
HAL Id: hal-03773785
https://hal.science/hal-03773785

Submitted on 9 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Planning Domain Repair as a Diagnosis Problem
Songtuan Lin, Alban Grastien, Pascal Bercher

To cite this version:
Songtuan Lin, Alban Grastien, Pascal Bercher. Planning Domain Repair as a Diagnosis Problem.
33rd International Workshop on Principle of Diagnosis – DX 2022, LAAS-CNRS-ANITI, Sep 2022,
Toulouse, France. �hal-03773785�

https://hal.science/hal-03773785
https://hal.archives-ouvertes.fr

Planning Domain Repair as a Diagnosis Problem

Songtuan Lin and Alban Grastien and Pascal Bercher
School of Computing, The Australian National University

firstName.lastName@anu.edu.au

Abstract
Techniques for diagnosis have been used in many
applications. We explore the connection between
diagnosis and AI planning in this paper and apply
the diagnosis algorithm to repair a flawed plan-
ning domain. In particular, the scenario we are
concerned with is that we are given a plan which
is supposed to be a solution to a planning problem,
but it is actually not due to some flaws in the plan-
ning domain, and we want to repair the domain
to turn the plan into a solution. For this, we will
first frame this problem as a diagnosis problem
and then solve it via using diagnosis algorithms.

1 Introduction
Diagnosis refers to the task of finding a set of faulty compo-
nents in a system. The theory for diagnosis developed by [1;
2] being model based, its principles are independent from
the specific problem of diagnosis. Consequently, diagnosis
intersects with a wide range of applications.

In this paper, we are interested in the application of diag-
nosis techniques in AI planning [3; 4], which is the task of
generating a course of actions automatically which achieve
some certain goals. In particular, we are concerned with ex-
ploiting the diagnosis algorithm to repair planning domains
that are not adequately engineered.

Concretely, modeling the domain of a planning problem,
known as domain engineering [5], is the process of abstract-
ing practical (planning) problems as mathematical models,
which can then be solved by exploiting automated planning
techniques. This is unfortunately not a trivial process, and
the competition for this, i.e., International Competition on
Knowledge Engineering for Planning and Scheduling (ICK-
EPS), has been held for many years. Therefore, errors oc-
cur quite often in engineered planning domains, and hence,
how to provide assistance for correcting a flawed planning
domain is regarded as a critical problem [6].

The scenario we consider for repairing a flawed planning
domain is as follows. We are given a plan, i.e., a sequence
of actions, and a planning domain in which the given plan
is not a solution due to some existing flaws in the domain.
Our goal here is repairing the domain, i.e., finding possible
flaws in the domain, so that the plan will be a solution. The
scenario is initially studied by [7]. However, the authors
there only investigated the computational complexity of the
problem and did not propose practical approaches for solv-
ing the problem. Thus, we present such an approach here

which first frames the problem of repairing a planning do-
main as the diagnosis problem and then plug in the diagnosis
algorithm for solving it.

Specifically, we view each atomic repair as a component
in the domain, where this component is abnormal if the
atomic repair should be performed. We then formulate the
repair problem as a diagnosis one, in which a (minimal) di-
agnosis can be mapped to a (minimal) repair. Diagnosis al-
gorithms can then be used to efficiently compute the repair.

The paper is organized as follows. We start by introduc-
ing the frameworks of model based diagnosis and planning.
Afterward, we formalize the problem of repairing planning
domains. After that, we present how to formulate a domain
repair problem as a diagnosis problem and some practical
realizations for exploiting the diagnosis algorithm to solve
the domain repair problem. We then present the experimen-
tal results about our approach, and lastly, we discuss some
related works centered in repairing and modifying planning
domains.

2 Preliminaries
For the purpose of illustrating how to exploit diagnosis tech-
niques to repair flawed planning domains, we shall first in-
troduce the diagnosis framework and the planning frame-
work employed in this paper.

2.1 Model Based Diagnosis
We start by introducing the diagnosis framework employed
in the paper. The framework is based on the classical defi-
nitions of model based diagnosis [1], which we recap here.

A system is modeled by a pair (Comps,SD) in which
Comps is a (finite) set of components and SD (the system
description) is a logical statement. Importantly, SD relies
on the unary predicate Ab(c) where c ∈ Comps is a com-
ponent; Ab(c) is a boolean proposition that evaluates to true
whenever c behaves in a faulty (abnormal) manner.

An observation Obs is a logical statement on some of the
variables mentioned by the system description.

A diagnosis problem is a triple (Comps,SD,Obs) where
(Comps,SD) is a system model and Obs an observation.

A (diagnosis) candidate is a subset δ ⊆ Comps of com-
ponents that are assumed to be faulty; by default, the other
components are assumed to be behaving normally. The log-
ical interpretation of candidate δ, written φComps(δ) or φ(δ)
when the set of components is obvious from the context, is
defined as follows:∧

c∈δ

Ab(c) ∧
∧

c∈Comps\δ

¬Ab(c).

A diagnosis candidate δ is called a diagnosis of some di-
agnosis problem (Comps,SD,Obs) if it is logically consis-
tent with the model and the observations:

SD,Obs, φ(δ) ̸|= ⊥.
We write ∆ the set of diagnoses. A diagnosis is minimal

if none of its strict subsets is a diagnosis:

∄δ′ ∈ ∆. δ′ ⊂ δ.

A diagnosis is cardinality-minimal if no other diagnosis in-
volves fewer components:

∄δ′ ∈ ∆. |δ′| < |δ|.
Cardinality-minimal diagnoses are minimal diagnoses.

Solving diagnosis problems The theory of model based
diagnosis developed by [1] and [2] relies heavily on the no-
tion of conflicts which we now review.

Given a diagnosis problem (Comps,SD,Obs), a conflict
C is a subset of components one of which must be faulty.
This is formally expressed as follows:

SD,Obs,
∧
c∈C

¬Ab(c) |= ⊥.

As a consequence, each diagnosis δ must intersect with (i.e.,
“hit”) each conflict C: δ ∩ C ̸= ∅. Actually, every mini-
mal diagnosis is a minimal hitting set of the set of (subset-
)minimal conflicts, where a hitting set is defined as follows:

Let C = {C1, . . . , Ck} be a collection of sets; a hitting
set of C is a set H that intersects every one of its sets:

∀i ∈ {1, . . . , k}. Ci ∩H ̸= ∅.
A simple diagnosis algorithm is given in Alg. 1. The al-

gorithm maintains a collection C of (possibly non-minimal)
conflicts (initially empty). At each iteration, it computes a
minimal hitting set for the collection and tests whether the
candidate is a diagnosis. If it is, the algorithm returns this
minimal diagnosis. Otherwise, a conflict is extracted from
the inconsistency proof which is added to C.

Alg. 1 relies on two operators. The first operator verifies
whether a given diagnosis candidate is a diagnosis, and if it
is not, the operator returns a conflict. We call this operator
an oracle. Its implementation is problem-dependent, and we
show in Sec. 4 how it is implemented for our problem. The
second operator computes hitting sets from a collection of
conflicts; we provide more details on this tool in the exper-
imental section. Notice that if this operator returns minimal
cardinality hitting sets, then the procedure returns a minimal
cardinality diagnosis, as proved by [1], by [2], and by [8].

Additionally, one remark is that the correctness of Alg. 1
is based upon the set ∆ of all diagnoses of a diagnosis prob-
lem being monotonic, that is, for any δ ∈ ∆, if δ ⊆ δ′ for
some diagnosis candidate δ′, then δ′ ∈ ∆.

2.2 Planning Formalism
We move on now to introduce the planning framework used
in the paper. The planning formalism we are concerned with
is the grounded ST RIPS formalism [9]. By grounded,
we mean that the formalism is defined in terms of propo-
sitional logic, i.e., without variables. A generalization of it,
called the lifted ST RIPS formalism, is defined in terms of
first order logic, i.e., with variables, which will only be con-
sidered in our future work. Hence, for convenience, unless

Algorithm 1 Diagnosis algorithm
Input: A diagnosis problem (Comps,SD,Obs)
Output: A minimal diagnosis

▷ Collection of known conflicts
C ← ∅
loop

δ← a minimal hitting set of C
if SD,Obs, φ(δ) ̸|= ⊥ then

return δ
C ← a conflict C with C ⊆ Comps \ δ
C ← C ∪ {C}

otherwise specified, we will use the ST RIPS formalism
to refer to the grounded version. We start by presenting the
definition of ST RIPS planning problems, and afterward
we will explain each element in a planning problem.

A ST RIPS planning problem P is defined as a tuple
(F ,A, α, sI , g) where F is a set of propositions, A is a set
of actions, α : A → 2F × 2F × 2F is a function, and
sI ∈ 2F and g ⊆ F are called the initial state and the goal
description of P , respectively. In particular, F together with
A and α is called the domain of P .

In the ST RIPS planning formalism, a set of propo-
sitions s ∈ 2F is called a state, and applying an ac-
tion a ∈ A in a state leads to a new state. Con-
cretely, an action a is mapped to the respective precondi-
tion prec(a) ⊆ F , positive effects eff +(a) ⊆ F , and neg-
ative effects eff −(a) ⊆ F by the function α, written as
α(a) = (prec(a), eff +(a), eff −(a)). Applying an action
a in some state s will lead to a new state s′ such that s′ =
(s\eff −(a)) ∪ eff +(a), written s→a s′. Given a sequence
of actions π = ⟨a1 · · · an⟩, we write s →∗

π s′ to indicate
that the state s′ is obtained by applying the action sequence
π in s, that is, there exists a state sequence ⟨s0 · · · sn⟩ such
that s0 = s, sn = s′, and for each 1 ≤ i ≤ n, si−1 →ai

si.
Further, an action a is applicable in a state s if prec(a) ⊆ s
(i.e., the precondition of a is satisfied in s).

Having presented the definition of planning problems, we
now give the solution criteria for a planning problem which
is a sequence of actions achieving the goal description in the
planning problem. Concretely, let P be a planning problem.
A solution to P is an action sequence π = ⟨a1 · · · an⟩ such
that applying π in the initial state sI results in the state se-
quence s = ⟨s0 · · · sn⟩, i.e., s0 = sI and s0 →∗

π sn, where
g ⊆ sn and for each 1 ≤ i ≤ n, ai is applicable in si−1.

2.3 Planning Domain Repair Problem
Having presented the planning framework we will use, now
we would like to introduce the problem we want to solve,
namely the problem of repairing a flawed planning domain.
The problem is formally introduced by [7] and proved to be
NP-complete. We reproduce their definition in this section.

Recall that the basic configuration of the problem is that
we are given a planning problemP and a plan π which is not
a solution to P . We want to repair (i.e., change) the domain
of P so that π will be a solution.

For the purpose of formulating the problem precisely, we
first define repairs that are allowed to be used in correcting
a planning domain. In the paper, we only consider repairing
actions’ preconditions and effects and will not add or delete
propositions from F . Specifically, repairs we are concerned
with are restricted to removing propositions from actions’

preconditions, adding propositions to actions’ positive ef-
fects, and removing propositions from actions’ negative ef-
fects. The reason for making such a restriction is that other
changes (e.g., adding propositions to actions’ preconditions)
only increase the chance of a plan not being executable. We
formally define the sets of all atomic repairs respectively
targeted at an action and a planning problem as follows:

Definition 1. Let a ∈ A be an action. The set Fa of all
atomic repairs targeted at the action a is defined as Fa =
F p
a ∪ F+

a ∪ F−
a in which

• F p
a = {⟨Fa|pf ⟩ | f ∈ prec(a)}

• F+
a = {⟨Fa|+f ⟩ | f ∈ F}

• F−
a = {⟨Fa|−f ⟩ | f ∈ eff −(a)}

Consequently, given a planning problem P , the set FP of all
atomic repairs for P is

⋃
a∈A Fa.

Intuitively speaking, the semantics of ⟨Fa|pf ⟩ is removing
the proposition f from the precondition of a, and similarly,
⟨Fa|+f ⟩ and ⟨Fa|−f ⟩ respectively adds f to the positive ef-
fects of a and removes f from the negative effects of a. We
formally define the semantics of these repairs in terms of the
consequence of applying them to a planning domain.

Definition 2. Let P = (F ,A, α, sI , g) be a planning prob-
lem and F ′

P a subset of FP , i.e., F ′
P ⊆ FP . The con-

sequence of applying F ′
P to P is a new planning prob-

lem P ′ such that P ′ = (F ,A, α′, sI , g), and for every
action a ∈ A with α(a) = (prec(a), eff +(a), eff −(a)),
α′(a) = (prec(a)\P, eff +(a)∪E+, eff −(a)\E−) in which

• P = {f | ⟨Fa|pf ⟩ ∈ F ′
P}

• E+ = {f | ⟨Fa|+f ⟩ ