the K clusters), � = {Mk = (Xk,Yk, SXk
, SYk )}k=1,…,K (i.e., 

the marginal properties of each cluster) and � = {�k}k=1,…,K 

Fig. 5   Maps of ERA5 winter inter-variable (temperature, precipita-
tion) correlations without clustering (a) and conditionally on clus-
ters 1–4 (d, g, j, m, respectively). Second column b, e, h, k, n corre-
sponds to the biases of CMIP6 inter-variable correlations with respect 

to ERA5 correlations, without clustering (b) and for clusters 1–4 
(e, h, k, n). Right column c, f, i, l, o is equivalent to second column 
but for CESM. Results for the other three seasons are given in Figs. 
SM.8–SM.10 of the supplementary materials
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(i.e., the X vs. Y correlation in the K clusters). Hence, if 
the three types of information—cluster sizes, conditional 
marginal properties and conditional correlations, hereafter 
referred to as “weather regimes conditional information” 
���� = (����

k
)
k=1,…,K = (�,�,�) = (n

k
,M

k
, �

k
)
k=1,…,K—are 

calculated for one climate model simulation ( ����mod ) and 
for the ERA5 references ( ����ref  ), we can compute (1) the 
influence of the bias of each given ���� component on the 
bias in change of correlation, as well as (2) the contribution 
of the change of each given ���� component to the change 
of the correlation over time.

3.3.3 � Influences of the “Weather Regimes Conditional 
Information” biases on the biases of historical 
changes in correlations

We define the change in correlation as Δ = �2 − �1 , where 
subscripts “1” and “2” refer respectively to a past (e.g., 
1980–1999) period and to a more recent (e.g., 2000–2019) 
period. For a given period p (either p1 or p2 ), the ERA5 
correlation � between X (temperature) and Y (precipita-
tion) can be calculated using Eq. (5), knowing the three 

���� components (�,�,�) estimated from the ERA5 
dataset. The ERA5 correlation can then be noted as 
�
WRCIERA5,p where WRCIERA5,p = (�(ERA5,p),�(ERA5,p),�(ERA5,p)) 

corresponds to the ERA5 WRCI components calculated 
over period p. Likewise, the correlation from a run in the 
CMIP6 or CESM ensemble over period p can be writ-
ten as �WRCIrun,p with WRCIrun,p = (�(run,p),�(run,p),�(run,p)) 
corresponding to the run WRCIs. For this run, the 
change in correlation from period p1 to period p2 
is then Δrun = �

WRCIrun,p2 − �
WRCIrun,p1 . For ERA5, it is 

ΔERA5 = �
WRCIERA5,p2 − �

WRCIERA5,p1 . The bias in the change of 
correlation for this run is then Δrun − ΔERA5 . However, it is 
possible to calculate the change that would have occurred 
for this run if one of the ���� components over the two 
periods was correct, i.e., was the same as that of the ERA5 
reference. For example, in the case of a correct � compo-
nents, this hypothetical change of correlation, denoted as 
ΔWRCI|� , is calculated as the change that is obtained when 
computing the correlations (over p1 and p2 periods) with 
an � component from the reference ERA5 data, while the 
other ���� components � and � stem from the run itself:

Fig. 5   (continued)
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The bias of this correlation change is then ΔWRCI|� − ΔERA5 . 
Hence, for this specific run, the influence of the bias of a 
given ���� component (here, � for the example) on the 
bias in change of correlation is noted as Ib(�) and is defined 
as:

(6)
ΔWRCI|� =�(�

(ERA5,p2),�(run,p2 ),�(run,p2 ))

− �
(�(ERA5,p1),�(run,p1 ),�(run,p1 )).

(7)
Ib(�) =

|Δrun − ΔERA5| − |ΔWRCI|� − ΔERA5|
|Δrun − ΔERA5|

=1 −
|ΔWRCI|� − ΔERA5|
|Δrun − ΔERA5|

and corresponds to the reduction of bias in terms of change 
of correlation that is brought by having ‘a ‘correct” � ���� 
information. The influences Ib(�) and Ib(�) of the ���� 
components other than � can be calculated the same way 
by permuting “ERA5” and “run” labels at the appropriate 
locations in Eq.  (6) to compute ΔWRCI|� and ΔWRCI|� , 
allowing to get Ib(�) and Ib(�) from Eq. (7).

