
HAL Id: hal-03773804
https://hal.science/hal-03773804v1

Submitted on 9 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diagnosability and Predictability of pattern in Labelled
Petri Nets

Eric Lubat, Camille Coquand, Yannick Pencole, Audine Subias

To cite this version:
Eric Lubat, Camille Coquand, Yannick Pencole, Audine Subias. Diagnosability and Predictability of
pattern in Labelled Petri Nets. 33rd International Workshop on Principle of Diagnosis (DX 2022),
LAAS-CNRS-ANITI, Sep 2022, Toulouse, France. �hal-03773804�

https://hal.science/hal-03773804v1
https://hal.archives-ouvertes.fr

Diagnosability and Predictability of pattern in Labelled Petri Nets

Éric Lubat1, Camille Coquand1, Yannick Pencolé2 and Audine Subias1
1CNRS, LAAS, Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France

(e-mail: firstname.lastname@laas.fr)
2CNRS, LAAS, Univ de Toulouse, LAAS, F-31400 Toulouse, France

(e-mail: yannick.pencole@laas.fr)

Abstract
This paper addresses the problem of checking
predictability of event patterns in labelled Petri
nets. After formally introducing the predictabil-
ity problem of an event pattern, a method for au-
tomatically checking predictability is proposed.
The proposed method has two steps. The first
one consists in checking diagnosability of event
patterns which is a necessary condition for pre-
dictability. And, if diagnosability holds, the sec-
ond step is launched and concludes about the
predictability of the investigated event pattern.
The proposed method uses a model-checking ap-
proach and is fully implemented with the help of
a model-checking toolchain.

1 Introduction
The problems of fault event diagnosis and diagnosability in
Discrete Event Systems (DES) have been widely addressed
with various formalisms (e.g automata, Petri nets, state-
charts) and several extensions to consider time and proba-
bilistic aspects or different decisional structures [1]. Infor-
mally speaking, diagnosability of DES aims to determine
the possibility of concluding with certainty about the oc-
currences of fault events based on a finite number of obser-
vations. Even if the diagnosability property is essential to
assist a diagnoser design, it does not allow to avoid unsafe
situations. As a consequence, the predictability property,
that states if faults can be predicted with certainty before
their occurrence, has also been investigated [2]. Note that
predictability is the problem of prognosis for discrete event
systems but the two term are sometimes mingled. As for the
diagnosability, extensions have been developed to consider
a large spectrum of problems. In [3] for instance the au-
thors explore the problem on labeled Petri nets and use the
concept of critical pairs to conclude on the predictability
of a fault. [4; 5; 6] mainly focuses on decentralized solu-
tion. The work of [7] considers the predictability of more
complex faulty situations. This predictability property is di-
rectly linked to the diagnosability one. Indeed, if a failure
is to be predicted it needs to be a diagnosable failure (since
you cannot predict future behaviors which are not diagnos-
able). An overview on Diagnosability and Prognosability is
given in [8].

The objective of this article is to extend the sequence pat-
terns predictability problem of [7] based on automata, to the
Petri net framework. Formal Petri Net based definitions of

diagnosability and predictability of patterns are then pro-
posed. Moreover, a fully implemented method that both
checks diagnosability and predictability is proposed. This
method relies on a model-checking formulation of the two
properties that are solved by an efficient model-checking
tool chain. The method is illustrated and experimental re-
sults on several examples are provided.

The remainder of the paper is as follows: in Section 2,
we define the mathematical terminology and notions used
throughout the paper, especially regarding the Petri net
model and its semantics. Section 3 details the problem state-
ment about checking both diagnosability and predictability
of patterns in Label Petri Nets. The method to check both
properties is then presented in Section 4. Section 5 presents
the tool chain that is used, describes the implementation of
the methods and lastly presents experimental results. Fi-
nally conclusion and perpectives are given in Section 6.

2 Formal background on Petri Nets
In this section the modeling formalism used in this paper is
presented. First the Labeled Petri Nets are presented, then
an abstraction of Petri Nets called Labeled Transition Sys-
tem is defined.

2.1 Petri nets
A Petri Net (PN) [9] is a formalism for modeling discrete
event systems using tokens to indicate the current state of a
system.
Definition 1 (Petri Nets). A PN is a tuple 〈P, T,Pre,Post〉
where P and T are the set of places and transitions; Pre :
P × T → N and Post : T × P → N are the precondition
and postcondition functions.

The current state of the system is denoted as a markingm
that describes the set of places where the tokens currently
lie:
Definition 2 (Marking). A marking m is a (total) function
m : P → N from places in P to natural numbers.

A marked Petri net is a tupleN = 〈P, T,Pre,Post,m0〉
where m0 is the initial marking of the net. To fire a transi-
tion t of the net, the condition is that t must be enabled in
the current marking m, that is ∀p ∈ P,m(p) ≥ Pre(p, t).
The effective firing of transition t from a marking m leads
to the marking m′ such that ∀p ∈ P,m′(p) = m(p) −
Pre(p, t) + Post(p, t). The fire of t from m to m′ is de-
noted m t−→ m′. A marking m is reachable if m = m0

or there exists a sequence of transitions 〈t1, . . . , tn〉 such

that m0
t1−→ . . .

tn−→ m. In the following work, a Petri net
will always be considered as marked (initial marking m0)
and bounded (i.e. every reachable marking m is such that
∃k ∈ N,∀p ∈ P,m(p) ≤ k).

