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ABSTRACT

Context. Cutting-edge, ground-based astronomical instruments are fed by adaptive optics (AO) systems that are aimed at providing
high performance down to the visible wavelength domain on 10 m class telescopes and in the near infrared for the first generation
instruments of Extremely Large Telescopes (ELTs). Both applications lead to a large ratio between the telescope diameter, D, and the
coherence length or Fried parameter, r0, that is D/r0. As the parameter that defines the required number of degrees of freedom of
the AO system, D/r0 drives the requirement to reconstruct the incoming wavefront with ever-higher spatial resolution. In this context,
super-resolution (SR) appears as a potential game changer. Indeed, SR promises to dramatically expand the range of spatial frequencies
that can be reconstructed from a set of lower resolution measurements of the wavefront.
Aims. As a technique that seeks to upscale the resolution of a set of measured signals, SR retrieves higher-frequency signal content
by combining multiple lower resolution sampled data sets. It is well known both in the temporal and spatial domains and widely used
in imaging to reduce aliasing and enhance the resolution of coarsely sampled images. This study applies the SR technique to the bi-
dimensional wavefront reconstruction. In particular, we show how SR is intrinsically suited for tomographic multi-wavefront sensor
(WFS) AO systems, revealing many of its advantages with minimal design effort.
Methods. We provide a direct space and Fourier optics description of the wavefront sensing operation and we demonstrate how SR
can be exploited through signal reconstruction, especially within the framework of periodic non-uniform sampling. We investigate both
meta-uniform and non-uniform sampling schemes and we show that under some conditions, both sampling schemes enable a perfect
reconstruction of band-limited signals. We also provide a SR bi-dimensional model for a Shack-Hartmann (SH) WFS, along with an
analysis of the characteristics of the sensitivity function. We validated the SR concept with numerical simulations of representative
multi-WFS SH AO systems. Finally, we explored the extension of the method to pyramid WFSs.
Results. Our results show that combining several WFS samples in a SR framework grants access to a greater number of modes than
the native one offered by a single WFS (despite the fixed sub-aperture size across samples). We show that the wavefront reconstruction
achieved with four WFSs can be equivalent to a single WFS providing a sampling resolution that is twice greater (linear across the
telescope aperture). We also show that the associated noise propagation is not degraded under SR. Finally, we show that the concept
can be extended to the signal produced by single pyramid WFS, with its four re-imaged pupils serving as multiple non-redundant
samples.
Conclusions. We find that SR applied to wavefront sensing and reconstruction (WFR) offers a new parameter space to explore, as it
decouples the size of the sub-aperture from the desired wavefront sampling resolution. By shifting away from outdated assumptions,
new and more flexible, better-performing AO designs have now become possible.

Key words. techniques: high angular resolution – instrumentation: adaptive optics – instrumentation: high angular resolution –
turbulence – atmospheric effects – techniques: image processing

1. Introduction

The term ‘super resolution’ (SR), as applied in this work, is a
technique found to serve the needs of the computational imaging
field, whereby the joint application of optical design and signal
processing techniques is engineered to obtain higher-resolution
(HR) data products from multiple low-resolution (LR) samples.
Such SR techniques are relatively standard in vision science
whenever image data is available with sub-pixel shifts between
LR samples. The first work on image upscaling was published in
1984 (Tsai & Huang 1984) and the term ‘super resolution’ itself
appeared around 1990 (Irani & Peleg 1990). Park et al. (2003)
provides an excellent review, a sign of how, two decades on, SR
imaging has been established as a prominent technique.

Such SR techniques are not new in the astronomical obser-
vation and instrumentation communities. One relevant example
is the ‘drizzle’ method developed to enhance the resolution
of under-sampled HST images from Fruchter & Hook (2002),
where the high spatial frequency information of the HST images
are recovered by combining sub-pixel dithered images. In this
paper, we explore the application of SR to wavefront reconstruc-
tion for astronomical adaptive optics (AO), as proposed in the
presentation from Oberti et al. (2017).

Reconstructing wavefronts instead of focal plane images is
particularly interesting. Indeed, in the field of AO assisted astron-
omy instruments, the optical systems are typically designed to
achieve a close to Nyquist–Shannon sampling of the diffraction
limited image. In other words, the images are well sampled and
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the potential benefits from SR are moderate. On the other hand,
the pupil image is typically not limited by diffraction in current
AO systems. Specifically, the field stop is sufficiently opened to
allow for the set of spatial frequencies of interest to be sensed
by the WFS. Moreover, the bi-dimensional wavefront surface
can be described by a theoretically unlimited set of spatial fre-
quencies, hence, pushing the SR limit down to extremely small
scales.

It turns out that the reconstruction problem is often ill-
conditioned because of insufficient LR data or is based on an
ill-posed system model. Consequently, some degree of regu-
larisation is required to make it solvable, providing realistic
and stable solutions. Even in the absence of multiple LR sam-
ples, the use of regularisation provides a means to estimate
signal content beyond the native Nyquist–Shannon frequency.
We call this strategy ‘statistical SR’, which has by now become
well-established in AO. Indeed, the use of regularised recon-
struction in the form of an minimum mean square error (MMSE)
or maximum a posteriori (MAP) stochastic estimator (Fusco
et al. 2001; Conan 2014; Correia & Teixeira 2014); additionally
and more generally, methods that draw upon Tikhonov regu-
larisation are now commonplace. Furthermore, SR can also be
approached ‘geometrically’, which we aim to explore in this
work. This approach is based on the idea that the samples from
multiple wavefront samples can be combined to allow for the
reconstruction of higher-resolution spatial frequencies than what
could be achieved by each single sample alone. Multiple sam-
pled wavefront measurements (mostly across space, however,
we could similarly use video sequences across time or a mix
of both) are thus combined from all available lower-resolution
WFS measurements, provided that each contains some form
of unique phase information. In practice, however, each SR
facet can only be interpreted asymptotically: it is ‘geometric’
when we approach the limit of least-squares reconstruction and
‘statistical’ when fewer and fewer samples are used.

At this stage, the following observation is paramount: mul-
tiple frames are natively granted for SR in classically designed
tomographic systems, where multiple WFSs are used, each look-
ing at a single guide-star on a distinctive line of sight. The
multitude of diverse WFSs back-projections at different ranges
along those lines of sight sample the turbulence in altitude at
offset locations (grid points), which is sufficient to perform SR
at every altitude range. The exception is the pupil plane where
all sampling grids perfectly overlap, making the relative phase
information vanish. Depending on the geometric configuration,
this may be the case as well at certain altitudes for which the
relative grid offsets are integer multiples of one sampling step.

Building on the footsteps of Oberti et al. (2017), the SR
concept has been implemented and investigated for several
AO applications. For instance, the shape of a high-order DM
has been estimated by reconstructing a posteriori a temporal
sequence of LR measurements from a single SH WFS, with
proper fractional sub-aperture shifts applied to each temporal
sample (Woillez et al. 2019). Actually, such synthetic aperture
wavefront sensing technique had already been applied in the field
of eye aberrometry by Bara et al. (2013).

However, the main applications of SR relate to tomographic
AO systems where the signal from multiple WFS are combined.
A first prominent example include Ellerbroek & Rigaut (2001)
and Wang et al. (2012) who tomographically reconstructed the
3D wavefront with an over-sampling factor of up to 2 from many
identical WFS conjugated to the pupil-plane. However, the prin-
ciples of SR (‘statistical SR’ in this case) were not drawn upon
at that time.

In Oberti et al. (2017), numerical simulations were used to
describe the application of SR to GALACSI NFM (Oberti et al.
2018), the laser tomography AO (LTAO) mode in operation at
ESO’s Very Large Telescope (VLT). In fact, SR is already built-
in the tomographic reconstruction process as the four WFSs
exhibit slight relative mis-registrations that are not compen-
sated for by hardware; instead, these are calibrated and taken
into account in the system model, the tomographic interaction
matrix. Hence, SR is enabled through the MMSE reconstruc-
tion process. More recently, the ELT Multi Conjugate Adaptive
Optics (MCAO) system formerly named MAORY now MOR-
FEO, incorporated SR in its design. The concept has been ana-
lyzed via end-to-end simulations, with the first studies enabling
SR in altitude layers without adding misregistrations in the pupil
plane, such as in the works by Oberti et al. (2019) and Busoni
et al. (2019). Another study taking advantage of the full ‘geomet-
rical’ SR by introducing voluntary shifts and rotations between
the sampling grids was carried out by Agapito et al. (2020). With
such misregistrations (characterised by a diversity of sampling
geometries), super-resolved wavefronts can be reconstructed in
all layers, including the DM plane. As a result, it becomes
possible to choose to either gain in aliasing reduction at the
iso number of sub-apertures or to reduce the number of sub-
apertures, while preserving a similar level of performance. In
this case, SR opens the door to new possibilities for WFS design
choices that allow for an increase in the sub-aperture size and
fitting more pixels per sub-aperture, for example, when dealing
with LGS spot elongation. Consistent results have been obtained
for several other tomographic AO systems, as, for instance, the
HARMONI Laser Tomography Adaptive Optics (LTAO) mode
(Fusco et al. 2022) the Giant Magellan Telescope (GMT) GLAO
and LTAO systems (Van Dam 2017, priv. comm.), the future VLT
MCAO system MAVIS (Cranney et al. 2021; Rigaut et al. 2020),
and KAPA, the Keck Observatory LTAO system (Wizinowich
et al. 2020).