For each of the three ���� components, in order to get a 
single Ib value for each ensemble and gridcell, the N Ib val-
ues given for a given gridcell by the different runs or models 
in an ensemble (CMIP6 or CESM) are averaged. Figure 6 
displays the boxplots of the influences of the three ���� 
components to the CMIP6 (red) and CESM (green) biases 

rh
o 

C
6

rh
o 

C
E

M
,S

 C
6

M
,S

 C
E

n 
C

6

n 
C

E

−0.5

0.0

0.5

1.0

C
on

tri
bu

tio
n 

to
 b

ia
s 

in
 c

or
re

la
tio

n 
ch

an
ge

s

(a)

rh
o 

C
6

rh
o 

C
E

M
,S

 C
6

M
,S

 C
E

n 
C

6

n 
C

E

−0.5

0.0

0.5

1.0

C
on

tri
bu

tio
n 

to
 b

ia
s 

in
 c

or
re

la
tio

n 
ch

an
ge

s

(b)

rh
o 

C
6

rh
o 

C
E

M
,S

 C
6

M
,S

 C
E

n 
C

6

n 
C

E

−0.5

0.0

0.5

1.0

C
on

tri
bu

tio
n 

to
 b

ia
s 

in
 c

or
re

la
tio

n 
ch

an
ge

s

(c)

rh
o 

C
6

rh
o 

C
E

M
,S

 C
6

M
,S

 C
E

n 
C

6

n 
C

E

−0.5

0.0

0.5

1.0

C
on

tri
bu

tio
n 

to
 b

ia
s 

in
 c

or
re

la
tio

n 
ch

an
ge

s

(d)

Fig. 6   Boxplots of mean influence values of the three ���� compo-
nents to the biases in changes of temperature–precipitation correla-
tions from 1980–1999 to 2000–2019 in a winter, b spring, c summer, 
d fall. All CMIP6 (red) and CESM (green) boxplots show the spa-

tial variability of the influence results averaged by ensemble for each 
gridcell. The associated maps are provided as supplementary materi-
als in Figs. SM.15–SM.18
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of changes in winter temperature–precipitation correlations 
from 1980–1999 to 2000–2019 for the four seasons.

Generally speaking, all seasons give qualitatively similar 
results, which are also very similar for CMIP6 and CESM 
ensembles: the major influence on the biases in change 
in correlations come from the biases in the � component, 
explaining on average about 75% of the biases in correlation 
change. The biases in � , conditional marginal distributions, 
mostly explain the remaining 25%, while the biases in � , 
the size (i.e., frequency) of the circulation regimes, does not 
influence the biases in correlation changes. Some differences 
appear however when looking more closely at the results. For 
example, while the influence of the conditional correlations is 
very strong for spring (Fig. 6b) and summer (Fig. 6c), pushing 
down the relative influence of the conditional marginal 
distributions, the winter and overall fall seasons (Fig. 6a, d) see 
more pronounced influences of the conditional distributions, 
thus reducing the influence of the conditional correlations.

The main conclusion is that, although the conditional mar-
ginal properties have some moderate influences, the biases in 
conditional correlations—given the circulation regimes—are 
the main drivers of the biases in correlation changes over the 
historical period. The regime frequency biases being relatively 
small (Fig. 4, their influence appears almost negligible.

3.3.4 � Contributions of the “Weather Regimes Conditional 
Information” changes to the historical changes 
of correlations

In addition, whether they are biased or not, the Conditional 
Information can change over time and it is important to know 
how much these conditional changes contribute to the change 
of the unconditional TAS–PR correlation. To quantify the con-
tribution of the change of a given ���� component—say � 
for the illustration—to the change in inter-variable correlation, 
the correlations over the two period p1 and p2 are calculated 
based on Eq. (5) by considering that the ���� component 
of interest (e.g., � ) is stationary over time, i.e., is the same for 
the two periods. Hence, for the � example,

and

where “data” is either “ERA5” or the “run” of a model. The 
important point to note is that, here, �data,p2|� is calculated 
with a stationary ���� � component estimated from period 
1: hence, the � components are the same for the two periods. 
The hypothetical change between these two correlations is

�
data,p1 = �

��������,�� = �
(�(data,p1 ),�(data,p1 ),�(data,p1 ))

(8)�
data,p2|� = �

(�(data,p1 ),�(data,p2 ),�(data,p2 ))

Δdata|� = �
data,p2|� − �

data,p1 .