Finally to end this sub-section, an extension of Petri Nets
that associates with every transition t a label L(t) from a
finite alphabet Σ is recalled.

Definition 3 (Labeled Petri Net). A Labeled Petri Net (LPN
for short) is a tuple 〈P, T,Pre,Post,Σ,L,m0〉 where
〈P, T,Pre,Post,m0〉 is a marked Petri Net, Σ is an al-
phabet and L : T → Σ is a labelling function.

2.2 Labeled Petri net semantics as Labeled
Transition System

The semantics of a Label Petri net can be seen as a Labelled
Transition System (LTS), as introduced in [7]. Let E(m)
denote the set of transitions enabled by a marking m, i.e.
E(m) = {t | t ∈ T, ∀p ∈ P,m(p) ≥ Pre(p, t)}. A state
of an LTS is a couple (m, E(m)) where m is a marking and
E(m) is the enabled transitions associated with m. In the
LTS formalism, transitions are associated with events (also
called actions) that label the underlying LPN.

The semantics of a labeled Petri net can be seen as a La-
beled Transition System (LTS), as introduced in [7]. Let
E(m) denote the set of transitions enabled by a marking m,
i.e. E(m) = {t | t ∈ T, ∀p ∈ P,m(p) ≥ Pre(p, t)}. A
state of an LTS is a couple (m, E(m)) where m is a mark-
ing and E(m) is the enabled transitions associated with m.
In the LTS formalism, transitions are associated with events
(also called actions) that labels the underlying LPN.

Definition 4 (Labeled Transition Systems). A Labeled
Transition System (LTS) over the set of actions A is a tu-
ple [[N]] = 〈S, s0, A,−→〉 where S is the set of states, s0 ∈ S
is the initial state, −→ ⊆ S × (A ∪ {ε})× S is the set of
edges.

In the following, (s, α, s′) ∈−→ is denoted s α−→ s′. The
following definition of the semantics of a LPN is quite stan-
dard, see for instance [10; 11]. In general terms, the se-
mantics of a PN is a LTS structure 〈S, s0,→〉 with only one
possible kind of action: a transition t is fired. A transition t
can fire from the marking m if t is enabled. More formally,
the semantics of the LPN is defined as:

Definition 5 (LPN semantics). The semantics of a LPN
N 〈P, T,Pre,Post,m0〉 with the labelling function L :
T → Σ ∪ {ε} is the Labeled Transition System (LTS)
[[N]] = 〈S, s0,Σ,→〉 where S is the smallest set contain-
ing s0 and closed by −→, where:

• s0 = (m0, E(m0)) is the initial state, with m0 the
initial marking and E(m0) the set of initially enabled
transitions;

• the state transition relation→ ⊆ S × (Σ ∪ {ε})×S is
the relation such that for all states (m, E(m)) in S:

– (m, E(m))
L(t)−−−→ (m′, E(m′)) iff :

* t ∈ E(m)

* ∀p ∈ P,m′(p) = m(p) − Pre(p, t) +
Post(p, t)

Like with nets, the alphabet of a LTS is the set of labels,
in Σ, associated with discrete actions. Each firing sequence
σ of N (also called a run) is associated with an execution

ρ that is a sequence in its semantics [[N]]. Sequence ρ is
an event word over the alphabet containing the labels (in
Σ ∪ {ε}).

Consecutive transitions can always be grouped to-

gether, meaning that when (m, E(m))
L(t)−−−→ (m′, E(m′))

and (m′, E(m′))
L(t′)−−−→ (m′′, E(m′′)) then necessarily

(m, E(m))
L(t).L(t′)−−−−−−→ (m′′, E(m′′)). By contrast, a trace

is the word obtained from an execution when only the dis-
crete actions without ε are kept. Then the language of a
LPN N , denoted L(N), is the set of all its (finite) traces.
For the sake of clarity, the labelling function is ex-
tended to L : T ∗ → (Σ ∪ {ε})∗ as L(t0 . . . tn) =
L(t0).L(t1) . . .L(tn). From a state s, a run σ is said to be

acceptable (denoted s
L(σ)−−−→) if there exists a state s′ such

that s
L(σ)−−−→ s′.

By definition, the language of a LPN is prefix-closed; and
it is regular when the net is bounded [12].

2.3 Products
To end the section about the formal background, the product
of LPN and LTS that will be used throughout this paper is
finally presented.