A meta-uniform sampling can be simply achieved with four
sampling grids by introducing proper offsets of half a sub-
aperture width, as depicted in Fig. 1. It appears clearly that
with grids of finite size, the uniformity is not granted at the
edge of the aperture. To enable SR at the ground but also over
most conjugation altitudes, one obvious way is to break sampling
and reconstruction symmetries (or regularities), and diversify
the measurements (i.e. avoid redundancy) by adopting a non-
uniform sampling. The most straightforward way is to offset
and rotate the sampling grids with respect to one another. Other
non-uniform sampling options can be envisioned, with some
examples presented in Appendix B.

This method is meant to support the control of a Nact ×

Nact degree-of-freedom deformable mirror (DM) based on mea-
surements of several WFS each of a number of sampling
elements, Nsa × Nsa, much smaller than Nact, that is, typically
Nsa ≈ {1/2 − 2/3}Nact, depending on the number of WFS. SR
greatly relaxes the requirements on WFS alignment. For our
application domain, we break free from registering the DM to
the WFS as accurately as possible, yet once we have completed
this step, we need to know the registration precisely in order to
forward model this information and estimate higher order data.
In other words, SR allows us to trade accuracy for precision; thus,
while this distinction may seem elusive, it is actually fundamen-
tal to the process. We note that the registration must indeed be
calibrated precisely – but not more precisely than what classical
AO systems require. Indeed, Agapito et al. (2020) suggests that
the super-resolved cases are robust to model calibration errors:
the performance is less sensitive to an error in the knowledge of
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Fig. 1. Illustration of four lenslet arrays, aligned to the left and shifted by 1/2 of a sub-aperture to the right, where the four colours used (red, green,
blue, and black) are no longer superimposed.

the introduced misregistration amplitude than that of the clas-
sical MCAO system with co-aligned lenslet array grids in the
pupil plane. Furthermore, for multi-WFS AO systems, asym-
metric sampling may reduce the unseen or badly-seen modes
(Neichel et al. 2009).

It does not go unnoticed that there are certain commonal-
ities with other phase diverse techniques in imaging and AO.
While classical phase-diversity relies on introducing a longitudi-
nal phase encoding in the wavefront plane along the propagation
path (Gerchberg 1974), the technique we explore here introduces
it transversely with respect to the propagation. The SR tech-
nique operates on fused data from all available lower-resolution
WFS measurements provided each contains some form of unique
phase information – the basic prerequisite for achieving super
resolution. The unique phase information can be used to separate
the aliased high-frequency from the content in low-frequencies
of interest, and the higher-resolution wavefront can be accurately
reconstructed. Multiple samples can be acquired sequentially fol-
lowing the same principle, as long as the observed scene (the
wavefront in our case) remains static.

In the following, the SR technique is first described from a
theoretical point of view in the general and mono-dimensional
case (Sect. 2). In particular, we highlight the provided benefits
in terms of sensitivity to higher spatial frequencies and aliasing
reduction. We show that the signal can be reconstructed without
aliasing with uniform or non-uniform samples (under some con-
ditions) at the Nyquist–Shannon average sampling rate. Then,
the bi-dimensional case is investigated further through analyti-
cal models (Sect. 3.1). For SH WFSs, the sensitivity functions
(Sect. 3.2) are studied in the diffraction limited and extended
source cases. In Sect. 3.3, the application of SR to multi WFS
AO systems is then analysed via numerical models by evaluating
the reconstruction error and the noise propagation. Finally, we
propose an extension of the SR concept to a single WFS, in the
specific case of the pyramid WFS (Sect. 4).

2. Super-resolution principle

In this section, for the sake of clarity, we first recall the super-
resolution principle in the case of a mono-dimensional signal
sampled by multiple periodic grids. Then, the main results appli-
cable to AO are highlighted, in the direct space and the Fourier
domain. This chapter provides a general description in the sense

that the described SR technique can be applied to any continuous
signal. In the specific case of adaptive optics, it may be applied to
any kind of WFS, measuring the phase, its derivative, Laplacian,
or another linear transformation of the phase.

2.1. Super-resolution framework in the direct space

2.1.1. Combination of several sampling grids: general case

Let u := {un}n∈Z be a sequence of R and f : R → R a real func-
tion. If f is discretely sampled at the points of the sequence u,
then the result of the sampling is represented by the distribution:

fu(x) :=
+∞∑

n=−∞

f (x)δ(x − un) ∀ x ∈ R. (1)

It follows from Eq. (1) that if we own N sampling grids
u1, u2, . . . , uN , and that if w is any sequence whose set of points
is the union of the points of u1, u2, . . . , uN , then

fw(x) =

N∑
`=1

fu` (x) ∀ x ∈ R. (2)

In other words, the sum of N sampling of f at the points of
the sequences u1, u2, . . . , uN is a sampling of f at the union of
the sequences, that is, fw. For the AO scientist, each sampling
sequence stands for the sampling grid corresponding to one
WFS, composed of sampling points in the wavefront space, basi-
cally located at the center of each sub-aperture. In the following,
without loss of generality and for any considered dimension,
we use the term ‘sampling grid’ instead of ‘sampling sequence’.
The quantity N stands for the number of WFS samples at
play, namely, the number of WFSs or the number of temporal
wavefront measurements that are combined. The sampling cell –
which we call a ‘sub-aperture’ – is nominally the squared
sub-aperture that averages the wavefront within its bounds.

2.1.2. Periodic non-uniform sampling

Following our brief introduction to the general framework, we go
on to consider a case of particular interest for the AO commu-
nity: the periodic non-uniform sampling (PNS) case. The PNS
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consists in combining several uniform sampling grids into a sin-
gle non-uniform meta-sampling grid. The PNS is a scheme of
deterministic sampling that was first introduced by Kohlenberg
(1953).

Let us consider N uniform sampling grids, u1, u2, . . . , uN ,
with the same sampling step, h. In AO, this corresponds to a
set of N WFSs with h as the spatial distance between the centers
of two neighbouring sub-apertures. The sampling step, h, is clas-
sically equal to the sub-aperture width. The first sampling grid
u1 is given by:

u1
n = nh + u1

0 ∀ n ∈ Z,

where u1
0 ∈ R is the reference origin, which can be for instance

the center of the telescope pupil. For any ` ∈ {1, . . . ,N}, the sam-
pling grid, u`, is obtained by applying a translation of length ∆`

to u1. For the AO scientist, ∆` is equivalent to a shift of the WFS
sampling grid number ` relative to an arbitrary reference WFS,
whose ` = 1. So, we have ∆1 = 0 and we suppose ∆` ∈ (0, h) if
` , 1. Then, for every ` ∈ {1, . . . ,N}, we have:

u`n = nh + u1
0 + ∆` ∀ n ∈ Z.

Let w be any sequence whose points are the union of those of the
sampling grids u1, u2, . . . , uN . For example, w can be taken such
that

u`q = wqN+`−1 ∀ q ∈ Z and ` ∈ {1, . . . ,N}. (3)

In this way, if ∆1 < ∆2 < · · · < ∆N , the sequence {wn}n∈Z is
sorted in increasing order (its points are labelled according to
their spatial order) and if n − n′ = N, then wn and wn′ are two
successive points of a same sampling grid, u`. It is interesting
to note here that the operation described in Eq. (2) resembles
a spatial reconstruction process, whereby the sampling points
are re-arranged with respect to their spatial coordinates. In other
words, the sampling sequences are not concatenated but, rather,
organized according to the order of the sampling points. A sim-
ple toy example is easy to grasp: a sinusoid that aliases on each
WFS, when samples from multiple WFSs are rearranged, is no
longer seen to alias (depending on N, ∆` and the actual frequency
of the sinusoid).

2.1.3. From fractional sample shifts to meta-uniform sampling

In the case where the shifts ∆` are multiple of h
N , that is:

∆` = (` − 1)
h
N
∀ ` ∈ {1, 2, . . . ,N}, (4)

then Eq. (3) can be expressed as:

wqN+`−1 = u`q = qh + u1
0 + (` − 1)

h
N

= (qN + ` − 1)
h
N

+ u1
0,

for every q ∈ Z and ` ∈ {1, . . . ,N}. Therefore,

wn = n
h
N

+ u1
0 ∀ n ∈ Z.