The contribution of the change in the � component to the 
change of the unconditional correlation is then quantified as:

The contributions CΔ(�) and CΔ(�) of the conditional infor-
mation other than � can be calculated the same way by per-
muting “ p1 ” and “ p2 ” labels at the appropriate locations in 
Eq. (8) to compute �data,p2|� and �data,p2|� , allowing to get 
CΔ(�) and CΔ(�) from Eq. (9).

As previously, for each of the three ���� components, 
in order to get a single CΔ value for each ensemble and grid-
cell, the N CΔ values given for a given gridcell by the dif-
ferent runs or models in an ensemble (CMIP6 or CESM) 
are averaged. Figure 7 shows the boxplots of contribution 
values of the changes in the three ���� components to 
the changes in temperature–precipitation correlations from 
1980–1999 to 2000–2019 for the four seasons, for CMIP6 
and CESM ensembles as well as for ERA5. As for Fig. 6, 
a relatively similar behaviour can be observed for the four 
seasons as well as for the different datasets: the major part of 
the unconditional correlation changes is due to the changes 
in the conditional correlations given the circulation regimes. 
The changes in conditional marginal properties only contrib-
ute at a quite moderate level, while the contribution values 
of the changes in frequencies of the regimes are centered 
around 0. The ensembles (CMIP6 and CESM) ���� con-
tributions are consistent with those from ERA5. However, 
for winter and fall (Fig. 7a, d), the contributions of the 
���� components are somehow different between ERA5 
and the two ensembles: the CMIP6 and CESM contributions 
are stronger for the � components, while their � contribu-
tions are underestimated. Interestingly, this coincides with 
a similar pattern observed in Fig. 6 for ���� influences 
on biases of changes. This means that, for winter and fall, 
the changes in unconditional correlation are biased not only 
by the values of the conditional correlations but also by the 
changes in the conditional correlation values, i.e., the time 
evolutions of the conditional correlations. For spring and 
summer, the agreement in terms of relative contributions 
between the three datasets suggests that the time evolution 
of the conditional correlations is not the main contributor 
of the biases in changes of correlations, and that—as shown 
in Fig. 6—the biases of the conditional correlation values 
themselves correspond to the major reasons.

(9)CΔ(�) =
Δdata − Δdata|�

Δdata
= 1 −

Δdata|�

Δdata
.
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4 � Projections of future changes 
in inter‑variable correlations

A natural question is then whether, in a future climate, the 
changes in intervariable TAS–PR correlations will continue 
to be mostly driven by changes in conditional correlations 
or if changes in frequencies of the circulation regimes or in 
conditional marginal properties will take over. To do so, the 
CMIP6 and CESM simulations up to 2100 are used, with a 
focus on the 2081–2100 period. In this context, the goal is 
not to perform an evaluation of of the simulated changes—as 
no reference is available for comparison in the future—but 
to characterise if CMIP6 and CESM ensembles provide sig-
nificant changes in inter-variable correlations in the future 

simulations, and if so, how these changes are driven by the 
conditional changes, given the circulation structures.

4.1 � Distributions of changes in correlations 
in future projections

First, for each given ensemble, season and grid cell, the 
mean correlation over 1981–2000 is compared to the mean 
correlation over 2081–2100 based on a Student t test at a 
95% significant level. Values of change in mean correlations 
(i.e., mean 2081–2100 correlation minus mean 1981–2000 
correlation) found significant are plotted in Fig. 8 for CMIP6 
and CESM, and winter and summer. In addition, similarly 
to Eq. (3) that defines �ERA5 , the probability that the changes 
from an ensemble is lower than the ERA5 correlation 
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Fig. 7   Boxplots of contribution values of the changes in the three 
���� components to the changes in temperature–precipitation cor-
relations from 1980–1999 to 2000–2019 in a winter, b spring, c sum-

mer, d fall. All CMIP6 (red), CESM (green) and ERA5 (blue) box-
plots show the spatial variability of the results. The associated maps 
are provided as supplementary materials in Figs. SM.19–SM.22
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change, �0 is now computed as the probability that the 
changes from an ensemble is lower than 0.