Definition 6 (Product of LPN). Let {Ni =
〈Pi, Ti,Prei,Posti,Σi,Li,mi

0〉}i∈{1,2} be two LPNs.
Let L be an alphabet. The product N1 ×L N2 =
〈P1 ∪ P2, T12,Pre12,Post12,Σ1 ∪ Σ2,L12,m

12
0 〉 is such

that: for i ∈ {1, 2}
• ∀p ∈ Pi,m12

0 (p) = mi
0(p);

• ∀t ∈ T12,

1. t ∈ Ti ⇒ L12(t) = Li(t) 6∈ L,∀p ∈
Pi,Pre12(p, t) = Prei(p, t),Post12(p, t) =
Posti(p, t),∀p ∈ Pj , j 6= i,Pre12(p, t) =
0,Post12(p, t) = 0;

2. t = (t1, t2), t1 ∈ T1, t2 ∈ T2 ⇒
(L1(t1) = L2(t2) = L12(t) ∈ L) ∧
(∀p ∈ P1 ∪ P2,Pre1(p, t1) > 0 ⇒
Pre2(p, t2) = 0) ∧ (∀p ∈ P1,Pre12(p, t) =
Pre1(p, t1),Post12(p, t) = Post1(p, t1),∀p ∈
P2,Pre12(p, t) = Pre2(p, t2),Post12(p, t) =
Post2(p, t2)).

This product is also used as an equivalence to the LTS
product and is weak-time bisimilar (see [13]). The syn-
chronous product of two LTS is defined as:

Definition 7 (Product of LTS). Assume [[N1]] =
〈S1, s

0
1,Σ1,→1〉 and [[N2]] = 〈S2, s

0
2,Σ2,→2〉 are two LTS.

The product of [[N1]] by [[N2]] is the LTS [[N1]]‖[[N2]] = 〈S1×
S2, (s

0
1, s

0
2),Σ,−→〉 with Σ = Σ1 ∪ Σ2 and −→ the smallest

relation obeying the following rules (α ∈ Σ1 ∪ Σ2 ∪ {ε}):

s1
α−→1 s

′
1 α ∈ (Σ1 \ Σ2) ∪ {ε}

(s1, s2)
α−→ (s′1, s2)

s2
α−→2 s

′
2 α ∈ (Σ2 \ Σ1) ∪ {ε}

(s1, s2)
α−→ (s1, s

′
2)

s1
α−→1 s

′
1 s2

α−→2 s
′
2 α 6= ε

(s1, s2)
α−→ (s′1, s

′
2)

The set of reachable states is such that ∆[[N]](s, σ)
def
=

{s′ ∈ S|s σ−→ s′}.

3 Problem statement
This paper addresses the problem of monitoring of the oc-
currence of specific but unobservable event patterns in dis-
crete event systems. Such patterns can represent, among
others, critical situations, unexpected situations, faults. By
analysing the model of the system, we aim at formally
checking whether the system produces enough observable
information to decide with certainty whether a pattern has
definitely occurred (which would mean that the pattern is di-
agnosable) or will definitely occur (which would mean that
the pattern is predictable). This section formally describes
both the diagnosability and the predictability problem. Note
that, as it will be explained later, checking diagnosability is
required before checking predictability.

3.1 Modelling
A system is modeled as a bounded LPN N . The alphabet of
such LPN, Σ, is partitionned in three differents sets:

• Σo the set of observable events,

• Σu the set of unobservable events,

• {ε} the empty sequence, (i.e. the event associated with
the transition is not significant)

All along this paper, the usual assumptions that the sys-
tem has no deadlock and that the observability of the sys-
tem is live are made, i.e. for any execution ρ ending with
an unobservable event, there exists n ∈ N such that for all
continuations ρ′ such that ρ.ρ′ ∈ L(N) and |ρ′| = n, ρ′ has
at least one observable event.

To illustrate this type of model, the example from the pa-
per of Jéron and Lafortune [7] (called Base all along this
paper) has been translated into a LPN model (see Figure 1).
In this example the observable labels are Σo = {b, c} and
the unobservable labels are Σu = {a, f1, f2}.

p0

t1

f1

t3

f1

t4

c

t0

b p1

t2

f2 p2 p3

t5

c p5

t6

c

t7

b p6

t9

f2

t10

cp11

p7

t12

c

t11

b

t13 f2

p10

t14 c

p4

t8

a p8 p9

Figure 1: LPN N of the Base System

Event patterns, initially introduced as supervision pat-
terns in [14], model complex but unobservable behaviours
of interest. As opposed to the patterns of [14] that are mod-
eled with automata, the proposed patterns are modeled as
LPNs.

Definition 8 (Pattern). A pattern M =
〈PM , TM ,PreM ,PostM , F,LM ,mM

0 〉 is a safe LPN
such that:

• the alphabet F is a subset of Σu;

• there exists a place found ∈ PM such that the marking
mfound with ∀p ∈ PM \ {found},mfound(p) = 0 ∧
mfound(found) = 1 is reachable;

• only marking mfound is reachable after the fire of a
transition from marking mfound .

The marking mfound is distinguished as a witness for de-
tection. From the initial marking mM

0 , as soon as the cur-
rent marking is mfound , it means that the run σ produced
by the pattern is a possible behaviour of interest produced
by the pattern. In the following Lfound(M) denotes the
sub-language of L(M) that contains the set of executions
ρ = L(σ) of M associated with runs σ that lead to the final
marking mfound .

In this paper, the pattern are considered to be well-formed,
which consists in adding three more conditions.
Definition 9 (Well-formed Pattern). A well-formed pattern
is defined as followed:

1. Patterns are total: they should always allow transitions
on the labels in F , at any time (they never block or
prioritize a transition).

