
HAL Id: hal-03773786
https://hal.science/hal-03773786v1

Submitted on 9 Sep 2022 (v1), last revised 22 Sep 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safe Learning and Repairing of Numeric Action Models
for Planning

Argaman Aloni Mordoch, Brendan Juba, Roni Stern

To cite this version:
Argaman Aloni Mordoch, Brendan Juba, Roni Stern. Safe Learning and Repairing of Numeric Action
Models for Planning. 33rd International Workshop on Principle of Diagnosis – DX 2022, LAAS-CNRS-
ANITI, Sep 2022, Toulouse, France. �hal-03773786v1�

https://hal.science/hal-03773786v1
https://hal.archives-ouvertes.fr

Safe Learning and Repairing of Numeric Action Models for Planning

Argaman Aloni-Mordoch1 and Brendan Juba2 and Roni Stern1

1 Ben Gurion University of the Negev
e-mail: mordocha@post.bgu.ac.il, roni.stern@gmail.com

2 Washington University in St. Louis
e-mail: bjuba@wustl.edu

Abstract
Automated planners often require a model of the
acting agent’s actions, given in some planning do-
main description language. Yet obtaining such
an action model is a notoriously hard task. This
task is even harder in mission-critical domains, in
which a trial-and-error approach for learning how
to act is not an option. In such domains, the ac-
tion model used to generate plans must be safe, in
the sense that plans generated with it must be ap-
plicable and achieve their goals. The challenge of
learning safe action models for planning has been
recently addressed for domains in which states are
sufficiently described with Boolean variables. In
this work, we go beyond this limitation and pro-
pose the Numeric Safe Action Model (N-SAM)
learning algorithm. N-SAM runs in time that is
polynomial in the number of observations and,
under certain conditions, is guaranteed to return
safe action models. Experimental results show
that N-SAM is able to quickly learn a safe action
model that can solve the majority of problems in
a given domain. Finally, we describe an applica-
tion of N-SAM to to repair action models that are
observed to be incorrect.

1 Introduction
Planning is the fundamental task of choosing which ac-
tions to perform to achieve the desired outcome. Automated
domain-independent planning is the fundamental challenge
of developing an AI capable of solving a wide range of plan-
ning problems [1]. Powerful domain-independent planners
have been developed for various types of planning prob-
lems. These planners often require a model of the acting
agent’s actions, given in some planning domain description
language. Many planning languages have been proposed,
such as STRIPS [2], the Planning Domain Definition Lan-
guage (PDDL) [3], PDDL 2.1 [4], and RDDL [5]. Pow-
erful corresponding planners have been developed such as
FastForward [6] and FastDownward [7] for problems given
in PDDL and COLIN [8], TLP-GP [9], and DiNo [10] for
problems given in PDDL2.1.

Yet, defining an agent’s action model in these planning
languages for real-world problems is a notoriously hard
task. This modeling challenge has been acknowledged
in the literature, and algorithms for learning agent action
models from observations have been proposed [11; 12; 13;

14]. Since the learned model may be different from the do-
main’s actual action model, using it to plan raises two chal-
lenges: safety and completeness. The safety risk is that the
learned model may generate a plan that cannot be applied in
the domain or may not reach a state that satisfies the prob-
lem goals. The completeness risk is that the learned model
may be too restrictive to enable generating plans even for
planning problem that can be solved with the actual action
model. In this work, we focus on safety, which is crucial
in mission-critical domains where a trial-and-error approach
for learning how to act or online replanning are not options.
In such domains, the action model used to generate plans
must be safe, in the sense that plans generated with it must
be applicable and achieve their goals.

The challenge of learning safe action models for plan-
ning has been recently addressed by the SAM learning fam-
ily of algorithms [15; 14; 16]. But, these algorithms are
inapplicable for numeric planning, where may states in-
clude continuous state variables. The same safety con-
siderations have motivated work in offline RL [17; 18;
19], with the major difference that planning models can be
re-used for a wide range of different goals, in contrast to
standard RL that trains to a specific reward process.

In this work, we explore the problem of learning a safe ac-
tion model for numeric planning. Specifically, we focus on
problems that can be defined in PDDL2.1 [4], a popular lan-
guage for describing deterministic fully observable numeric
planning problems. We prove that learning learning a safe
action model is not possible without making some assump-
tions on the preconditions and effects of the agent’s actions.
Then, we identify a reasonable set of assumption in which
learning a safe action model is possible, namely that action
effects and preconditions are linear. Specifically, we intro-
duce the Numeric Safe Action Model (N-SAM) learning al-
gorithm, which runs in time that is polynomial in the number
of observations and is guaranteed to return safe action mod-
els in domains that satisfy our linearity assumptions. The
worst-case sample complexity of N-SAM, even with our as-
sumptions, is intractable. Practically, experimental results
over standard numeric planning benchmarks show that ac-
tion models created by N-SAM were able to solve most rel-
evant problems with fewer than 70 trajectories.

Finally, we describe an application of N-SAM for repair-
ing faulty numeric action models. There, we apply N-SAM
on trajectories created by a faulty action model, showing
that the resulting action model is more effective than the
original faulty action model.

2 Background
We focus on planning problems in domains where action
outcomes are deterministic, states are fully observable, and
states are described with both discrete and continuous state
variables. Such problems are commonly modeled using the
PDDL2.1 [4] language.1 To define a numeric planning prob-
lem in PDDL2.1, we introduce the following notation. A
domain is defined by a tuple D = ⟨F,X,A⟩ where F is a fi-
nite set of Boolean variables, X is a set of numeric variables,
and A is a set of actions. A state is an assignment of values
to all variables in F ∪X . For a state variable v ∈ F ∪X we
denote by s(v) the value assigned to v in state s.