where ΔENS is defined as in Eq. (4). Thus, the probabil-
ity �0 indicates where the “no change” case is located in 
the ensemble distribution of changes in correlations from 
1981–2000 to 2081–2100. This information is superimposed 
into Fig. 8, only for 𝜋0 < 0.05 (as lower triangles) indicat-
ing that a zero change is in the lower tail of the distribution, 
and for 𝜋0 > 0.95 (as upper triangles) indicating that a zero 
change is in the upper tail. These two cases can thus be inter-
preted as opposite but significant changes of correlations. 
Hence, where no triangle is plotted, a stationary correlation 
between the two time periods cannot be rejected. Contrary 

(10)�0 = Pr(ΔENS
≤ 0)

to the results over the historical period (Fig. 2) that showed 
that, in general, CMIP6 and CESM are not able to reproduce 
the main ERA5 significant changes in inter-variable correla-
tions, here, the correlation changes up to 2081–2100 indi-
cate that the “no change” case is regularly excluded (upper 
and lower triangles in Fig. 8). Moreover, this rejection is 
made for a very large portion of the patterns identified with 
a significant change in mean correlation, implying that the 
changes in correlation distributions are sufficiently strong 
to significantly reject the “no change” case. Nevertheless, 
it is also clear here that CMIP6 and CESM ensembles do 
not show a strong agreement on this change of correlation 
criterion: for example, patterns of significant change in 
mean correlations—as well �0 triangles—are very distinct 
in summer for CMIP6 (Fig. 8b) and CESM (Fig. 8d). Hence, 
although significant changes of correlations are simulated by 

Fig. 8   Colours: Significant mean differences in correlations from 
1981–2000 to 2081–2100; symbols: upper triangles show where 
𝜋0 > 0.95 ; lower triangles correspond to 𝜋0 < 0.05 . Results are shown 

for CMIP6 (a, b) and CESM (c, d), for winter (a, c) and summer (b, 
d). The equivalent maps for spring and fall are given as supplemen-
tary materials in Fig. SM.23
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the models, their variability between models (as in CMIP6) 
or between ensembles (CMIP6, CESM) is quite strong, ques-
tioning the robustness of these changes.

4.2 � Contributions of the circulation regimes 
to the future changes of correlations

In order to know how these changes in inter-variable 
correlations and their disagreements between CMIP6 and 
CESM are driven by the conditional information brought 
by the circulation regimes, Fig. 9 displays the boxplots 
of contribution values of the change in the three ���� 
components to the changes in temperature–precipitation 
correlations from 1981–2000 to 2081–2100 for the four 
seasons and for CMIP6 and CESM ensembles. These 

contributions are calculated following Eq. (9) for each 
grid point showing a significant change between the two 
periods. Like in Fig.  7 over the historical period, the 
contribution of the regime frequencies (component � ) 
to future unconditional correlation changes is close to 
zero, although slightly bigger and with a slightly higher 
variability. However, contributions of future conditional 
marginal properties (component � ) are smaller than for 
the historical period and are now relatively equivalent to 
those from regime frequencies. This implies that the vast 
majority of the contributions comes from the changes in 
conditional correlations (component � ) given the circula-
tion regimes, although some differences between CMIP6 
and CESM are visible. If this was already true over the 
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Fig. 9   Same as Fig.  7 but for future changes: Boxplots of contribu-
tions of change of the three WRCIs to the changes in temperature–
precipitation correlations from 1981–2000 to 2081–2100 in a winter, 

b spring, c summer, d fall. Red boxplots are for CMIP6 and green 
ones for CESM. All boxplots show the spatial variability of the 
results
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historical period, it is reinforced within the future projec-
tions for both CMIP6 and CESM ensembles.