2. Patterns are deterministic: the same labels should lead
to the same states.

3. Labels in F are unobservable: F ∩ Σo = ∅.
For instance, consider the following well-formed Pattern

M in Figure 2. This pattern represents the occurrence of one
event f1 followed by an event f2 or one event f2 followed
by an event f1, so basically M represents any behaviour
of the system where two events f1 and f2 must occur at
least once whatever their occurrence order: Lfound(M) =
{(f1f

∗
1 f2+f2f

∗
2 f1)(f1+f2)∗}. As opposed to the automata

representing patterns in [14] that must represent any event
from the system’s alphabet Σ, here the description of the
pattern is succint and only requires to model the events of
interests (i.e. f1 and f2).

p1p

p2p

t4p f1

t3p f2

t5p f2

t6p f1

found

t1p

f1

t2p

f2

p0p
t7p f2

t8p f1

Figure 2: Pattern M

Definition 10 (Pattern matching). An execution ρ ∈ L(N)
matches a pattern M (denoted ρ c M) if there exists a
subword ρ′ of ρ such that ρ′ ∈ Lfound(M).

An execution of the system that matches the pattern con-
tains as a subword the occurrence of a behaviour of interest
that is modelled in the pattern, so in other words the pattern

has occurred in the execution of the system. It is possible to
determine the set of executions that match a pattern by ap-
plying a product between semantics [[N]] and [[M]], as sum-
marized by the following result which is straightforward.
Proposition 1. Let N be a system and M be a pattern, the
set of executions ρ ∈ L(N) that match M is:

M(N,M) = {ρ = L(σ)|

(m0, E(m0))
L(σ)−−−→ (m, E(m)) ∈ [[N]]‖[[M]]

∧m(found) = 1}.
Looking back at the system in Figure 1 and pattern

in Figure 2, the execution ρ1 = f1abcf2cc of the sys-
tem matches the pattern as f1f2 is a subword of ρ1 and
f1f2 ∈ Lfound(M). This execution is part of [[N]]|[[M]]

as it is ((m0, E(m0)), (mM
0 , E(mM

0))
L(t1t8t11t12t13t14t14)−−−−−−−−−−−−−−→

((m, E(m)), (mf , E(mf)) with mf (found) = 1. The set
of executions of the system that finally match the pattern
is {((Σ \ {f1})∗f1(Σ \ {f2})∗f2 + (Σ \ {f2})∗f2(Σ \
{f1})∗f1).Σ∗}.

3.2 Diagnosability and predictability
This section updates the formal definitions of diagnosability
and predictability of patterns with regards to the formal LPN
framework presented in this paper. Both properties rely on
the notion of observable projection of executions. The ob-
servable projection of an execution ρ = e.ρ′ ∈ L(N) is:

• P(ρ) = e.P(ρ′) if e ∈ Σo

• P(ρ) = P(ρ′) if e /∈ Σo

A system is M -diagnosable if the occurrence of M in
an execution ρ of the system can be always decided with
certainty after observing a finite number of events produced
in ρ. Formally:
Definition 11. A system is M -diagnosable if ∀ρ1 ∈
L(N),∃n ∈ N∗ s.t. ρ1 = ρ′1.ρ

′′
1 , ρ
′
1 c M, ||ρ′′1 || ≥ n,

∀ρ2 ∈ L(N), P(ρ1) = P(ρ2)⇒ ρ2 cM .

A system is M -predictable if it is always possible to as-
sert the future occurrence of the pattern M , strictly before
its actual occurrence. This prediction is only based on the
observable labels of the system. Predictability of patterns is
formally defined as follows:
Definition 12. A system is M - predictable if

∃n ∈ N,∀ρ1 ∈ L(N) ∩ Σ∗Σo with ρ1 cM,

∃(ρ′1, ρ′′1), ρ′1.ρ
′′
1 = ρ1, ρ

′
1 ∈ {ε}∪(L(N)∩Σ∗Σo), ρ

′
1 6cM

such that:

∀ρ2 = ρ′2.ρ
′′
2 ∈ L(N),P(ρ′2) = P(ρ′1),

||P(ρ′′2)|| ≥ n⇒ ρ2 cM.

Example: Consider again the system Base from Fig-
ure 1 and the pattern M from Figure 2. The system is M -
diagnosable. Any execution of the system that matches M
eventually produces the observation bcc and no other exe-
cution can produce bcc. By observing bcc, the diagnoser
can assert M has occurred with certainty. Note also that
the system is M -predictable. As soon as b is observed, a
predictor can assert that M will eventually occur with cer-
tainty. Finally, the result from [2] that links diagnosability
and predictability is recalled:

Proposition 2. If a system is M -predictable then it is M -
diagnosable.

In other words, this result states that diagnosability is a
necessary condition for predictability. Informally speaking,
if a system is not M -diagnosable, it means that there exists
an infinite set of couples of arbitrarily long executions ρ1, ρ2

of the system such that P(ρ1) = P(ρ2) and ρ1 c M but
ρ2 6cM . It follows that there is no prefix of P(ρ1) that can
be used to decide that M will definitely occur as ρ2 6cM .

The rest of the paper is now devoted to automatically
check M -diagnosability and then M -predictability by the
use of formal model-checking techniques.

4 Verification of Diagnosability and
Predictability

In this article a method to check both diagnosability and
predictability of patterns in Labeled Petri Nets is pro-
posed. This method is based on the verification of prop-
erties on Kripke structures of products of the LTS of the
system N and the pattern M . As presented in the previ-
ous section, M -diagnosability is a necessary condition for
M -predictability to hold in the system N . The proposed
method will first check whether M -diagnosability holds in
the system and if the answer is positive it will run the test
forM -predictability. Both steps for checking diagnosability
and predictability are computationally independent, how-
ever running the test for M -predictability is conclusive only
if the system is M -diagnosable. In other words, running the
test for M -predictability that is proposed in this method is
inconclusive if the system is not M -diagnosable. Both tests
are implemented as model-checking problems.

4.1 Checking Diagnosability
The method that is used to check diagnosability straightfor-
wardly derives from [15]. Indeed, it has been shown that the
diagnosability of a pattern can be checked as the inexistence
of critical pairs in the twin-plant of the system. In our set-
ting, the twin plant is the LPN (N1×FM1)×Σo

(N2×FM2)
where N1, N2 are identical copies of N and M1,M2 are
identical copies of M that are synchronised on the observ-
able labels Σo. A critical pair is a infinitely long execution
of the twin-plant which matches M1 but not M2 and then
represents a couple of executions from N with the same ob-
servations but only one matches the pattern (so it is not di-
agnosable). Diagnosability is a global property that can be
checked on the LTS of the twin-plant by checking an LTL
property. LTL (Linear Temporal Logic) is a modal tempo-
ral logic with modalities referring to time. In LTL, one can
encode formulae about the future of state sequences in the
Kripke structure. For the diagnosability test, two operators
of LTL are mainly used:

• ♦: Finally which means that the properties linked to ♦
has to finally hold in the sequence.

• ⇒: the classical implication.

The diagnosability test is then defined as follows:

Theorem 1 (Diagnosability of a Pattern [15]). Given a well-
formed pattern M , with labels F , the net N , with observ-
able label Σo, is diagnosable for pattern M if and only if
all the maximal executions of the product (N1×F M1)×Σo

(N2 ×F M2) satisfy (♦found .1)⇒ ♦ (found .2 ∨ dead).

Informally speaking, if the previous result holds for a
given system N and a pattern M , it means that for every
execution of the twin-plant which eventually matches pat-
ternM1 (♦found .1) it will eventually matches the copy pat-
tern M2 or be a deadlock (♦(found .2 ∨ dead)), hence the
absence of critical pairs.

Our process to check Diagnosability can then be decom-
posed into 3 steps.

Step D1. Construct the synchronous product between the
LPN N1 and its Pattern M1 with the alphabet F
((N1 ×F M1)) and duplicate it as ((N2 ×F M2))

Step D2. Construct the synchronous product and its LTS
semantics[[(N1 ×F M1)×Σo (N2 ×F M2)]].

Step D3. Use an LTL checker to conclude on the LTL for-
mula (♦found .1)⇒ ♦ (found .2 ∨ dead).

4.2 Checking Predictability
This section presents the predictability test of a pattern M
in a system N . Intuitively it follows the same steps as in [7]
but is translated as a model-checking problem to be solved
effectively. The test first relies on the building of a LTS Π,
called a predictor in [7], and secondly on a formal property
to check on Π.

Construction of Π
Starting with the system N and the pattern M , the LTS
[[(N ×F M)]] = 〈S, s0,Σ,→〉 is first built and the follow-
ing partition of states S is considered:

• Fo is the set of states that hold the property found .
• In are the states which inevitably lead to states in Fo:

In = {s ∈ S \ Fo|∃n ≥ 0,∀σ ∈ Σ∗, s
σ−→ s′

∧||σ|| ≥ n⇒ ∆[[N×FM]](s, σ) ⊆ Fo}

• No = S \ (Fo ∪ In).

The computation of Π is a two-step construction based
on [[(N ×F M)]]. First, in order to abstract out the unob-
servable labels of [[(N ×F M)]], the unobservable closure
of [[(N ×F M)]] is performed.
Definition 13 (Unobservable-Closure of a LTS). Let [[N]] =
〈S, s0,Σ,−→〉 be the LTS of an LPN N and Σo ⊆ Σ be the
observable events ofN , the Unobservable-Closure of [[N]] is
Uc([[N]]) = 〈S, s0,Σo,−→Uc

〉 where for any s, s′ ∈ S, o ∈
Σo, s

o−→Uc s′ in Uc([[N]]) whenever there exists ρ ∈ Σ∗u
such that s

ρ.o−−→ s′ in [[N]].

The second step consists in building a deterministic LTS.
Definition 14 (Determinization of a LTS). Let [[N]] =
〈S, s0,Σ,−→〉 be a LTS over the LPN N and an alphabet
Σ. The determinization of [[N]] is the LTS Det([[N]]) =
〈X,X0,Σ,−→Det〉 where X = 2S (the set of subsets
of S called macro-states), X0 = {s0}, and −→Det=
{(sD, α,∆[[N]](X,α)), sD ∈ X ∧ α ∈ Σ}.

Finally, the predictor Π is:

Π = Det(Uc([[(N ×F M)]])).

Based on the partition Fo, In, No of [[(N ×F M)]]), a par-
tition of the states SΠ of Π is defined as follows:

• FΠ
o = {s ∈ SΠ, s ⊆ Fo} is the set of macro-states

such that found holds in every state of the macro-state.

• IΠ
n = {s ∈ SΠ, s ∩No = ∅, s ∩ In 6= ∅} is the set of

macro-states containing states such that either found
holds in the state or the state inevitably leads to a state
found and at least one of them inevitably leads to a
state found .

• NΠ
o = SΠ \ (FΠ

o ∪ IΠ
n).

Proposition 3. As the system N is M -diagnosable, any
macro-state from NΠ

o reachable from the initial state of Π
that contains a state from Fo will eventually lead to a macro-
state of FΠ

o ∪ IΠ
n .

Proof sketch: Π is a diagnoser by construction. It
cannot have cycles of macro-states that are ambiguous
(macro-states that contain at least a state where the pat-
tern has matched (found) and another one where it has not
(¬found)) but these ambiguous macro-states must be inNΠ

o
as they cannot inevitably lead to a macro-state of FΠ

o .

Example: Let us focus on the previous example from
Figure 1. This LPN N (called Base) is analysed with the
pattern M in Figure 2. The LTS of our product N ×F M is
conducted and the separation with Fo in red and In in blue
is processed in Figure 3 (labels i stands for unobservable
events) and the resulting LTS Π obtained by unobservable
closure and determinization is presented in Figure 4. Macro-
states in FΠ

o are in red, the ones in IΠ
n are in blue.

0

2 3 4

found

1 5

11

found

7 8

10 found

6

9

i

b

c

b

i

i

i c

c

i

b

c

i

c

c

Figure 3: LTS of our product N ×F M

0

5

2|6|8 4|11|9 4|11|10

found
b

c

c

c

c c

Figure 4: LTS Π = Det(Uc([[N ×F M]])).

The predictability of the pattern M can be concluded.

About the formal property to check in Π
As the system is M -diagnosable, by Proposition 3 and by
definition of In, it follows that as soon as a macro-state s
contains a state from Fo it will eventually lead to a macro-
state in FΠ

o . Now, if this state s is in NΠ
o , the system is

not M -predictable. Therefore, checking predictability, as
detailed in [7], consists now in checking that every prede-
cessor of a macro-state of FΠ

o in Π is either a macro-state
of FΠ

o or a macro-state of IΠ
n . As opposed to diagnosabil-

ity, this property is local and not global so LTL is not well-
suited to express this property. It is proposed here to use
µ-calculus to check on local part of the LTS model Π. With
µ-calculus, CTL operators (i.e. AF) can be exploited as
well as MEC4 primitives (i.e. src, rsrc, tgt, rtgt) as de-
tailed herebelow. The property NOTPREDICTABLE is incre-
mentally described to check on the LTS Π. As illustrated by
Figure 4, any macro-state of FΠ

o (in red) holds a property
that is denoted:

found .

To express the property of a state in IΠ
n , the CTL operator is

used
• AF : the properties always finally hold.

A state in IΠ
n is not in FΠ

o but will eventually lead to such a
state, it can be expressed as:

INEV ≡ AF (found) ∧ ¬found
Now we want to express the states FRONTIER that are found
but that have at least a predecessor that is not a found state.
To do so, the MEC primitives tgt and rsrc are required.

• src(X) (resp. tgt(X)) stands for the source (resp. tar-
get) state of transition X;

• rsrc(X) (resp. rtgt(X)) stands for the transition
whose X is the source (resp. target) state.

It follows:

FRONTIER ≡ found ∧ tgt(rsrc(¬(found)))

The states PREDECESSORS are then the predecessors of
FRONTIER that are not part of FRONTIER:

PREDECESSORS ≡ (src(rtgt(FRONTIER)))∧¬FRONTIER

Finally, the system is not M -predictable iff there are states
in PREDECESSORS that do not inevitably lead to found
states:

NOTPREDICTABLE ≡ PREDECESSORS ∧ ¬INEV.

Example: For Figure 4, we have the following sets:

INEV = {2|6|8, 4|11|9}
FRONTIER = {4|11|10}

PREDECESSORS = {4|11|9}

5 Implementation and Experimental Results
To implement the proposed method, several tools are used
in a process chain. Those tools mainly come from the
TINA [16] toolbox. Firstly, to check diagnosability, the
chain process presented in Figure 5 can be exploited.

• TINA: TINA builds various state space abstractions for
Petri nets and Time Petri nets. It is used to build our
original net N and its pattern M .

TINA TWINA Selt

Figure 5: Chain process of the analysis of diagnosability of
a pattern.

• TWINA: TWINA is a tool for analysing the “prod-
uct” of two Time Petri Nets (TPN), with possibly in-
hibitor and read arcs. It is used to process our prod-
uct (with ×F) on classical PN. The output is the LTS
[[N ×F M)]]. It is also used to process the copy of our
product on the diagnosability analysis.

• Selt : A State/Event LTL model checker. It is used to
check our diagnosability formula.

Secondly, to check predictability, the following chain pro-
cess is performed as presented in Figure 6. This second

TINA TWINA Basileus Muse

Figure 6: Chain process of the analysis of predictability of
a pattern

chain process starts by using the same tools as the chain
process for diagnosability but ends with another couple of
tools that are described herebelow:

• Basileus : Process Uc and Det to get the LTS Π in
the TINA format (ktz). This process is a new tool
that has been specifically implemented to process the
Unobservable-Closure and the Determinization. This
new tool is called Basileus. The Unobservable closure
is optimized via an OCaml recursive software.

• Muse : Muse model-checks state-event on a Kripke
transition system given in ktz format produced by
Basileus. It is used to automatically check whether
NOTPREDICTABLE is satisfied on Π.

The Tina tools are all available online and the tool
Basileus will be after some optimizations.

For the sake of completeness with the regards to the run-
ning example Base (see Figure 1 and Figure 2), the execu-
tion times of the Base exemple are summarized in Table 1,
in the Base column.

To check the scalability of the proposed method, the
method have benn tested on larger examples. For this pur-
pose, our method have been first applied to the following
example from [17]. The system is defined in Figure 7. It
is the modelling of a transport system, in a untimed version
(see the TWINA webpage on the benchmark patterns for
more information).

http://projects.laas.fr/tina/manuals/tina.html
https://projects.laas.fr/twina/
https://projects.laas.fr/tina/manuals/selt.html
http://projects.laas.fr/tina/manuals/muse.html
https://projects.laas.fr/twina/post/benchmark_patterns/

Base Transports Transport9 WODES’08

TWINA(Diag) 0.012s 1.572s 9.372s 0.117s
Selt 0.027s 0.066s 0.198s 0.015s
Size LTS(Diag) 58 states 14270 states 83834 states 4617 states

TWINA(Pred) 0.010s 0.064s 0.133s 0.031s
Basileus 0.045s 0.620s 10.949s 0.084s
Muse 0.005s 0.005s 0.333s 0.002s
Size LTS(Pred) 12 states 780 states 2124 states 159 states
Size LTS(DET) 5 states 3821 states 27575 states 10 states

Total 0.109s 2.327s 20.985s 0.249s

Table 1: Complete set of experimental results.

t9

b

preq1

t10 Z

lreq1

t11

ELR1

rreq1

t12

ERR1

wait2

t13

e

preq2

t14Z

lreq2

t15

ELR2

rreq2

t16

ERR2

waitdown

t7Y D

down

prod1

t0 PR1

[1, 2]

avail1

t1

push1

up

waitup t3PR2

avail2

t4

push2

wait1

prod2

t2 t5

t6X U

Figure 7: Transport - [Gougam 17]

This model has been slightly modified to add b and e tran-
sitions and created the following 3b without e pattern (Fig-
ure 8). Every time an e label occurs, the pattern go back to
its orign=inal place.

two

b

p1

back1

e

p0 found

three

b

one b

p2

back2

e

t0bt1 e

back0 e

Figure 8: pattern for “three consecutive b without e”

The proposed pattern is not diagnosable and consequently
not predictable. However, to check the scalability of the
method (product computations, property checking), both di-
agnosability and predictability tests have been run to mea-
sure the performance (see Table 1, Transports column).

We also tried to process the same PN (see Figure 7) with
a pattern “nine consecutive b without e” (see Table 1, Trans-
port9 column). And to conclude on our scalability test, we
also process the example from WODES’08 [18] with a sin-
gle fault pattern F (see Table 1, WODES’08 column).

Regarding the analysis of these systems and their respec-
tive patterns, the following results have been obtained:

Base Transports Transport9 WODES’08

Diagnosability X X
Predictability X

Those results show that our methods can be used to anal-
yse systems up to 100000 states in an efficient way. How-
ever, the construction of Π is of exponential complexity and
could become cumbersome in much larger systems. Alter-
natives shoud be investigated.

6 Conclusion
This paper proposes a fully implemented method for check-
ing both diagnosability and predictability of event pat-
terns in a system that is represented as a Labeled Petri
Net. The originalilty of this approach is the fact that both
checking problems have been translated into two classical
model-checking problems that can be solved by off-the shelf
model-checking tools. Diagnosability being a global prop-
erty, the use of LTL formulae to check a property on a twin-
plant is quite natural. However, as far as predictability is
concerned, one of the difficulty is to express the set of states
that inevitably lead to found states. To express such a prop-
erty, we had to build a predictor, resulting from a projec-
tion and a determinization, and to express the predictabil-
ity using a µ-calculus tool (Muse) in which we can benefit
of CTL-operators and MEC4 primitives to express a local
property. The experimental results that are detailed in the
paper show the feasibility of the approach. However, the
complexity of the approach lies in the construction of Π that

is exponential in the size of [[N]] ×F [[M]] due to the un-
observable closure and the determinization. Checking the
predictability of M in N without the construction of Π is
still an open question.

Similarly to the extension of diagnosability to timed sys-
tems as in [15; 19], the extension of predictability of pat-
terns to such systems shall be investigated. By extending
for instance to time Petri nets (TPN), some undecidability
issues may raise and the characterization of TPN sub-classes
where predictability can be effectively checked might be
necessary.

References
[1] J. Zaytoon and S. Lafortune. Overview of fault di-

agnosis methods for Discrete Event Systems. Annual
Reviews in Control, 37(2):308–320, December 2013.
1

[2] Sahika Genc and Stéphane Lafortune. Predictability of
event occurrences in partially-observed discrete-event
systems. Autom., 45(2):301–311, 2009. 1, 4

[3] Xiang Yin. Verification of prognosability for labeled
petri nets. IEEE Trans. Autom. Control., 63(6):1738–
1744, 2018. 1

[4] Shigemasa Takai and Ratnesh Kumar. A general-
ized inference-based prognosis framework for dis-
crete event systems. IFAC-PapersOnLine, 50(1):6819–
6824, 2017. 20th IFAC World Congress. 1

[5] Xiang Yin and Zhaojian Li. Decentralized fault prog-
nosis of discrete event systems with guaranteed perfor-
mance bound. Autom., 69:375–379, 2016. 1

[6] Ana T.Y. Watanabe, André Bittencourt Leal, José Ed-
uardo Ribeiro Cury, and Max Hering de Queiroz.
Safe controllability using online prognosis. IFAC-
PapersOnLine, 50:12359–12365, 2017. 1

[7] Thierry Jéron, Hervé Marchand, Sahika Genc, and
Stéphane Lafortune. Predictability of Sequence Pat-
terns in Discrete Event Systems. Research Report PI
1834, 2007. 1, 2, 3, 5, 6

[8] Amaury Vignolles, Elodie Chanthery, and Pauline Ri-
bot. An overview on diagnosability and prognos-
ability for system monitoring. In EUROPEAN CON-
FERENCE OF THE PROGNOSTICS AND HEALTH
MANAGEMENT SOCIETY (PHM Europe), (Virtual
conference), Italy, July 2020. 1

[9] C. A. Petri. Fundamentals of a theory of asynchronous
information flow. In Information Processing, Proceed-
ings of the 2nd IFIP Congress 1962, Munich, Ger-
many, August 27 - September 1, 1962, pages 386–390.
North-Holland, 1962. 1

[10] Béatrice Bérard, Franck Cassez, Serge Haddad, Didier
Lime, and Olivier H. Roux. Comparison of the expres-
siveness of timed automata and time petri nets. In Paul
Pettersson and Wang Yi, editors, Formal Modeling and
Analysis of Timed Systems, Third International Con-
ference, FORMATS 2005, Uppsala, Sweden, Septem-
ber 26-28, 2005, Proceedings, volume 3829 of Lecture
Notes in Computer Science, pages 211–225. Springer,
2005. 2

[11] B. Berthomieu, F. Peres, and F. Vernadat. Bridging the
gap between timed automata and bounded time Petri

nets. In Formal Modeling and Analysis of Timed Sys-
tems (FORMATS), volume 4202 of LNCS. Springer,
2006. 2

[12] B. Berthomieu and M. Menasche. An enumerative ap-
proach for analyzing time Petri nets. In Proceedings
IFIP, 1983. 2

[13] Éric Lubat, Silvano Dal Zilio, Didier Le Botlan, Yan-
nick Pencolé, and Audine Subias. A state class con-
struction for computing the intersection of time petri
nets languages. In Formal Modeling and Analysis of
Timed Systems (FORMATS), volume 11750 of LNCS.
Springer, 2019. 2

[14] Thierry Jéron, Hervé Marchand, Sophie Pinchinat, and
Marie-Odile Cordier. Supervision patterns in discrete
event systems diagnosis. In International Workshop on
Discrete Event Systems, 2006. 3

[15] Éric Lubat, Silvano Dal-Zilio, Didier Le Botlan, Yan-
nick Pencolé, and Audine Subias. A new product con-
struction for the diagnosability of patterns in time petri
net. In 59th IEEE Conference on Decision and Con-
trol, CDC 2020, Jeju Island, South Korea, December
14-18, 2020, pages 104–109. IEEE, 2020. 4, 8

[16] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool
TINA–construction of abstract state spaces for Petri
nets and time Petri nets. International Journal of Pro-
duction Research, 42(14), 2004. 6

[17] Houssam-Eddine Gougam, Yannick Pencolé, and Au-
dine Subias. Diagnosability analysis of patterns on
bounded labeled prioritized Petri nets. Discrete Event
Dynamic Systems, 27(1), 2017. 6

[18] Alessandro Giua. A benchmark for diagnosis. In
Benchmark Session of WODES’08 Int. Workshop on
Discrete Event Systems, 2007. 7

[19] Yannick Pencolé and Audine Subias. Diagnosability of
event patterns in safe labeled time Petri nets: a model-
checking approach. IEEE Transactions on Automation
Science and Engineering, 2021. 8

	Introduction
	Formal background on Petri Nets
	Petri nets
	Labeled Petri net semantics as Labeled Transition System
	Products

	Problem statement
	Modelling
	Diagnosability and predictability

	Verification of Diagnosability and Predictability
	Checking Diagnosability
	Checking Predictability

	Implementation and Experimental Results
	Conclusion