Every action a ∈ A is defined by a tuple
⟨name(a), pre(a), eff(a)⟩ representing to the action’s name,
preconditions, and effects, respectively. The preconditions
of an action a are a set of assignments over (possibly a sub-
set of) the Boolean variables and a set of conditions over
(possibly a subset of) the numeric variables. These condi-
tions are of the form (ξ,Rel, k) where ξ is an arithmetic ex-
pression over X , Rel ∈ {≤, <=, >,≥}, and k is a number.
The effects of an action a, denoted eff(a), are a set of as-
signments over F and X representing how the state changes
after applying a. An assignment over a Boolean variable is
either True or False. An assignment over a numeric variable
x ∈ X is a tuple of the form ⟨x, op, ξ⟩ where ξ is a numeric
expression over X and op is either increase (“+=”), decrease
(“-=”), or assign (“:=”). The set of actions with their defini-
tions is referred to as the action model of the domain. We
say that an action a is applicable in a state s if s satisfies
pre(a). Applying a in s, denoted a(s), results in a state that
differs from s only according to the assignments in eff(a).
A planning problem is defined by a tuple ⟨D, s0, G⟩ where
D is a domain, s0 is the initial state, and G is the problem
goals. The problem goals G are an assignment of values to a
subset of the Boolean variables and a set of conditions over
the numeric variables. A solution to a planning problem is
a plan, i.e., a sequence of actions, that are applicable in s0
and results in a state sG in which G is satisfied.

Different algorithms have been proposed for learning
planning action models [20; 13; 21; 14]. Some action-model
learning algorithms, such as LOCM [11] and its extensions
LOCM2 [20], analyze observed plan sequences, where each
action appears as an action name and arguments in the form
of a vector of object names. Other algorithms, such as
FAMA [21], can also utilize information about the states
reached while executing plans in the domain. This informa-
tion is commonly described as a set of trajectories. A tra-
jectory is a list of state transitions of the form ⟨si, ai, ai(si)⟩
created by executing some plan (. . . , ai, . . .) in the domain.
For a state transition ⟨s, a, s′⟩ the states s and s′ are referred
to as the pre-state and post-state, respectively.

Most action model learning algorithms do not provide
any guarantee that plans created with the learned action
model are applicable in the real action model. The SAM
learning algorithm [15] address this gap by providing the
following guarantee: the learned action model is safe in
the sense that plans generated with it are guaranteed to
be applicable in the real action model and yield the pre-
dicted states. SAM also runs in polynomial time and num-
ber of samples required to guarantee the learned action
model is sufficient to solve most problems scales grace-
fully. However, SAM learning and its recent extensions [14;

1Technically, we focus on level 2 of PDDL2.1.

16] are limited to learning action models that do not sup-
port numeric state variables. In fact, learning numeric action
models have been scarcely studied. PlanMiner [22] is a no-
table exception. It is an algorithm that learns numeric action
models from partially known and potentially noisy trajecto-
ries. But, PlanMiner does not provide any safety guarantees.
In addition, its publicly available implementation does not
learn numeric preconditions.

3 Learning Numeric Action Models
We consider the challenge of solving numeric planning
problems of the form ⟨D = ⟨F,X,A⟩ , s0, G⟩ while assum-
ing the problem solver is not given explicit information
about the set of actions A. The problem solver is given a
set of trajectories T , created by executing plans that solve
other planning problems in the domain, and observing the
resulting states. Such trajectories may have been created by
following instructions of a human operator, random explo-
ration, or some other domain-specific manner. We assume
the problem solver has full observability of the states and ac-
tions in given trajectories, including knowing the name and
parameters of all observed actions. In addition, we assume
the plans used to create the given trajectories are valid, in
the sense that preconditions and effects of every observed
action, are satisfied.

Our approach for solving such problems, referred to as
planning with offline learning, comprises two steps: (1)
learning an action model Â using the given trajectories T ,
and (2) planning using the learned action model Â, i.e., us-
ing an off-the-shelf PDDL 2.1 planner to find a plan for
the planning problem

〈〈
F,X, Â

〉
, s0, G

〉
. There are many

planning algorithms to solve such PDDL2.1 problems, such
as Metric FF [23] and ENHSP [24]. Recall that since
the learned action model may differ from the actual action
model, planning with it raises both safety and completeness
risks. The relative importance of each risk is application de-
pendent. In this work, we emphasize addressing the safety
risk, which is key in applying our method to mission-critical
applications or applications in which plan failure is very
costly. To this end, we aim to learn an safe action model [15;
14].
Definition 1 (Safe Action Model). An action model Â is ϵ-
safe w.r.t. a norm ∥ · ∥ in a planning domain D = ⟨F,X,A⟩
if for every action â ∈ A there exists an action a ∈ A
with the same name such that for every state s: (1) if â is
applicable in s then so is a, and (2) if â is applicable in s
then applying it in s results in a state that is ϵ-close to that
obtained by applying a to s, i.e., ∥â(s)− a(s)∥ ≤ ϵ.

It is easy to see that plans created with a safe action mod-
els are safe, in the sense that they execute as anticipated by
the model. We allow for a small ϵ error in our definition
because this is unavoidable in most situations, due to nu-
merical issues, limited precision sensors, etc. We refer to an
algorithm that learns a safe action model from a given set of
trajectories as a safe action model learner.

3.1 Negative Results
In our model, the examples consist of trajectories, i.e., plans
that have been successfully executed. In particular, this
means that in each step of every plan, for the action cho-
sen at that step the preconditions are necessarily satisfied.
Thus, if we view the preconditions of an action as a Boolean

concept, we are learning the preconditions only from posi-
tive examples. Supervised learning with only positive ex-
amples was first considered by [25], and it is known that
many classes of representations cannot be learned [25; 26;
27; 28]. Indeed, we can formalize this connection and thus
translate these findings into our model, establishing that a
many natural families of preconditions cannot be learned
without stronger assumptions. [25] observed that learning
from positive examples alone entails that the learner’s hy-
pothesis never makes a false-positive error – corresponding
to our safety property for preconditions. Thus, for conve-
nience, we will formalize the model in these terms.

Definition 2. Let X denote our set of instances. Let C and
H be sets of Boolean-valued functions on X . The problem
of PAC learning C with H using positive examples is as fol-
lows: we are given parameters ϵ, δ ∈ (0, 1), and access to
examples from X sampled from a distribution D supported
on {x ∈ X : c(x) = 1} for some c ∈ C. With probability
1− δ, we must return h ∈ H such that

• No false positives: h(X) ⊆ c(X)
• 1− ϵ accurate: Prx∈D[h(x) = 1] ≥ 1− ϵ.

If our algorithm runs in time polynomial in the represen-
tation size of members of X , the representation size of c,
1/ϵ, and 1/δ, then we say that the algorithm is efficient. If
C = H, this is known as the proper variant of the problem,
otherwise the learner is said to be improper.

We now observe that safe action model learners that
learn domains with preconditions from C using precondi-
tions from H can be used to obtain PAC learning algorithms
for learning C with H using positive examples:

Proposition 1. Suppose there exists a safe action model
learning algorithm for domains with preconditions from C
that produces preconditions from H, for a C that for any ith
attribute, contains a nontrivial precondition that depends
only on that attribute. Suppose furthermore that there is a
probability distribution with support equal to X that can be
efficiently sampled. Then there is a PAC learning algorithms
for learning C with H using positive examples. Moreover, if
the safe action model learning algorithm is efficient, then so
is the PAC learning algorithm.

Proof. We reduce PAC learning with positive examples to
safe action model learning as follows: We consider a do-
main with two actions, “pos” and “neg,” and with states
given by X extended by two Boolean attributes, s and t.
Let s0 and s1 be values for s that would, respectively, vio-
late and satisfy some precondition in cs ∈ C. We provide
the following trajectories to our safe action model learner:
with probability 1/2, we sample x from D, and append it
with s = s1 and t = 0 to obtain the initial state; and, oth-
erwise, we sample x from our distribution with support X ,
and append it with s = s1 and t = 0 to obtain the ini-
tial state. In the first case, the trajectory consists of taking
the action pos, followed by a state with x appended with
s = s0 and t = 1. In the second case, the trajectory con-
sists of taking the action neg, followed by a state with x
appended with s = s0 and t = 1. In both cases, the goal
is “t = 1.” We obtain an action model from the algorithm
run with δ and ϵ/2, and return its precondition for pos as our
solution h for PAC learning. h must have no false positives
because the precondition for pos must be safe: suppose the
true precondition for pos were c ∈ C; note that this is con-
sistent with the data. Then, if there exists x ∈ X such that

h(x) = 1 but c(x) = 0, our action model would permit pos
for some x where its precondition is violated, thus violat-
ing safety. Similarly, h must be 1 − ϵ-accurate: our action
model learner guarantees that with probability 1 − δ, it is
1− ϵ/2 complete. But if neg has the precondition cs that is
only satisfied by s1, then only pos can be executed for those
examples with s = s0, i.e., the examples sampled from D.
Hence, the precondition for pos must be satisfied with prob-
ability at least 1−ϵ on D or else the action model would fail
with probability greater than ϵ/2. Hence, h is indeed as re-
quired for PAC learning. The “moreover” part is immediate
from the construction.

By the contrapositive of Proposition 1 and prior results,
we obtain that:

Corollary 1 ([27]). The family of preconditions given by
single linear inequalities with at most two variables cannot
be safely learned by any H.

Corollary 2 ([28]). The family of preconditions given by the
disjunction of two univariate inequalities cannot be safely
learned by any H.

Note that in particular, therefore, classes C that contain
the above representations as special cases cannot be safely
learned. Indeed, essentially the strongest class that is known
to be learnable is “axis-aligned boxes,” i.e., conjunctions of
univariate inequalities [29]. The problem of learning effects,
on the other hand, is essentially similar to regression under
the “sup norm loss”: that is, we demand a bound on the
maximum error that holds with high probability. We can
characterize the sample complexity of learning effects eas-
ily when the errors are considered under the ℓ∞-norm, and
observe that since all ℓq-norms are equivalent up to poly-
nomial factors in the dimension, this in turn characterizes
which families of effects are learnable for all ℓq norms.

Theorem 1. (cf. [30, Theorem 3]) Let A be a class of func-
tions mapping X to X , such that the true effects function A∗

is in A, and let A′
ϵ be the set of Boolean-valued functions of

the form {A′(s) = I[∥A(s) − A∗(s)∥∞ ≤ ϵ] : A ∈ A}.
Let d be the VC-dimension of A′

ϵ. Suppose training and test
problems are drawn from a common distribution D. Then
Ω(1

δ1
(d + log 1

δ2
)) training trajectories from D are neces-

sary to identify A ∈ A that satisfy ∥A(s) − A∗(s)∥∞ ≤ ϵ
with probability 1 − δ1 on test trajectories with probability
1−δ2 over the training trajectories. In particular, if d = ∞,
then A is not learnable.

Proof. The sup norm regression problem can be reduced
to learning of effects as follows: given a training set
{(xi, f

∗(xi))}mi=1, we construct one-step trajectories for a
planning domain with a single action, initial states given by
xi, and post-states given by f∗(xi). Then an estimate of the
effect f that is ϵ-close to f∗ with probability 1 − δ1 indeed
yields a solution to the original regression problem. The
bound thus follows from Theorem 3 of [30].

Thus, we see that some restrictions on the family of ef-
fects are necessary for learnability. Fortunately, unlike pre-
conditions, these restrictions are relatively mild. For exam-
ple, for linear functions in k dimensions, the VC-dimension
of the corresponding A′

ϵ is O(k2) [30, Prop. 18].

3.2 Assumptions
In the numeric planning setting we consider, the signature
of actions in a trajectory is observable and the actions’ pre-
conditions are conjunctions of conditions over both discrete
and numeric state variables. In addition, we limit our at-
tention to scenarios that satisfy the following assumptions:
(1) The conditions over the numeric state variables in ac-
tions’ preconditions are linear inequalities, (2) The numeric
expressions defining actions’ effects are linear combinations
of state variables, and (3) The set of numeric state variables
that are involved in each action’s preconditions and effects
are known in advance.

While these assumptions restrict the types of domains we
consider, they still cover a wide range of applications. The
first two assumptions hold in most of the domains in the
3rd International Planning Competition (IPC) for numeric
planning [4] and other benchmarks we considered [31]. The
third assumption requires a human modeler to specify the
relevant state variables, which is still significantly easier
than manually defining the entire action model. Without
this assumption, the space of possible preconditions may
become intractably large. Next, we propose Numeric SAM
(N-SAM), an action model learning algorithm for numeric
domains that under the above assumptions is guaranteed to
output a safe action model.

4 Numeric SAM (N-SAM)
The N-SAM algorithm learns an action model that includes
all actions it observed in the given trajectories T . First,
it uses SAM learning [14] to learns the Boolean precondi-
tions and effects of every observed action. Then, it creates
numeric preconditions for every observed action a by con-
structing a convex hull over the relevant numeric variables’
values observed in states before a was applied. Finally, it
creates numeric effects by solving a linear regression prob-
lem for every numeric variable that is part of the effects of
that action. Figure 1 illustrates the learning process of the
numeric preconditions and effects. Next, we describe these
steps in detail.
Learning Numeric Preconditions. For any action a, let
preX(a) be the set of numeric state variables used in its pre-
conditions. If preX(a) = ∅, then of course there is no need
to learn numeric preconditions for a. Otherwise, N-SAM
creates a dataset of |preX(a)|-dimensional points by iterat-
ing over every observed state transition ⟨s, a, s′⟩ and extract-
ing from s the values for the variables in preX(a). We refer
to this dataset as DBpre(a). [29] observed that when learning
from positive examples, the optimal hypothesis is the inter-
section of all consistent candidate hypotheses. In our case,
this is precisely the convex hull of the observed points. Thus,
N-SAM computes the convex hull of the points in DBpre(a),
and sets the preconditions of a as the set of linear inequali-
ties that define the convex hull. Obtaining these inequalities
can be done with off the shelf tools in polynomial time in
the number of inequalities and attributes. 2 The top part of
Figure 1 illustrates this process of learning numeric precon-
ditions with N-SAM. We currently do not support equality
constraints, and so we cannot represent a lower-dimensional
convex hull, as may occur for example, if we do not have
enough datapoints or if two numeric variables are linearly

2In our implementation, we used the convex hull algorithm
available in the SciPy library.

dependent. In such cases, N-SAM creates a degraded ver-
sion of the preconditions that is a disjunction over the rele-
vant parts of the previously observed states in which a has
been applied.
Learning Numeric Effects. As when learning precondi-
tions, we define effX(a) to be the set of numeric state vari-
ables used in the effects of a. Under our linear effects as-
sumption, the change in any variable x ∈ effX(a) is a linear
combination of the values of effX(a) in the state immedi-
ately before a was applied. Thus, we propose to learn the
effects of an action using standard methods for linear re-
gression. In more detail, for every variable x ∈ effX(a) and
given state transition ⟨s, a, s′⟩ N-SAM creates an equation
of the form s′(x) − s(x) = w0 +

∑
x′∈effX(a) wx′ · s(x′).

If the resulting system of linear equations contains more
than |effX(a)| + 1 linearly independent equations, then we
can solve them to obtain the values of w0 and wx′ for
all x′ ∈ effX(a) (note that otherwise the convex hull has
lower dimension).3 Correspondingly, N-SAM sets x :=
w0 +

∑
x′∈effX(a) wx′ · x′ as an effect of a. This process

is illustrated in the bottom of Figure 1.

5 Theoretical Properties
The runtime of N-SAM is polynomial in the number of state
transitions, state variables, and actions, because computing
convex hulls and solving linear regression problems can be
done in polynomial time. Regarding safety, we first show
that the preconditions we learn are safe for a broad family of
planning models in which the constraints are convex. Recall
that a set of points (in our case, the points satisfying the
precondition) is said to be convex if for any two points s
and t in the set, every convex combination λs+(1−λ)t for
λ ∈ [0, 1] is also in the set. In particular, linear inequalities
define a convex set.
Theorem 2. Consider a family of preconditions given by
conjunctions of convex properties. Then the precondition
given by the convex hull of states from a set of trajectories
in which a given action was taken is safe.

Proof. Consider any point s′ in the convex hull; s′ may be
written λsi +(1−λ)sj for states si and sj that satisfied the
action’s preconditions. Note that si and sj both satisfied all
of the conditions in the conjunction defining the actual pre-
condition; since these conditions are convex, s′ also satisfies
each of them, so s′ satisfies the actual preconditions of the
action.

Next, we show that if furthermore the actions are affine
functions of the pre-state, then the effects are also accurate
given the convex hull precondition is satisfied.
Theorem 3. Fix q ∈ N∪{∞}. Suppose Θ is a set of param-
eters such that for all pre-states s of a given action in a set
of trajectories, Θs is ϵ-close to the post-state in the ℓq-norm.
Suppose furthermore that the true action model is given by
an affine function with parameters Θ∗. Then for any state s
satisfying the convex hull precondition, Θs is also ϵ-close to
the true post-state in ℓq norm.

Proof. We wish to show ∥Θs − Θ∗s∥ ≤ ϵ. Note that since
both functions are affine, Θs−Θ∗s = (Θ−Θ∗)s, and since
s is in the convex hull of observed points, s =

∑m
j=1 λjsj

3In our implementation, we used a standard least-squares linear
regression algorithm to obtain these weights.

Figure 1: Graphical illustration of how N-SAM learns numeric preconditions and effects.

for λj ∈ [0, 1] such that
∑m

j=1 λj = 1. So, by the triangle
inequality, ∥Θs−Θ∗s∥ ≤

∑m
j=1 λj∥(Θ−Θ∗)sj∥. We are

supposing that ∥(Θ−Θ∗)sj∥ ≤ ϵ for all j, so in turn this is
at most

∑m
j=1 λjϵ = ϵ.

Thus, N-SAM is guaranteed to return a safe action model.
However, that action model can be too restrictive, raising the
mentioned above completeness risk. Unlike SAM learning
in discrete domains, N-SAM does not have nice worst-case
sample complexity guarantees, as shown in Section 3.1.

6 Experimental Results
Although we do not obtain theoretical completeness guar-
antees for worst-case distributions, it remains an empirical
question whether or not N-SAM learns useful action models
in practice. We fully implemented N-SAM and performed
a set of experiments to evaluate its performance on a set of
benchmark numeric problems. In this section, we describe
these experiments and their results. We considered a total of
12 domains for our evaluation, listed in Table 1. The Depot,
Zenotravel, Rovers, Satellite, Settlers, and UMT domains
are numeric domains from the 3rd International Planning
Competition (IPC3) [32]. The Farmland, Counters, Plant-
watering, and Sailing are more recent domains introduced
by [31]. The first column in Table 1 contains the names
of the domains. The next three column lists properties of
the domain that relates to the applicability of N-SAM. The
second column (labelled “L”) indicate whether the precondi-
tions and effects in the domain satisfy our linearity assump-
tion, i.e., include only linear combination of the state vari-
ables. The third column (“CE”) indicates whether the do-
main contain conditional effects. The fourth column (“EP”)
indicates whether the domain contain preconditions with
equality, as opposed to inequalities. Currently, N-SAM sup-
ports domains that are linear and do not have conditional
effects or equality preconditions. 7 out of the 12 domains
satisfy these requirements. We highlighted these domains
in bold. The other domains were discarded from our experi-
ments. The columns |A|, |F |, |X|, |C| represent the number
of actions (|A|), Boolean state variables (|F |), and numeric
state variables (|X|) in each domain. The column max preX
is the maximal number of numeric variables involved in an
action’s precondition.

max max
Domain L CE EP |A| |F | |X| preX |T |
DriverLog (IPC) ✓ ✗ ✗ 6 5 4 0 10
Farmland ✓ ✗ ✗ 2 1 2 1 67
Rovers (IPC) ✓ ✗ ✗ 10 26 2 1 11
Satellite (IPC) ✓ ✗ ✗ 5 8 6 2 10
Sailing ✓ ✗ ✗ 8 1 3 3 36
Depot (IPC) ✓ ✗ ✗ 5 6 4 3 25
Counters ✓ ✗ ✗ 4 0 3 3 20

Plant watering ✓ ✗ ✓ 10 0 11 8 NA
Zenotravel (IPC) ✗ ✗ ✗ 5 2 8 3 NA
Settlers (IPC) ✓ ✓ ✗ 24 20 6 2 NA
UMT (IPC) ✓ ✓ ✓ 38 38 24 11 NA

Table 1: Domains considered in our evaluation. The domains
marked in bold are the domains in which all our assumptions hold.

For each domain, we performed the following type of ex-
periments. First, we created a set of trajectories by solving
planning problems in the domain using a numeric planner.
Then, we run N-SAM on this set of trajectories, which out-
puts an action model Â. Next, we select a different planning
problem from the same domain, and check if the same nu-
meric planner can solve it given the learned action model Â.
To obtain problems in a given domain, we either relied on
an available set of problems or generated ones if a problem
generator was available. To solve problems, we used the
well-known Metric FF numeric planner (version 2.1) [23]
with the running configuration EHC+H and then BFS with
no cost minimization. We limited the running time of the
solver to 60 seconds per problem. Our dataset of problems
consists of only the problems the planner was able to solve
within the time limit. Column max |T | in Table 1 lists the
maximal number of trajectories we had available in each do-
main. Since the number of trajectories is small, we used the
leave-one-out cross-validation (LOOCV) method. That is,
given X problems in the domain, we used X − 1 trajecto-
ries to learn the action model and evaluate it on the held-out
problem. This process is repeated X times and the reported
results are averaged over these repetitions. All experiments
were run on a CentOS Linux CPU cluster with 6 cores and
32 GB of RAM.

domain |T | Dis. RX MSEX PF PF Solved

DriverLog 10 1.00 1.00 0.00 0.93 1.00 1.00
satellite 10 0.80 0.97 0.00 0.95 0.97 0.30
rovers 11 0.99 0.94 0.00 0.77 0.84 0.41
counters 20 1.00 0.93 0.00 1.00 1.00 0.81
depot 25 1.00 0.97 0.00 0.97 1.00 0.77
sailing 36 0.87 0.92 0.00 1.00 1.00 0.73
farmland 67 0.50 1.00 0.00 0.50 1.00 0.98

Table 2: Performance results of N-SAM for the maximal number
of trajectories in each domain.

6.1 Evaluation Metrics
The main metric we consider is the number of problems
solved using the learned domain. We also measured the re-
lation between the learned action model Â and the actual
action model A by computing precision and recall of Â,
where precision is TP

TP+FP and recall is TP
TP+FN . We de-

fined TP , FP , and FN differently for the Boolean and the
numeric parts of Â. For the Boolean parts, TP is the num-
ber of Boolean preconditions that are in both Â and A; FP

is the number of Boolean preconditions that are in Â but not
in A; and FN is the number of Boolean preconditions that
are in A but not in Â. These definition do not carry over
well to numeric parts of the action model due to its contin-
uous nature. Instead, we calculate the values of TP , FP
and FN by iterating over the trajectories created for the test
problems using the correct action model A and checking for
every given state transition ⟨s, a, s′⟩ ∈ T if the action a is
also applicable in s according to Â. Here, TP is the number
of triplets where a is applicable in its pre-state according to
Â, FN is the number of triplets where a is not applicable
in its pre-state according to Â. FP is set to zero, since it
represents triplets where a is not applicable in its pre-state
according to A. Such triplets do not exist as the trajectory
itself was created using A. Thus, for the numeric action
model precision is always one and thus only recall is of in-
terest. Finally, we also measured the Mean Squared Error of
the numeric effects, comparing the post-state in the trajec-
tory created with A and the expected post-state according
to Â. We denote by PF and RF the precision and recall of
the Boolean part of the action model and denote by RX , and
MSEX the recall and MSE of the numeric part.

6.2 Learning Results
Table 2 presents results of our experiments. The column |T |
refers to the maximal number of trajectories used in each
domain. The column “Dis.” gives the ratio of actions ob-
served by by N-SAM out of the entire set of actions in A.
The columns “Solved” indicate the ratio of problems solved
using N-SAM. The results show several trends. First, we
observe that even with such a small number of trajectory, N-
SAM is able to learn a safe action model that allows solving
more than half of the problems. Second, with the excep-
tion of Driverlog, the worst results appear in the domains
with the fewest trajectories (satellite and rovers). This sug-
gests having more trajectories will allow N-SAM to succeed
in these two domains as well. The remarkable results for
DriverLog — solving all problems with only 10 trajectories
— can be explained by the simplicity of this domain. In par-
ticular, the drivelog domain has no numeric precondition but
only numeric effects, which are much easier to learn. Inter-

estingly, some actions remained undiscovered in some of the
domains. The satellite, rover, farmland, and sailing domains
are concrete examples. Yet, even in these cases, the learned
action model was able to solve some of the tested problems.
As expected, since N-SAM returns a safe action model, the
MSE of all actions’ effects is constantly 0. This means N-
SAM learned the numeric effects perfectly. Also impres-
sive are the recall values of the numeric preconditions (RX)
are constantly higher than 0.9, suggesting that the learned
action models are not too restrictive, allowing most values
that are allowed according to the original model. We cal-
culated the discrete precision and recall values based on the
observed actions. The discrete precision and recall values
were affected since some actions were not learned due to
safety issues. The farmland domain exhibits this since the
discrete model precision is only 0.5. Since an unlearned ac-
tion has no redundant predicates, the recall values are not
badly influenced (as seen in the farmland domain).

Next, we explore why some problems were not solved
with the learned action model. When using a planner to
solve a problem with an action model learned by N-SAM,
we can expect one of three outcomes: (1) the planner was
able to solve the problem, (2) the planner declared the prob-
lem cannot be solved with the given action model, and (3)
the planner was not able to solve the problem within the
given time limit. We refer to these outcomes as “solved”,
“no solution”, and “timeout”, respectively. We note that the
benchmark problems are all solvable by design. Thus, a “no
solution” outcome indicates the learned action model is too
restrictive, while a “timeout” outcome may only mean that
the planner was not fast or efficient enough. Figure 2 shows
how many problems reached each of these outcomes as a
function of the number of trajectories used for training. We
omitted the DriverLog since, as noted above, it has no nu-
meric preconditions and N-SAM learns numeric effects very
fast. As the results show, in all cases the number of “no
solution” outcomes decreases as we are given more trajec-
tories. This supports that the action model returned by N-
SAM is becoming less restrictive (yet still safe) with more
data. On the other hand, the number of “timeout” outcomes
increases with the number of trajectories, as having more
data results in a richer model, which allows the planner to
explore a larger search space. Thus, in some cases adding
more trajectories did not lead to an increase in the number
of problems solved. That being said, the general trend in
all domains is that increasing the number of data results in
more “solved” outcomes, as desired. This observation is es-
pecially visible in farmland, depot, DriverLog, and counters
domain.

7 Use Case: Repairing Faulty Action Models
The main use case of N-SAM is where the problem solver
has no knowledge of the underlying action model and all the
state transitions in the observed trajectories are valid. That
is, in every state transition ⟨s, a, s′⟩ all the preconditions of
a were met in s and the difference between s′ and s exactly
correspond to a’s effects. However, N-SAM can also be used
to repair a faulty action model.

Consider the following use case, which involves a
planning-based autonomous agent acting in a domain D =
⟨F,X,A⟩. The agent uses an action model Af ̸= A to plan
which actions to perform in the domain in order to achieve
its goals. Since Af ̸= A, some of the plans generated by this

0.00

0.20

0.40

0.60

0.80

1.00

1 5 9 13 17 21 25

P
ro

b
le

m
s

Trajectories

Solved
No solution
Timeout

(a) Depots domain

0.00

0.20

0.40

0.60

0.80

1.00

1 6 11 16 21 26 31 36 41

P
ro

b
le

m
s

Trajectories

Solved

No solution

Timeout

(b) Farmland domain

0.00

0.20

0.40

0.60

0.80

1.00

1 6 11 16 21 26 31 36

P
ro

b
le

m
s

Trajectories

Solved
No solution
Timeout

(c) Sailing domain

0.00

0.20

0.40

0.60

0.80

1.00

1 3 5 7 9 11

P
ro

b
le

m
s

Trajectories

Solved
No solution
Timeout

(d) Rovers domain

0.00

0.20

0.40

0.60

0.80

1.00

1 3 5 7 9
P

ro
b

le
m

s

Trajectories

Solved

No solution

Timeout

(e) Satellite domain

0.00

0.20

0.40

0.60

0.80

1.00

1 4 7 10 13 16 19

P
ro

b
le

m
s

Trajectories

Solved
No solution
Timeout

(f) Counters domain

Figure 2: Ratio of problems for each possible planner outcome as a function of # of trajectories.

0.00 0.20 0.40 0.60 0.80 1.00

Faulty-Train

N-SAM-Train

Faulty-Test

N-SAM-Test

Valid Invalid Timeout

Figure 3: Model repair results for the sailing domain.

agent may fail. The agent does not know A, but it has full
observability. Thus, it can collect a set of state transitions
from previously executed plans and split them into valid and
and invalid state transitions. This is where N-SAM fits natu-
rally. We can run N-SAM only on the valid state transition,
and then update the faulty action model Af with the safe ac-
tion model returned by N-SAM. The resulting action model
is safe, and will become more complete as it processes more
trajectories.

We created a preliminary implementation of this N-SAM
use case and demonstrated its applicability on the sailing do-
main (see Table 1 for domain details). To create the faulty
action model Af , we injected a faulty to the domain’s action
model by changing the sign of one random numeric precon-
dition (i.e. if the sign was ≥ we changed it to ≤). Then,
we generated two sets of problems denoted Train and Test,
comprising 59 and 15 problems, respectively. We used Met-
ric FF with the faulty action model to generate plans for all
problems in Train and in Test. The subset of valid problems
created for Train is given as input to N-SAM, which out-
puts an action model AN-SAM. Then, we used Metric FF with
AN-SAM to generate plans for Train and for Test. Figure 3
shows the ratio of problems for which (1) a valid plan has
been generated (“Valid” in the figure), (2) an invalid plan
has been generated (“Invalid”), and (3) no plan was found
until a timeout has been reached (“Timeout”).

As can be seen, the action model created by N-SAM is
able to generate more valid plans than the original faulty ac-

tion model. In addition, since AN-SAM is a safe action model
using it never yields an invalid plan. These preliminary re-
sults suggest that N-SAM can be applied for repairing faulty
action models. But, further improvements for this use case
can be done. For example, N-SAM can be extended to con-
sider also the failed state transitions. Such negative exam-
ples can be extremely useful for training purposes. This is
left to future work.

8 Conclusions and Future Work

We explored the problem of learning a safe action model
for numeric planning. Unlike the discrete case, guarantee-
ing worst-case safety in a non-trivial way is not possible for
most numeric planning domains. However, we identified
as set of reasonable assumptions in which such learning is
possibly, namely, that preconditions and effects are linear.
Then, we proposed the N-SAM algorithm for learning a safe
action model under these assumptions. The worst-case sam-
ple complexity of N-SAM does not scale gracefully, but it
works well on standard numeric planning benchmarks, re-
quiring less than 70 sample trajectories to learn an action
model that is sufficient to find safe plans for most problems
in almost all benchmark domains. This suggests N-SAM can
be applied in practice in domains that satisfy our assump-
tions. We also show that N-SAM can be used to repair a
faulty action model by learning from successful state transi-
tions created with the faulty action model.

Future work includes implementing N-SAM in richer do-
mains, and extending it to support richer numeric models
that include equality constraints and polynomial effects and
preconditions. Similarly, we are currently working on ex-
tending N-SAM to handle partial observability. At the same
time, our success in learning adequate models for these do-
mains contrasts strongly with the negative theoretical results
for the worst case. It is an interesting question whether
we can identify some properties that these domains possess
that enables the observed success of N-SAM or some other
method.

References
[1] Malik Ghallab, Dana Nau, and Paolo Traverso. Au-

tomated planning and acting. Cambridge University
Press, 2016.

[2] Richard E Fikes and Nils J Nilsson. Strips: A new ap-
proach to the application of theorem proving to prob-
lem solving. Artificial intelligence, 2(3-4), 1971.

[3] Constructions Aeronautiques, Adele Howe, Craig
Knoblock, ISI Drew McDermott, Ashwin Ram,
Manuela Veloso, Daniel Weld, David Wilkins SRI,
Anthony Barrett, Dave Christianson, et al. Pddl| the
planning domain definition language. Technical Re-
port, Tech. Rep., 1998.

[4] Maria Fox and Derek Long. Pddl2.1: An extension to
pddl for expressing temporal planning domains. Jour-
nal of artificial intelligence research, 20, 2003.

[5] Scott Sanner. Relational dynamic influence diagram
language (rddl): Language description. Unpublished
ms. Australian National University, 32:27, 2010.

[6] Jörg Hoffmann. Ff: The fast-forward planning system.
AI magazine, 22(3):57–57, 2001.

[7] Malte Helmert. The fast downward planning system.
Journal of Artificial Intelligence Research, 26:191–
246, 2006.

[8] Amanda Coles, Andrew Coles, Maria Fox, and Derek
Long. Temporal planning in domains with linear pro-
cesses. In Twenty-First International Joint Conference
on Artificial Intelligence, 2009.

[9] Frédéric Maris and Pierre Régnier. Tlp-gp: Solv-
ing temporally-expressive planning problems. In 2008
15th International Symposium on Temporal Represen-
tation and Reasoning, pages 137–144. IEEE, 2008.

[10] Wiktor Mateusz Piotrowski, Maria Fox, Derek Long,
Daniele Magazzeni, and Fabio Mercorio. Heuristic
planning for pddl+ domains. In Workshops at the Thir-
tieth AAAI Conference on Artificial Intelligence, 2016.

[11] Stephen Cresswell and Peter Gregory. Generalised
domain model acquisition from action traces. In In-
ternational Conference on Automated Planning and
Scheduling (ICAPS), pages 42–49, 2011.

[12] Diego Aineto, Sergio Celorrio, and Eva Onaindia.
Learning action models with minimal observability.
Artificial Intelligence, 275:104–137, 05 2019.

[13] Qiang Yang, Kangheng Wu, and Yunfei Jiang. Learn-
ing action models from plan examples using weighted
max-sat. Artificial Intelligence, 171(2-3), 2007.

[14] Brendan Juba, Hai S. Le, and Roni Stern. Safe learn-
ing of lifted action models. In International Confer-
ence on Principles of Knowledge Representation and
Reasoning (KR), pages 379–389, 2021.

[15] Roni Stern and Brendan Juba. Efficient, safe, and
probably approximately complete learning of action
models. In the International Joint Conference on Arti-
ficial Intelligence (IJCAI), pages 4405–4411, 2017.

[16] Brendan Juba and Roni Stern. Learning probably
approximately complete and safe action models for
stochastic worlds. In AAAI Conference on Artificial
Intelligence (AAAI), 2022.

[17] Julian Schrittwieser, Thomas Hubert, Amol
Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline
reinforcement learning by planning with a learned
model. Advances in Neural Information Processing
Systems, 34:27580–27591, 2021.

[18] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netra-
palli, and Thorsten Joachims. Morel: Model-based of-
fline reinforcement learning. In Advances in Neural
Information Processing Systems 33, 2020.

[19] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Er-
mon, James Y Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. Mopo: Model-based offline policy opti-
mization. In Advances in Neural Information Process-
ing Systems 33, pages 14129–14142, 2020.

[20] Stephen N Cresswell, Thomas L McCluskey, and Mar-
garet M West. Acquiring planning domain models
using locm. The Knowledge Engineering Review,
28(2):195–213, 2013.

[21] Diego Aineto, Sergio Jiménez Celorrio, and Eva On-
aindia. Learning action models with minimal observ-
ability. Artificial Intelligence, 275:104–137, 2019.

[22] José Á Segura-Muros, Raúl Pérez, and Juan
Fernández-Olivares. Discovering relational and nu-
merical expressions from plan traces for learning ac-
tion models. Applied Intelligence, 51(11):7973–7989,
2021.

[23] Jörg Hoffmann. The metric-ff planning system: Trans-
lating“ignoring delete lists”to numeric state variables.
Journal of artificial intelligence research, 20:291–341,
2003.

[24] Enrico Scala, Patrik Haslum, Sylvie Thiébaux, and
Miquel Ramirez. Interval-based relaxation for general
numeric planning. In European Conference on Artifi-
cial Intelligence (ECAI), pages 655–663, 2016.

[25] Michael Kearns, Ming Li, and Leslie Valiant. Learn-
ing boolean formulas. Journal of the ACM (JACM),
41(6):1298–1328, 1994.

[26] Haim Shvaytser. A necessary condition for learning
from positive examples. Machine Learning, 5(1):101–
113, 1990.

[27] Paul W. Goldberg. PAC-learning geometrical figures.
PhD thesis, University of Edinburgh, 1992.

[28] Jyrki Kivinen. Learning reliably and with one-sided
error. Mathematical systems theory, 28(2):141–172,
1995.

[29] B. K. Natarajan. Probably approximate learning of
sets and functions. SIAM Journal on Computing,
20(2):328–351, 1991.

[30] Martin Anthony, Peter Bartlett, Yuval Ishai, and John
Shawe-Taylor. Valid generalisation from approximate
interpolation. Combinatorics, Probability and Com-
puting, 5(3):191–214, 1996.

[31] Enrico Scala, Patrik Haslum, Daniele Magazzeni,
Sylvie Thiébaux, et al. Landmarks for numeric plan-
ning problems. In IJCAI, pages 4384–4390, 2017.

[32] Derek Long and Maria Fox. The 3rd international
planning competition: Results and analysis. Journal
of Artificial Intelligence Research, 20:1–59, 2003.