5 � Conclusion and discussion

5.1 � Conclusion

This study investigated first the capability of two climate 
model ensembles—one multi-model (CMIP6) and one 
multi-run from a single model (CESM)—to reproduce 
the historical inter-variable temperature vs. precipitation 
correlations from ERA5 reanalyses over Europe, as well 
as their changes over the historical period 1980–2019. As 
ERA5 inter-variable correlations are season dependent, so 
are the associated model biases, with distinct patterns for 
CMIP6 and CESM (Fig. 1a–f). Some changes in ERA5 TAS 
vs. PR correlations from 1980–1999 to 2000–2019 were 
found significant, also with spatial structures depending 
on seasons. However, both CMIP6 and CESM biases of 
changes are almost the exact “negative picture” of the 
ERA5 changes (Fig. 1g–l), indicating that these ensembles 
do not show changes of the inter-variable correlations over 
the 1980-2019 period. This has been further analysed by 
a comparison between the ERA5 correlation changes and 
the ensembles distributions of correlation changes (Fig. 2), 
showing that, most of the ERA5 significant changes belong 
to the lower (i.e., < 5th percentile) or upper tail (i.e., > 95th 
percentile) of the distribution, therefore out of the 90% 
confidence interval of the simulated changes. These results 
confirmed the inability of the tested ensembles to reproduce 
the ERA5 historical changes in correlations.

Second, to investigate if and how these mismatches 
between ERA5 and ensembles are driven by specific 
large-scale atmospheric circulation structures, conditional 
analyses have been performed. First, circulation regimes 
(or clusters) have been defined for each season separately 
(Fig. 3), via a k-means algorithm applied to daily fields of 
geopotential heights at 500 hPa (Z500). Then, simulated 
Z500 fields from 1980 to 2100 have been classified into 
the regimes. Although the ensembles regimes frequencies 
were shown to have more or less errors depending on the 
seasons (Fig. 4), this may not be the only reason of the 
mismatches. Other regimes-related statistical properties 
can also contribute, such as the conditional TAS vs. PR 
correlations or the conditional marginal properties of 
TAS and PR, both given the regimes. Hence, based on a 
mathematical decomposition of the correlation (Eq. (5)), 
the influences of the biases of the size of the regimes 
( � ), the conditional correlations ( � ) and the conditional 
marginal properties ( � ), both given fixed clusters, onto 
the mismatches have been investigated. The results (Fig. 6) 
showed that the bias of the size of the regimes have a rather 

negligible effect on the unconditional correlation biases, 
while the misrepresentation of the marginal TAS and PR 
properties (means and variances) has a stronger influence 
( ∼ 25%) on the final correlation bias. However, the major 
influence is due to the conditional correlation, the biases of 
which explains about 75% of the unconditional correlation. 
Moreover, the contribution of the changes (from 1980–1999 
to 2000–2019) in the three conditional properties ( � , � , � ) 
to the changes in the unconditional correlations is distributed 
the same way (Fig. 7): quite small for � , ∼20% for � and 
∼80% for � . In addition, a comparison to ERA5 over the 
historical period (Fig. 7) shows that, although the ensembles 
conditional contributions have equivalent structures as 
ERA5’s, the contributions of the conditional correlation 
are generally overestimated by the models (essentially for 
winter, summer and fall), at the expense of the contributions 
from the conditional marginals properties that are, thus, 
rather underestimated.

Hence, the general answer to the question “Are climate 
models reliable in terms of changes in temperature–precipi-
tation correlations?”, asked in the title, is “no”. Clear biases 
with respect to ERA5 are present in terms of TAS vs. PR 
correlations, as well as in terms of changes (over 1980-2019) 
of these correlations, with inappropriate contributions of 
changes from the WRCI components.

It was found that there is not one specific univariate vari-
able that is more responsible (i.e., more biased) than the 
other for the models correlation biases. Indeed, both TAS 
and PR appear biased. Nevertheless, these results indicate 
that efforts should be made to improve both the marginals 
and the dependence structure in the GCMs to improve the 
inter-variable correlations and thus reduce their biases.