Then,

N−1∑
`=0

fu` (x) = fw(x) =

+∞∑
n=−∞

f (x)δ
(
x − n

h
N
− u1

0

)
= ( f ·X h

N
)(x),

(5)

where

X h
N

(x) :=
+∞∑

n=−∞

δ

(
x −

nh
N
− u1

0

)

is the Dirac comb of period h/N centered at u1
0.

Let us now consider a superposition of N sampling grids
composed of sub-apertures of a size, h. In each sub-aperture, the
function f = s̄h is the result of averaging the signal, s, by means
of a convolution with the top hat function χh : R→ R, which is
the uniform density over the interval Ih := [−h/2, h/2],

According to Eq. (5), the signal sampled by the superposition
of sampling grids, that we call ‘meta-uniform sampling’, is thus
given by the distribution:

sN,h(x) = (s̄h ·X h
N

)(x) = (s ∗ χh) ·X h
N

(x) ∀x ∈ R. (6)

We note that Eq. (6) suggests that the we can decouple the
size of the sub-aperture, h, from the effective sampling step, h/N,
that is, that we can generate a ‘meta-sampler’ with regular sam-
pling points located every h/N and whose sub-apertures have a
size that is different from the sampling step; this differs from
classical AO designs, where the spatial sampling step and the
sub-aperture width are the same.

2.2. Mono-dimensional representation in the Fourier domain

The Fourier transform of Eq. (6) is expressed as:

ŝN,h(k) = hŝ(k)sinc(πhk) ∗X N
h
(k), (7)

with k as the spatial frequency in m−1 when considering the
wavefront sensing-related spatial sampling case. The Fourier
transform of the function s is multiplied by the sinc function that
depends only on the sub-aperture size, h. The sinc function can
be understood as a smoothing function, standing for the individ-
ual sub-aperture transfer function. The sampling is achieved via
the convolution by a Dirac comb of period N/h. The latter convo-
lution leads to replicating the spectrum in the frequency domain
due to the periodic spatial sampling. There is no loss of informa-
tion due to the sinc function, except at the null points located at
multiple integers of N/h in the Fourier space.

Let us also define the super-resolution factor F as the ratio
between the maximum spatial frequency, kmax, that can be recon-
structed without aliasing and the native Nyquist frequency ν =
1/2h, that is:

F =
kmax

ν
. (8)

So, F stands for the gain in resolution achieved with N
sampling grids, with respect to the case of a single grid with
sampling step, h.

The meta-uniform sampling case (Eq. (7)) carries the follow-
ing key features: Firstly, from the Nyquist–Shannon Theorem,
we know that in the case of Eq. (7), the signal can be recon-
structed up to a frequency of kmax = N/2h without aliasing. The
super-resolution factor F is therefore equal to N. Thus, combin-
ing properly shifted sampling grids leads to increasing the spatial
resolution by a factor, F , thus decreasing the aliasing. Secondly,
the sub-aperture size is preserved, hence, the sensitivity function
remains the same as the native one. Finally, the SR technique
offers the capability to design a ‘meta-sensor’ whose sampling
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Fig. 2. Normalised sensitivity of a virtual averaging-and-sampler
sensor used for illustration purposes only. The black curve corresponds
to the sensitivity function of a sampling grid of step h/2. The dotted
curve represents the sensitivity of a sampling grid of step h. The red
curve is obtained by dealiasing the spectral sensitivity up to 1/h, that
is, the first null of the sinc function with a super-resolution factor of
2; by combining two sampling grids of step h relatively shifted by h/2
with respect to each other.

step is independent from the sub-aperture size. This indepen-
dence allows us to decouple the desired spatial sampling period
from the sensitivity function in multi-WFS AO systems, which
is a new design paradigm.

Considering a super-resolution factor F of 2, it is interesting
to note that there is no longer any overlap in the spectra – until
the first null of the sinc function. Figure 2 highlights the benefit
of such a feature in terms of aliasing mitigation.

The sensitivity is limited by the sinc function in the Fourier
space (Eq. (7)) and by the aliasing of its replicated self. From
Fig. 2, we can see that beating the ν= 1/2h spatial resolution
limit leads to aliasing reduction when introducing a SR factor
of F = 2 (red curve). However, the sensitivity is greatly reduced
with respect to a case with a twice larger native sampling fre-
quency (black curve). With a SR factor of F > 2, it would be
possible to go beyond a resolution of 2ν= 1/h (not shown on
this figure). Nevertheless, the sensitivity would again be limited
by the sinc function that depends only on the sub-aperture size.
For spatial frequencies higher than the first null of the sinc func-
tion, the sensitivity (red curve) is much lower than what would be
achieved with a native sampling that is four times greater. This
illustration indicates that noise propagation should be analysed
with care in presence of SR. Indeed, on the one hand, the sen-
sitivity is limited by the size of the sub-aperture. On the other
hand, a larger sub-aperture size allows a higher signal-to-noise
ratio to be reached. These two opposite effects ought to be taken
into account to evaluate the noise propagation of a super-resolved
system.

2.3. Signal reconstruction: Number of sampling grids and
optimal offsets

In this section, we wish to address signal reconstruction by ana-
lyzing the number of sampling grids required for a reconstruction
without aliasing, as a function of their relative spatial offsets.
From the Nyquist–Shannon sampling theorem, we know that the
choice of N offsets according to Eq. (4) gives a meta-uniform
sampling that provides a SR factor of F = N. We analyse here
whether or not there are other ways to select the offsets in order

to reach a higher SR factor, or at least to preserve it, without
adding extra sampling grids.

In Appendix A, we analyze the reconstruction of band-
limited signals by convolutions with sinc interpolation functions
within the PNS framework. Under conditions that simplify the
analysis (but that may be too restrictive), we show that with N
sampling grids, F cannot be higher than N, independently of the
offsets choice. Moreover, the meta-uniform sampling is the only
solution with N sampling grids that reaches F = N, meaning that
it allows us to reconstruct the signal without aliasing until the
frequency Nν. With non-uniform configurations, that is, with
samples that are not equally spaced, more than N sampling grids
are necessary. Otherwise, any departure from the meta-uniform
sampling scheme will generate some reconstruction error. We
can show that this error term is bounded and converges to zero
when tending towards the meta-uniform sampling. However, we
see hereafter that other hypotheses and more elaborated recon-
struction approaches allow us to show that some well-chosen
non-uniform sampling schemes can reach the same performance
as the meta-uniform sampling.

In practice, it may be tricky to place the sampling grids
exactly at the positions required to generate a meta-uniform sam-
pling. So, we considered how many sampling grids would be
needed to achieve a given SR factor F , even if the sampling
grids are disposed without particular care, possibly with random
offsets. We show that with N = 2n0 − 1 randomly positioned
sampling grids, where n0 = dF e is the ceiling function of F ,
we can always reach a SR factor at least equal to F .

To be specific and give some concrete examples, if we
want to reconstruct a signal whose maximal frequency satisfies
ν < kmax ≤ 2ν, we need 1<F ≤ 2, and n0 = 2. So, in the mono-
dimensional case, we may use two sampling grids providing a
meta-uniform sampling, or three sampling grids that are ran-
domly positioned, excluding the trivial case where some offsets
are multiple of the native sampling step. In the bi-dimensional
case, we can show that four sampling grids are needed with a
meta-uniform sampling scheme, while nine randomly positioned
sampling grids are sufficient.

As previously mentioned, with a more elaborated approach
based on Lagrange polynomials, it is possible to reconstruct non-
uniformly sampled signals without aliasing, even outside the
PNS framework. Indeed, the Paley–Wiener–Levinson theorem
(Marvasti 2001; Wiener 1930; Paley & Wiener 1934; Levinson
1940), which generalizes the Whittaker–Shannon–Kotelnikov
sampling theorem (Marvasti 2001) from uniform to non-uniform
samples, states that a band-limited signal can be reconstructed
from its samples if the two following sufficient conditions are
respected.

Firstly, according to Beutler (1966), the average sampling
rate ke, that is the inverse of the average sampling step he,
satisfies the generalized Nyquist–Shannon condition:

ke =
1
he
≥ 2kmax. (9)

In the PNS framework, he is always equal to h/N. To reach a SR
factor F = N, at least N sampling grids are necessary.

Secondly, the Kadec condition (Kadec 1964) states that the
non-uniform sampling should be constructed by relocating the
points of a uniform sampling of step 1/2kmax no further than
1/8kmax from their original location.

We have seen that under some conditions, both uniform and
non-uniform sampling enable a theoretically perfect reconstruc-
tion of the sampled band-limited signal. In the PNS framework,
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the N sampling grids’ offsets shall be close to but not neces-
sarily equal to a multiple of h/N, in order to achieve optimal
SR (F = N). We show in Sect. 3.3 that numerical simulations
confirm the results from the first part of this paper. The meta-
uniform sampling is indeed optimal, in the sense that it provides
the best reconstruction performance. Nevertheless, it is impor-
tant to note that the performance is improved as soon as any
non-zero shift is introduced. Moreover, there is a shift range
around the optimal shift that provides stable performance, which
indicates its robustness. This shift range is consistent with the
Kadec condition (Kadec 1964) for a perfect reconstruction with
non-uniform sampling.

3. Super-resolution wavefront reconstruction with
Shack-Hartmann WFSs

3.1. Bi-dimensional model

We go on to transpose the previous models to a SH-WFS, whose
measurements s(x) are well approximated by the geometrical-
optics linear model (Rigaut et al. 1998):

s(x) = Gϕ(x) + η(x), (10)

where G is a phase-to-slopes linear operator mapping aperture-
plane guide-star wavefronts ϕ(x) onto WFS measurements over
a bi-dimensional space indexed by x = [x, y]; η(x) represents
white noise due to photon statistics, detector read noise and
background photons. Both ϕ and η are zero-mean functions of
Gaussian probability distributions and known covariance matri-
ces Σφ and Ση respectively. Noise is assumed both temporally and
spatially uncorrelated.

It can be shown for the nominal case when the sub-aperture
size d coincides with the sampling step h (Correia et al. 2017)
that:

G = X
(x
h

)
×

[
Π

(
x − 1/2

d

)
⊗ ∇

]
, (11)

where ⊗ is a two-dimensional (2D) convolution product, × is
a point-wise multiplication, Π(·) is the top-hat separable func-
tion, ∇ is the gradient operator, and X(x) is a comb function
(a bi-dimensional sum of Dirac delta functions) that represents
the sampling process. In the following, we consider the classical
case of d = h.

Now the following argument stands: if we properly combine
four sets of measurements provided by convolutional operators:

G =


G1
G2
G3
G4

 (12)

with a relative offset between them of h/2, corresponding to the
meta-uniform sampling in 2D, that is:

G1 = X
(x
h

)
×

[
Π

(
x − [1/2, 1/2]

h

)
⊗ ∇

]
,

G2 = X
(

x − [0, 1/2]
h

)
×

[
Π

(
x − [1/2, 1/2]

h

)
⊗ ∇

]
,

G3 = X
(

x − [1/2, 0]
h

)
×

[
Π

(
x − [1/2, 1/2]

h

)
⊗ ∇

]
,

G4 = X
(

x − [1/2, 1/2]
h

)
×

[
Π

(
x − [1/2, 1/2]

h

)
⊗ ∇

]
, (13)

it leads to a meta-SH system with half the sampling step and the
same averaging cell size or sub-aperture width as in the native
case:

Ḡ = X
(

x
h/2

)
×

[
Π

(
x − 1/2

h

)
⊗ ∇

]
, (14)

therefore lifting the sub-aperture imposed spatial cut-off fre-
quency, which becomes, in the case of a SR factor of
F = 2:

kmax = 2ν =
1
h
. (15)

Based on the fact that the SH-WFS measurement model
is a set of convolution integrals, the treatment in the spatial-
frequency domain is straightforward. Let the Fourier-domain
representation of Eq. (10):

s̃ (κ) = G̃ϕ̃ (κ) + η̃ (κ), (16)

with κ = (kx, ky) ∈ R2 as the frequency vector and symbol ·̃
used for Fourier-transformed variables. The time-dependence
could be added in with recourse to the frozen-flow hypothe-
sis. Using common transform pairs for the individual operations
(Oppenheim & Willsky 1997), the Fourier representation of the
measurements in Eq. (10) given in Eq. (16) can be expanded to:

s̃ (κ) = 2iπh
∑

m
(κ + m/ (h/N)) ϕ̃ (κ + m/(h/N))

× Π̃ (κh + m) × eiπ(κh+m) + η̃ (κ). (17)

From Eq. (17), it is apparent that the wavefront sensing operator
G̃ is not purely a spatial filter except for functions within the
SH-WFS pass-band (Ellerbroek 2005).

3.2. Trade-off between sensitivity and noise propagation

In practical terms, any interested AO practitioner may wonder
(quite rightly) whether SR signal reconstruction above the nom-
inal Nyquist–Shannon cut-off is associated with a somewhat
greater noise propagation, which could limit the prospective
SR advantages. We first address this key point in the spatial-
frequency domain and later using the Karhunen–Loeve (KL)
modal basis. We show in either case that SR grants comparable
noise propagation without sacrificing effective sensitivity.

3.2.1. Sensitivity functions revisited: Fourier S/N

We start by revisiting commonly-accepted expressions for sen-
sitivity functions, often called the Fourier signal-to-noise ratio
(S/N; Vérinaud 2004). The sensitivity defined as a S/N (the ratio
between the produced signal and the noise affecting the measure-
ment) is a function of the effective number of photons and spot
size on each sub-aperture, as follows

S/N = Ξ2
SH/σ

2
ph. (18)

The SH-WFS sensitivity can be readily computed from Eq. (17)
for functions in the pass-band assuming the compact form from
Correia & Teixeira (2014):

Ξ2
SH = (2iπhkx)2

(
sin(πkx)
πkxh

)2

= Ξ2
gradΞ2

aver, (19)
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where we assume the effective SH signal to be the angle of
arrival on each sub-aperture instead of the phase difference at
opposite sub-aperture edges (there is a normalisation factor, h,
between both). The 2D case is now straightforward to obtain.
Let the following photon and detector noise expressions (Roddier
1999; Hardy 1998):

σ2
α,ph =

1
8

1
nph

θ2
spot, (20)

σ2
α,det =

1
12

σ2
e

n2
ph

(
N2

s

ND

)2

θ2
spot, (21)

with nph as the number of incident photons per frame and per
sub-aperture, θspot the spot size, σe the rms number of detector
read-out photo-electrons, and Ns and Nt as the window used for
processing and sub-aperture diffraction sizes respectively. In the
remainder of this paper, we limit the analysis to photon noise
only, since it is not far-fetched to consider practically zero-noise
detectors today.

In diffraction-limited cases with point-sources, then θspot =
λ
h . It it straightforward to check that if we chose to split the
aperture into nSA-times as many sub-apertures (linearly across
the pupil), the photon-noise is increased by a factor of n4

SA that
results from the product of n2

SA fewer photons per sub-aperture
and a diffraction spot size that is twice as large, resulting in
another n2

SA factor for the bi-dimensional case. Considering all
the measurements over the whole pupil, an average over n2

SA
times more measurement points is performed, resulting in a final
n2

SA sensitivity decrease factor. This factor is at the origin of the
so-called ‘full-aperture gain’, which leads to the use of a sin-
gle full aperture spot measurement for tip and tilt modes. A
comparative plot shown in the top panel of Fig. 3 illustrates
this fact. This would lead to the conclusion that using a super-
resolved meta-SH-WFS setting leads to sensitivity gains over a
twice-resolved SH and even to a four-times-resolved SH over
the original sampling band [0 : 1

2h ] and some portions of the
[ 1

2h : 1
h ]. Therefore, SR appears very well suited for AO applica-

tions with diffraction limited WFS, for instance, those sensing
with a corrected near-infrared natural guide star (NGS).

We do, however, expect to deploy multi-WFS mostly on
laser-tomographic AO cases. In this case, splitting the aperture
into fewer sub-apertures leads to small (or none at all) sensitivity
gains because the spot is no longer a function of the diffraction
but, instead, it is of a fixed size. In the bottom panel of Fig. 3, we
can inspect the relative sensitivities: they are roughly the same
until half the control radius of the nominal case of [0 : 1

4h ]; by
this time, the larger sub-aperture size averaging function (the
sinus cardinal) starts bending down the sensitivity curve. In the
SR case, we can only be as sensitive as the red curve, yet with the
aliasing cut-off frequency being a function of the over-sampling
used. The periodic nature of the sensitivity function with an ini-
tial zero at κ = 1/h m−1 tells us that a SR factor of up to two is of
practical relevance but not much beyond. Indeed, the high noise
amplification at the frequencies with close-to-zero sensitivity is
to be traded-off for increased sensitivity at frequencies located
beyond the native cut-off frequency.

If we opt to evaluate the noise propagation instead, we can
see from Fig. 4 that SR would not lead to higher figures at low
spatial-frequencies and that it would extend the effective max-
imum reconstructed frequency avoiding the zeros of the sinc2

function for which the noise propagation is infinite. The sensi-
tivity evaluated on a single sub-aperture tells us little about how
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Fig. 3. Fourier S/N functions. Top: Fourier S/N for a diffraction-limited
wavefront sensing case (Eq. (6)). Bottom: seeing-limited or laser spot-
sensing case. The number of incident photons is considered the same
for all configurations. The bottom panel assumes a spot size with one
unit.
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This plots are computed as the inverse of the S/N functions from Fig. 3.
The fluxes are scaled by the collecting area, namely, the square of the
sub-aperture width.

it is distributed over modes spanning the aperture. For tip-tilt, it
is easy to compute since the global estimate is a straight average
of each sub-aperture’s measurements, resulting in an effective
1/n2

SA gain (diffraction-limited sensing) or no gain (seeing or
LGS spot limited sensing). In the next section, we present a more
general case of modal reconstruction for multi-WFS AO systems.
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Table 1. Simulation configurations.

Telescope diameter 8 m
Number of WFSs 4 SH-WFS

Native resolution case nSA = 40 sub-apertures
Lower resolution cases nSA = 20 or 10 sub-apertures

Turbulent wavefront 1 layer in the pupil plane: KL modes

Notes. Four SH-WFS grids are either co-aligned as in a classical
tomographic AO system or shifted with respect to each other. The super-
resolution sampling scheme is shown in Fig. 5 case (b) for a SR factor
of 2, i.e. four WFS in 2D.

3.2.2. Noise propagation: modal analysis

In order to properly treat the general case, the noise propagation
is considered on a per-mode basis, following Rigaut & Gendron
(1992):

n.p. = diag{RRT }, (22)

where R stands for the reconstructor matrix. We use this formu-
lation instead of the original one provided by Eq. (14) in Rigaut
& Gendron (1992) due to the use of regularised reconstruc-
tion. If the least-squares solution were adopted, we would find
Rigaut’s

(
DTD

)−1
, with D the system modal interaction matrix

concatenating the sensor’s response to each mode.
Figure 4, which is essentially the inverse of Fig. 3 as can

readily be seen, depicts the noise propagated as a function of
spatial frequency. When accounting for the sub-aperture size in
the computation of the noise propagation, we can confirm that
SR configurations do not propagate more noise than classical
configurations, along lower spatial frequencies.

3.3. Numerical application to multi-WFS-AO systems

In this section, we numerically simulate the SR concept applied
to a multi-SH-WFS AO system. First of all, we can easily confirm
that SR can be promoted by building a multi-SH-WFS model
and measuring the Interaction Matrix (IM) between the phase
and the meta-SH-WFS, combining several LR WFS, within the
configuration described in Table 1.

We go on to compute a set of modal IMs, between the 1364
KL modes as input and the four SH-WFS slopes as output, this
for all configurations (40 × 40, 20 × 20, 10 × 10, co-aligned, or
shifted). The rank of the IM indicates the number of degrees
of freedom that the super-resolved system is sensitive to. The
singular value decomposition (SVD) of the IM highlights the
sensitivity of the system to the singular modes. In other words,
the singular value associated to each singular mode indicates
how well such a mode is seen by the system. Figure 6 highlights
the benefit provided by the shifted configurations. In the classi-
cal cases (solid lines), the sensitivity drops to 0 for a KL index
equal to the number of slopes measured by each individual SH-
WFS. On the other hand, with SR (dashed lines), the sensitivity
is enhanced and the sensitivity limit is pushed towards that of
the co-aligned cases with double native resolution. Concretely,
the super-resolved 10× 10 (resp. 20× 20) configuration provides
some additional sensitivity up to the singular modes located at
the sensitivity limit for the 20 × 20 (resp. 40 × 40) co-aligned
configuration.

We then perform an open-loop reconstruction of the phase by
inverting the previously computed IMs in a MMSE fashion. We
note that each KL mode pastthe LR SH-WFS cut-off frequency

(a) (b)

Fig. 5. SR configurations illustrated via a projection in the pupil plane
of one sub-aperture from each WFS (1 color for each): (a) 2D surface
is improperly paved with shifts along the sampling grid’s axes; (b) 2D
surface is properly paved with the addition of shifts at 45◦ with respect
to the sampling grid’s axes, as in Eq. (13).
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Fig. 6. Singular value decomposition of a multi-WFS mono layer modal
IM. The singular values are plotted as a function of the singular modes
index. The solid lines corresponds to 4 co-aligned SH-WFS while the
dashed lines represent the shifted configurations shown in Fig. 5b.

ν = 1/(2h) aliases onto its corresponding low-frequency spec-
trum, yet the inversion of the meta SH-WFS IM plays the role
of a numerical de-scrambler as if the samples were spatially
reordered and, therefore, de-aliased. Figure 7 indicates that the
SR configurations significantly reduce the reconstruction error
with respect to the co-aligned cases. The cut-off frequency is
twice higher than the respective classical case with as many
reconstructed modes as number of sensing element per WFS
π
4 n2

SA. Moreover, the aliasing features vanish close to the cut-off
frequency for the super-resolved cases. Recent end-to-end
closed-loop simulations performed in the context of ELT
tomographic AO systems (MORFEO and HARMONI LTAO)
confirm the benefits of the SR technique in terms of aliasing mit-
igation at an iso number of sub-apertures, as well as the potential
reduction of the number of sub-apertures, while preserving a
similar level of performance as the classically dimensionned
AO system (Fusco et al. 2022). Summing the modal residual
variances shown in Fig. 7 provides an estimation of the total
reconstruction wavefront error (WFE) for the shifted cases.

In Fig. 8, we evaluate the residual WFE as a function of shift
amplitude in percentage of a subaperture width. A first observa-
tion is the performance gain that can be obtained when recon-
structing four times more modes than the number of degrees of
freedom of a single WFS (colored squares). It can be explained
by the ‘statistical SR’ properties. In this case, the MMSE process
extrapolates the measurements statistically towards larger spatial
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Fig. 8. Residual wavefront error from open-loop reconstruction as a
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SA) are reconstructed. The dashed black lines represent the Kadec
condition boundaries within which the non-uniform samples can be per-
fectly reconstructed. The colored squares stand for the reconstruction
error from the co-aligned case when π

4 n2
SA modes are reconstructed.

frequencies, by assuming the power spectrum described in the
Kolmogorov covariance priors. Next, we focus on the ‘geomet-
ric SR’ properties. We can observe a periodicity of the achieved
WFE with a periodic shift that is a multiple integer of the sub-
aperture width, as expected. However, with any other fractional
shift amplitude, the WFE is improved with again an optimal
value of one-half (1/2) of a sub-aperture, which corresponds to
a meta-uniform sampling generated by the super-resolved sys-
tem. At this optimal offset of half of a sub-aperture width, it is
interesting to note that the 10× 10 (resp. 20× 20) shifted config-
uration achieves a WFE that tends towards that from a 20 × 20
(resp. 40×40) co-aligned system with a number of reconstructed
modes equal to the native number of degrees of freedom ( π4 n2

SA).

As already pointed out, the ‘geometric SR’ provides an
improvement of the WFE as soon as there is a small off-
set introduced. So, even non-optimal shifts induce a dramatic
improvement of the reconstruction quality. Furthermore, the sta-
bility of the WFE around the optimal shift values is remarkable.
In summary, Fig. 8 confirms on one hand that the meta-uniform
sampling is optimal, as then demonstrated in Appendix A. On
the other hand, it appears unnecessary to accurately tune the
system with such optimal offsets since the performance appears
weakly sensitive to the offset value. Actually, this observation is
consistent with the Kadec condition (Kadec 1964), which corre-
sponds to a range of shifts of ±12.5% of a sub-aperture width
around the 1/2 sub-aperture offset, within which the samples can
be perfectly reconstructed. In our simulation, the MMSE recon-
structor was not optimized for each shift value, hence, there is a
slight performance degradation when going away from the meta-
uniform sampling case. The Kadec range can be interpreted as a
tolerance to uncontrolled misalignments, as long as these ‘mis-
registrations’ are calibrated or at least known. Such feature opens
the door to a diversity of geometrical transformation breaking the
symmetries of the wavefront sampling topology. Furthermore,
Agapito et al. (2020) has suggested that SR is more robust to
model calibration errors than ‘classical’ AO system of the same
dimension.

In the case of a multi-WFS tomographic AO system, super
resolution is ‘built-in’ when it comes to the turbulent layers con-
jugated in altitude. Indeed, when projecting the lenslet array
grids onto the altitude layers, the off-axis WFS grids are shifted
proportionally to the conjugation altitude. It is straightforward
to assume that there are some altitude layers where the result-
ing shift is a multiple integer of the sampling step, hence, no
super resolution is granted in this case. An optimized geometri-
cal arrangement, possibly including a rotation of the lenslet array
grids with respect to each other, would allow for this effected to
be mitigated.

Finally, we evaluate how SR behaves in terms of noise prop-
agation. Figure 9 (essentially a numerical confirmation of Fig. 4)
depicts the noise propagated as a function of the KL mode num-
ber for a combination of four WFS that are: (1) co-aligned and
(2) optimally shifted by half a sub-aperture width of SH-WFS.
The noise propagation follows the expected (n + 1)−1 power law
with the shifted system (on which SR is applied) not exceed-
ing the co-aligned case. We note that for each of the tested cases,
the noise propagation within the original cut-off frequency range
is almost indistinguishable from that of the co-aligned system;
whereas when it goes past the original Nyquist–Shannon cut-off
frequency, it rolls off, asymptotically saturating to the (n + 1)0

regime.

4. SR WFR with pyramid WFSs

We argue that the pyramid wavefront sensor (P-WFS) also
benefits from an effect that is comparable to SR in the Shack-
Hartmann WFS (SH-WFS). Unlike the latter, the SR principle
can be directly applied to a single P-WFS when we allow a
more general formalism than Eq. (5), whereby the samples are
obtained from transformations of the initial function. In the case
of the P-WFS, each quadrant applies a different transformation,
each of which is required for proper signal reconstruction.
However, two diagonally opposite quadrants measure the same
information for the spatial frequencies larger than the modulation
radius (Guyon 2005). Thus, the mono-dimensional SR formal-
ism presented in this paper (see Sect. 2) can, in principle, be
applied to the corresponding modes for each pair of quadrants
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Fig. 9. Noise propagation coefficients, computed as diag{RRT }, shown
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Along the low order modes, the noise propagation is quasi identical for
all cases and fit the expected law in (n + 1)−1. Then, when exceeding
the original Nyquist–Shannon cut-off frequency, the noise propagation
coefficient converges towards a constant asymptotic limit.

whose pixel grids are shifted in one direction by a fraction of a
pixel.

Here, the multiple samples are nominally four diffraction
patterns produced at the corresponding re-imaged pupil planes,
however, with the sampling grid pixels shifted with respect to
one another in such a way that their sampling becomes interlaced
by a fractional pixel. By adjusting the P-WFS apex angles, one
such configuration can be readily obtained. The same process
can, in principle, be carried out simply by rotating the pyramid
optic with respect to the detector. This relaxes the specification
and manufacturing constraints, yet in order to obtain the opti-
mal SR-enabling configuration, we may end up re-introducing
anew such design constraints that we wanted to relax in the first
place. Clearly, more investigation on the optimality and robust-
ness are required and we invite the community to contribute to
this endeavour.

To exploit the SR enhancement however, the use of the four
diffraction intensity patterns (i.e. intensity maps) instead of the
customary slope maps appears to be required. It is known that
the ‘x’ and ‘y’ slopes-maps contain the complete information on
perfectly aligned systems, that is, exactly registered quadrants
and a perfect four-sided prism with homogeneous and stationary
pupil illumination (Deo et al. 2018). However, additional slope
maps are required when these conditions fail. In our opinion, the
‘extension’ proposed in Deo et al. (2018) is unnecessary since
it represents a full-rank linear combination of diffraction inten-
sity patterns. This intermediate step adds nothing to the use of
intensity maps directly, as it neither adds nor removes useful
information to that originally contained in the pixels’ intensities
directly. Furthermore, it can only be detrimental to the pipelined
pixel processing by creating additional idle time before matching
pixels become available during detector read-out.

Mathematically, out of the eight possible linear combinations
(we can take each intensity map either positive or negative and
there are four of these), one full-rank slopes-map is:

sx
sy
sxy
st

 =


1 −1 1 −1
1 1 −1 −1
1 −1 −1 1
1 1 1 −1




i1
i2
i3
i4

 /Ft, (23)
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Fig. 10. SVD decomposition on a 16 × 16 P-WFS system with a 33 ×
33 DM. Top: intensity map processing. Bottom: slopes-maps processing.
We clearly see that using the intensity-maps on an offset pixel sampling
system leads to sensitivity gains, whereas the same is not true if the
slopes-maps were to be processed.

where Ft is a scalar value that represents the total flux cap-
tured on all the four re-imaged pupils. We have made a slight
change to the last entry, st, which in Deo et al. (2018) is the total
flux st = [1, 1, 1, 1] [i1, i2, i3, i4]T but leads essentially to the same
results for the rank of either transformation matrix is 4. As a
matter of fact, we do go beyond the recommendations of Deo
et al. (2018) in that we do not restrict ourselves to developing a
misalignment mitigation strategy. Under the SR framework, we
claim that by expressly misaligning the PWFS system, we can
enhance sensitivity and therefore gain in the delivered optical
performance.

The use of intensity-maps has obvious implications for real-
time processing (i.e. twice as large reconstruction matrix) that
needs to be carefully counter-balanced against the performance
gains. To illustrate this behaviour, Fig. 10 shows the SVD decom-
position from a 16 × 16 lenslet based P-WFS system with a
33 × 33 regular DM. We clearly see that the introduction of a
relative offset (translation) in the pixels sampling grid leads to
sensitivity gains provided that the intensity-maps are processed.
The opposite is obtained when the slopes-maps are processed
instead. The mathematical demonstration and interpretation will
be provided in a forthcoming paper.

5. Conclusion and outlook

Super-resolution is a computational imaging technique that is
aimed at upscaling a signal’s spatial resolution from multiple
lower resolution samples. Wavefront reconstruction – a process
at the very heart of astronomical adaptive optics systems –
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provides a particularly fertile setting for the application of SR.
Unlike in imaging systems where the ultimate spatial resolution
at the focal plane hits the fundamental diffraction limit, operat-
ing in the wavefront domain in or near the pupil plane offers the
potential to significantly increase the sensing resolution, within
the technological ability to sample the wavefront (spatially and
temporally) subject to the inescapable concerns around adequate
S/N.

To make SR viable, we have identified several ways to intro-
duce unique phase signatures in the transverse plane to the beam
propagation, the simpler one being a straight offset. As it stands,
SR promises to lift instrument design assumptions, for instance,
that n× n measurement samples are needed to drive a n× n actu-
ators DM, that the registration between the DM and the WFS
sampling grid needs to be finely controlled, and that the guide-
star asterism be regular (along with a few other aspects), leading
to a major overhaul in how the AO community may approach the
designs of future instruments. By decoupling the WFS sampling
step from the averaging cell size (sub-aperture width), we are led
to a paradigm shift where the same AO control performance can
be achieved with fewer WFS sampling points. This, in turn, leads
to fewer detector pixels, smaller systems and ultimately a lighter
computational load. Another strategy is to optimize the perfor-
mance while keeping the same number of sensing degrees of
freedom, by reconstructing modes beyond the cut-off frequency
and mitigating the aliasing. Several tomographic AO systems in
operation (GALACSI NFM) or in the design phase (MORFEO,
HARMONI LTAO, MAVIS, KAPA, GMT’s GLAO and LTAO,
etc.) could benefit from the implementation of SR in one way or
the other.

With N regular sampling grids of step h, the optimal SR sam-
pling scheme is obtained by introducing fractional offsets that
are multiple of h

√
N

in the bi-dimensional case. In this way, we
can generate a ‘meta sampler’ corresponding to the so-called
‘meta-uniform’ sampling scheme. However, the non-uniform
sampling case is appealing because it relaxes the absolute align-
ment constraints. Concretely, the location of the grids is flexible.
The optimal reconstruction performance can even be reached
within the Kadec condition, that is, the departure from the
meta-uniform sampling by less than a quarter of the Nyquist–
Shannon period. Furthermore, we are yet to establish optimal, or
at least practical, SR sampling geometries for future tomographic
AO systems with a non-square number of WFSs. With six
WFS (MORFEO, HARMONI LTAO) or eight WFS (MAVIS),
the solution is not obvious. Preliminary geometry optimization
results can be found in Cranney et al. (2021). Some other ways
to break the system symmetries are proposed in Appendix B.

We have shown that SR does not entail larger noise propaga-
tion coefficients and that is applicable to multi-Shack–Hartmann
WFS systems as well as to single pyramid WFS. In either case,
the relative alignment accuracy is traded-off for the precision
with which the registration is known to inform the model-based
SR reconstruction. We do not exclude – in fact, we very much
welcome – data-driven, machine-learning algorithms that can
further optimize this trade-off. The very fast developments of
these techniques in the field of SR applied to imaging may be
inspiring. A review of deep learning approaches for imaging SR
is, for example, provided in Wang et al. (2021).
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Appendix A: Signal reconstruction and optimal
sampling grid positions

For the sake of completeness, we provide in this appendix math-
ematical arguments that help us estimate the number of sampling
grids required for a reconstruction without aliasing, as a function
of their relative spatial offsets. This study can be done with sim-
ple mathematical tools, if we consider a specific context that we
describe below.

We propose to reconstruct a band-limited function f : R →
R sampled by a set of N grids with an interpolation formula of
the form:

f (x) =

N∑
`=1

+∞∑
n=−∞

f (u`n)s`(x − u`n), (A.1)

where for each ` ∈ {1, . . . ,N}, the sequence u` = {u`n}n∈Z gives
the points where the function, f , is sampled. So, we have to find a
suitable set of reconstruction functions s1, . . . , sN . The existence
of such functions depends on the spectral properties of f and on
characteristics of the set of sampling grids, such as their num-
ber, their step and their positions. One restriction lies in the fact
that formula (A.1) is a convolution. It is a classical hypothesis,
but it reduces the set of the possible reconstruction functions,
s1, . . . , sN , and therefore the admissible positions of the grids.
However, we can see that formula (A.1) leads to sinc-type recon-
struction functions, which as such can be implemented at low
numerical cost.

In the context of the PNS framework, we then suppose that
all the grids have the same step h. However, we are free to set
them at any position. Thus, they take the following form:

u`n = nh + u`0 ∀n ∈ Z ` ∈ {1, . . . ,N}, (A.2)

where u`0 indicates their initial position, which is supposed to be
different for each of them.

In the following, we establish the conditions, relating the
maximal frequency of f to the characteristics of the sampling
sequences, which ensure the existence of the functions s1, . . . , sN
allowing us to reconstruct f with the formula (A.1). For a fixed
maximal frequency, there are many possible options for the
positions of the sampling grids, provided that we own a suffi-
cient quantity of them. However, we are interested in finding the
positions that need the smallest number of sampling grids as pos-
sible. As we go on to see, there is no surprise in this regard. With
a set of uniform sampling grids, the meta-uniform sampling (Eq.
(4)) is optimal: it allows us to reach a given maximal frequency
with the lowest number of sampling grids.

A.1. Reconstruction conditions

To find the reconstruction functions s1, . . . , sN , we solve Eq.
(A.1) in the Fourier space. In this context, we assume the hypoth-
esis that all involved functions admit a Fourier transform. So,
we are looking for conditions that ensure the existence of some
functions s1, . . . , sN such that:

f̂ = ĝ where g(x) :=
N∑
`=1

+∞∑
n=−∞

f (u`n)s`(x − u`n) ∀x ∈ R.

For the sampling grids that we consider, the Fourier transform of
g is given by:

ĝ(k) = C0(k) f̂ (k) +

+∞∑
n,0,n=−∞

Cn(k) f̂ (k − νhn) , (A.3)

where

Cn(k) :=
1
h

N∑
`=1

ŝ`(k)e−2iπνhnu`0 and νh :=
1
h
. (A.4)

This computation is not direct, but classical, and it can be found,
for instance, in Kohlenberg (1953).

In what follows, we suppose that f is band-limited, hence
f̂ (k) vanishes outside some symmetric interval K. That is, there
exists a frequency, kmax > 0, such that f̂ (k) = 0 for all k <
K, where K := (−kmax, kmax). In most practical situations f̂
does not necessarily have a bounded support. But, f̂ (k) may
decrease rapidly as |k| goes to infinity, as does, for instance,
the power spectrum density of turbulent wavefronts following
a Kolmogorov power law.

The translated copies f̂ (k − νhn) of f̂ , that appear in Eq.
(A.3), may have some non zero values in the set K overlap-
ping f̂ in this set, and hence producing aliasing. This happens
if for some n , 0 a set Kn := (−kmax + νhn, kmax + νhn) satisfies
K ∩ Kn , ∅. It is the case if and only if |n| < n0, where

n0 :=
⌈
2kmax

νh

⌉
=

⌈
kmax

ν

⌉
, (A.5)

and d·e is the ceiling function and ν = 1/2h is the native Nyquist
frequency. This can be reformulated in the following way: if for
some integer n0 the frequency kmax satisfies (n0 − 1)ν < kmax ≤

n0ν, then K ∩ Kn , ∅, if and only if |n| < n0.
It follows, that in K, but also in the bigger set:

I := [−n0ν, n0ν] ⊃ K,

the formula (A.3) is expressed as:

ĝ(k) = C0(k) f̂ (k) +

n0−1∑
n,0,n=−n0+1

Cn(k) f̂ (k − νhn) ∀k ∈ I, (A.6)

since f̂ (k − νhn) = 0 for every k ∈ I if |n| ≥ n0, see Figure A.1.

Fig. A.1. Fourier transform f̂ (blue) and its translated copies (red). Here,
2ν < kmax ≤ 3ν and therefore n0 = 3. The translated copies f̂ (k − νhn)
overlap f̂ for n ∈ {−2,−1, 1, 2} (dashed curves). On the interval I =
[−3ν, 3ν], there is no contribution of f̂ (k − νhn) for any |n| ≥ n0.

To ensure that ĝ = f̂ in I, and therefore in K, we can
impose for every k ∈ I that C0(k) = 1 and Cn(k) = 0 for all
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n ∈ {−n0 + 1, . . . , n0 − 1} \ {0}, that is,

N∑
`=1

ŝ`(k) = h ∀k ∈ I, (A.7)

N∑
`=1

ŝ`(k)e2iπνhnu`0 = 0 ∀ n ∈ {−n0 + 1, . . . , n0 − 1} \ {0} ∀k ∈ I.

(A.8)

Now, for k < I, we have f̂ (k) = 0 and therefore we want ĝ(k) =
0. To cancel the contributions of all the translated copies of f̂
outside of K, we can simply set:

ŝ1(k) = · · · = ŝN(k) = 0 ∀k < I. (A.9)

Remark: Eq. (A.7) and Eq. (A.8) are sufficient conditions to
obtain ĝ = f̂ in the set I and to reconstruct f using formula (A.1).
However, it may be possible to propose weaker but more elabo-
rated conditions. For the sake of simplicity, we can restrict the
study to Eqs. (A.7) and (A.8).

We can sum up our results and introduce more suitable nota-
tions for the forthcoming study of the system given by Eq. (A.7)
and Eq. (A.8). We consider a band-limited function f , whose
Fourier transform vanishes outside of (−kmax, kmax), and N sam-
pling sequences of step h and initial positions u1

0, . . . u
N
0 (see Eq.

(A.2)). If we introduce the quantities:

β` := e2iπνhu`0 = e2iπu`0/h ∀ ` ∈ {1, . . . ,N},

then the system defined by Eq. (A.7) and Eq. (A.8) is of the form
AX = Y , where X is a vector of size N, A is the (2n0 − 1) × N
matrix defined by:

A :=



β−n0+1
1 β−n0+1

2 · · · β−n0+1
N

...
...

. . .
...

1 1 · · · 1
...

...
. . .

...

βn0−1
1 βn0−1

2 · · · βn0−1
N


and Y :=



0
...
h
...
0


. (A.10)

If X = (x1, . . . , xN) is a solution of the system A.10, and ŝ1 . . . , ŝN
are defined for any ` ∈ {1, . . . ,N} by:

ŝ`(k) = x` ∀k ∈ I and ŝ`(k) = 0 ∀ k < I, (A.11)

then ĝ = f̂ . It follows that Eq. (A.1) holds, with the reconstruc-
tion functions:

s`(x) =
x`n0

h
sinc

(
πn0x

h

)
∀ ` ∈ {1, . . . ,N}. (A.12)

We can offer a simple example and confirm the Nyquist–
Shannon Theorem anew at the same time.

Example: By the Nyquist–Shannon Theorem, we know that, if
kmax ≤ 1/2h = ν, a sampling sequence of step, h, allows us to
perfectly reconstruct f . We can re-prove that result. Indeed, if
kmax ≤ 1/2h, then formula (A.5) gives n0 = 1 and the system
(A.10) to solve is expressed as:

x1 + · · · + xN = h.

If N ≥ 2, we can produce an infinite number of solutions of this
equation, and we have as many possible choices for ŝ1 . . . , ŝN .

However, a single sampling grid (N = 1), is enough to ensure
the existence of a solution, which is x1 = h. So, we let

ŝ1(k) = h ∀ k ∈ I and ŝ1(k) = 0 ∀ k < I,

where I = [−1/2h, 1/2h]. By applying Eq. (A.12) and adopting
Eq. (A.1), we obtain

s1(x) = sinc(πx/h) and

f (x) =

+∞∑
n=−∞

f (nh + u1
0)sinc

(
π

h
(x − nh − u1

0)
)
,

as expected.
In the following, we study the conditions on N and u1

0, . . . , u
N
0

that ensure the existence of a solution to the system (A.10). As
explained, if such a system has a solution, then we can recon-
struct f using formula (A.1). If the system does not have solution,
then there is no functions ŝ1, . . . , ŝ1, that satisfies Eq. (A.7) and
Eq. (A.8). This does not necessarily mean that f cannot be recon-
structed with formula (A.1), since Eq. (A.7) and Eq. (A.8) are
sufficient, but not necessary, conditions to obtain ĝ = f̂ .

A.2. Optimality of the uniform sampling

The system (A.10) has 2n0 − 1 equations with N unknowns. The
number of equations is imposed by the highest frequency kmax of
the signal f and by the step h of the sampling grids, through the
formula (A.5). The number of unknowns is equal to the number
N of sampling grids that we own. The coefficients of the system
depend on h and can be tuned by our choice of the initial posi-
tions u1

0, . . . , u
N
0 of the sampling grids. Here, we are interested

in the initial positions which ensure the existence of a solution
to Eq. (A.10), with the smallest number of sampling grids N as
possible.

A.2.1. Minimal number of sampling grids

If N = 2n0 − 1, then A is a square matrix with a Vandermonde
determinant. This determinant vanishes if and only if β` = βl′ for
some ` , `′. This occurs if and only if u`0 = u`

′

0 + qh for some
q ∈ Z, that is, if the two grids ` and `′ have the same points
(see Eq. A.2). Therefore, if the sampling grids are all differ-
ent, then the matrix A is invertible. In such a case, the system
(A.10) has a solution that is unique for each possible position
of u1

0, . . . , u
N
0 . We can then reconstruct our signal choosing the

functions ŝ1, . . . , ŝN according to Eq. (A.11). We conclude that
with N = 2n0 − 1 grids, we can reconstruct a signal such that
(n0 − 1)ν < kmax ≤ n0ν, even if the initial positions of the grids
are chosen randomly.

However, for aptly chosen positions of u1
0, . . . , u

N
0 , we can

reduce the number of independent equations of the system and
obtain a solution even if N < 2n0 − 1. Indeed, we may suppose
that we have N = n0 sampling grids of the form:

u`n = nh + u1
0 + (` − 1)

h
N
∀` ∈ {1, . . . ,N}. (A.13)

Then, for every ` ∈ {1, . . . ,N} and j ∈ {−n0 + 1, . . . ,−1}, we
have

β
j+n0
`

= e2iπ( j+N)u`0/h = β
j
`
e2iπNu1

0/he2iπ(l−1) = βN
1 β

j
`
.

This implies that to multiply the n0 − 1 first lines of AX = Y by
βN

1 gives a system where each of the n0 − 1 first equations is equal
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to one of the n0 − 1 last equations. Therefore, if X = (x1, . . . , xN)
is a solution for:

1 1 · · · 1
β1 β2 · · · βN
...

...
. . .

...

βn0−1
1 βn0−1

2 · · · βn0−1
N




x1
x2
...

xN

 =


h
0
...
0

 , (A.14)

then X is also a solution of AX = Y . The square system (A.14) has
a Vandermonde determinant. Since the points of the grids (A.13)
are all different, the system (A.14) is invertible. We can verify
that its unique solution is given by x1 = x2 = · · · = xN = h/N.
So, we re-prove that with N = n0 grids chosen according to Eq.
(A.13), we can reconstruct a signal such that (n0 − 1)ν < kmax ≤

n0ν.
Now, we may wonder if there is some smarter way to select

the positions of the sampling grids, which would allow us to
further reduce their number. The answer is negative. Indeed, if
N ≤ n0 − 1, we can extract, from Eq. (A.10), the subsystem:
β1 β2 · · · βN
...

...
. . .

...
βN

1 βN
2 · · · βN

N




x1
...

xN

 =


0
...
0

 , (A.15)

which must be satisfied by any solution of Eq. (A.10). As Eq.
(A.15) is an invertible homogeneous system, its unique solution
is X = (0, 0, . . . , 0), which is not a solution of Eq. (A.10). Thus,
Eq. (A.10) has no solution if N ≤ n0 − 1.

A.2.2. Unicity

We have shown that N = n0 is the minimal number of sam-
pling grids for the existence of a solution to the system (A.10). In
particular, if we choose our grids according to Eq. (A.13), then
(A.10) has a solution. At this point, we can verify that for any
other choice of the position of n0 grids, the system (A.10) has no
solution.

To that aim, we look for a necessary condition for the rank
of A to be equal to the rank of A|Y , where A|Y is the matrix A
with an extra row equal to Y . First, we have rank(A) = N, since,
on the one hand, the number of rows N = n0 of A is smaller than
its number of lines 2n0 − 1; and, on the other hand, A contains a
N ×N Vandermonde invertible matrix. Thus, it is enough to look
for a necessary condition for rank(A|Y) = N.

As N = n0, A|Y is a (2N − 1) × (N + 1) matrix, from which
we can extract a collection of N −1 matrices B1, . . . , BN−1 of size
(N + 1) × (N + 1) and defined by:

Bi :=



β−i
1 β−i

2 · · · β−i
N 0

...
...

. . .
...

...
1 1 · · · 1 h
...

...
. . .

...
...

βN−i
1 βN−i

2 · · · βN−i
N 0


∀ i ∈ {1, . . . ,N − 1}.

We can have rank(A|Y) = N, only if the det(Bi) = 0 for all i ∈
{1, . . . ,N − 1}. A Laplace expansion along the last row gives:

det(Bi) = (−1)N+i+2h det(Ci)
N∏
`=1

β−i
` where

Ci :=



1 1 · · · 1
...

...
. . .

...
βi−1

1 βi−1
2 · · · βi−1

N
βi+1

1 βi+1
2 · · · βi+1

N
...

...
. . .

...
βN

1 βN
2 · · · βN

N


∀ i ∈ {1, . . . ,N − 1}.

Let P(X) = aN XN + · · ·+aiXi + · · ·+a0 be the polynomial defined
by

P(X) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1
...

...
. . .

...
...

βi
1 βi

2 · · · βi
N Xi

...
...

. . .
...

...
βN

1 βN
2 · · · βN

N XN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Then, a Laplace expansion along the last row gives ai =
(−1)i+N+1 det(Ci) for all i ∈ {1, . . . ,N − 1}. Therefore, we have
det(Bi) = 0 for all i ∈ {1, . . . ,N − 1} if and only if

P(X) = aN XN + a0.

The coefficients aN and a0 are obtained by Laplace expansion,
and if we denote VN(β1, . . . , βN) the Vandermonde determinant
of size N, then:

P(X) = VN(β1, . . . , βN)

XN + (−1)N+2
N∏
`=1

β`

 .
On the other hand, we have P(β`) = 0 for all ` ∈ {1, . . . ,N},
which gives:

βN
1 = βN

2 = · · · = βN
N = (−1)N+1

N∏
`=1

β`.

It follows that (β`/β1)N = 1 for all ` ∈ {1, . . . ,N}. In other words,
each β`/β1 is a N th root of the unity. Since all the β` are supposed
different, we have

β` = β1e2iπ(`−1)/N = e2iπ(u1
0/h+(`−1)/N) ∀ ` ∈ {1, . . . ,N}.

Recalling that β` = e2iπu`0/h, we obtain

u`0 = u1
0 + (` − 1)

h
N

mod h ∀ ` ∈ {1, . . . ,N}.

We conclude that, when N = n0, the sampling grids must
satisfy Eq. (A.13) to ensure the existence of a solution of the
system (A.10).

A.2.3. Conclusion

To sum up our findings, with N = 2n0 − 1 = 2 dkmax/νe − 1 sam-
pling grids of step h, we can always reconstruct a signal, f , with
a maximal frequency of kmax. The sampling grid positions can be
chosen at random, provided that the grids are all different. How-
ever, the same performance can be reached with only N = n0
sampling grids, if their union is a uniform sampling grid of step
h/N, that is, if they satisfy Eq. (A.13) modulo a translation of
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a size h. On the other hand, if we have fewer than n0 sampling
grids, or n0 sampling grids that do not satisfy Eq. (A.13), then
there is no set of reconstruction functions s1, . . . , sN which sat-
isfy Eq. (A.7) and Eq. (A.8). Since these conditions might be
too strong, we cannot draw a firm conclusion that the signal
cannot be reconstructed, since it is possible that more elabo-
rate approaches and reconstruction functions could offer a more
promising result. Our study suggests nevertheless that the meta-
uniform sampling Eq. (A.13) is optimal, because it allows us to
reconstruct the signal without aliasing with the smallest number
of sampling grids as possible. It is therefore the safest way to
make use of a limited number of sampling grids.

Appendix B: Non-uniform sampling schemes

We have shown that both uniform and non-uniform sampling
schemes allow for the reconstruction of a band-limited signal
without aliasing, under some conditions presented in this paper.
In addition to offsets and rotations, the AO design offers several
other sampling schemes that facilitate SR. A non-exhaustive list
of recommendations is as follows:

– differently rotate and offset (possibly stretch) the WFS sam-
pling arrays by non-integer multiples of each other (Figure
B.1);

– use asymmetric guide star asterisms projected on-sky (Fig-
ure B.2);

– use WFSs with different numbers and sizes of sub-apertures
(Figure B.3);

– allowing the sub-aperture sizes in each lenslet array to vary.

In either case, the unique phase information collected by each
WFS can be used to separate the aliased high-frequency from
the low-frequency content of interest and the higher-resolution
wavefront can be accurately reconstructed.
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Fig. B.1. Six differentially rotated WFS configurations shown at three different arbitrary conjugation altitudes creating growing separations (highly
exaggerated for illustration only).
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Fig. B.2. Six regular WFS configurations with a spiral shaped asterism shown at three different conjugation altitudes creating growing separations.
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Fig. B.3. Six WFS configurations with two kinds of sub-aperture, one being the double in size of the other, shown at three different conjugation
altitudes creating growing separations.
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