Future changes in correlations have also been investigated 
for the two ensembles, based on 2081–2100 TAS vs. PR cor-
relations with respect to those from 1981–2000. Significant 
changes were found (Fig. 8) with season-dependent patterns 
but quite different for CMIP6 and CESM. This reflects a 
not-so-robust signal in terms of future evolution of the cor-
relations. The analysis of the different “weather regimes con-
ditional information” components ( � , � , � ) showed that the 
future changes in conditional correlations provide the largest 
contributions to the future changes in unconditional correla-
tions ( � ), for both ensembles (Fig. 9). This was already true 
over the historical period and will continue—and will even 
be slightly reinforced—in future SSP585 climate scenario. 
Hence, although changes provided by climate models in 
terms of marginal properties (e.g., mean, variance, univari-
ate distributions, temporal properties) are not challenged by 
this study, it is clear that the confidence on model projec-
tions regarding multivariate properties—and here, more spe-
cifically (TAS, PR) correlations—are questioned.



Changes in temperature–precipitation correlations over Europe: are climate models reliable?﻿	

1 3

5.2 � Discussion and perspectives

These results highlight the importance of the large-scale 
circulation structures/regimes and the need to understand 
their physical relationships with local-scale phenomena 
associated to specific inter-variable correlations. If these 
relationships are misrepresented within climate models, the 
local-scale correlations related to circulations (i.e., condi-
tional correlations), as well as their changes in time, can be 
biased. This can lead to major biases in the unconditional 
inter-variable correlations and therefore on the simulated 
compound events. Hence, various perspectives and future 
works can be envisioned from this study.

First, we can note that some areas or even some regimes 
can be better represented than others in terms of correla-
tions between temperature and precipitation. This type 
of investigation—which is out of the scope of the present 
study—could be one starting point to identify the potential 
processes correctly or badly represented in climate models, 
and responsible for the biases in inter-variable correlations 
and in correlation changes.

TAS and PR are obviously not the only climate vari-
ables. Equivalent studies could be performed for variables 
other than TAS and PR, for example, analysing correlations 
between wind and PR, or humidity and TAS, etc. Also, inter-
variable correlations are not the only dependence property 
of interest in the climate system. Equivalent studies for 
spatial dependencies and/or temporal dependencies (e.g., 
auto-correlations and/or cross-auto-correlations) could be 
carried out.

More generally, our results strongly motivate not only to 
improve climate models in terms of univariate climate vari-
ables (e.g., in order to get precipitation right, cloud param-
eterizations and microphysics might need to be improved), 
or in terms of relationships between spatial scales, but also 
to continue developing and improving multivariate bias 
correction (MBC) methods, in order to make (e.g., inter-
variable) dependencies more realistic. However, as this study 
showed that large-scale structures have influences on the 
local/regional-scale dependencies and, thus, on their biases, 
MBC must include large-scale information into the correc-
tion process. One “easy” possibility for this is to condition 
MBC applications on circulation regimes but other ways 
could be defined. This would allow MBC methods to be 
physically driven.

Nevertheless, signals in terms of future evolution of TAS 
vs. PR correlations were found to be present but not very 
robust, i.e., with a large variability within the CMIP6 ensem-
ble, and overall a large variability between the CMIP6 and 
CESM ensembles. This asks the question of whether and 
how simulated future changes in inter-variable correlations 
should be accounted for. If the simulated changes of correla-
tion are meaningless or considered not robust enough, the 

many compound events (CE) analyses in a future climate 
context should rather rely on a stationarity assumption for 
the dependence structures, only allowing to change the mar-
ginal distributions and properties of the variables of interest. 
This could be made by estimating the dependence proper-
ties from a reference dataset over a historical period and, 
then, injecting them into future climate simulations instead 
of their dependence. Obviously, this could have major con-
sequences on the CE results and must be investigated with 
caution.

This question of stationarity assumption of the depend-
ence structure also matters for multivariate bias correction 
design. Indeed, if changes in multivariate dependence (e.g., 
correlation) in the climate simulations are reliable, MBCs 
have to reproduce them and generate corrections with simi-
lar changes. However, if these simulated changes are not 
robust, MBC could rely on a stationarity assumption of the 
dependence from the reference dataset. Hence, the multivari-
ate properties (e.g., correlations) would not evolve and stay 
similar to the reference. Understanding the robustness of 
the changes in simulated dependencies is thus key to choose 
and apply the appropriate MBC methods in climate change 
context.
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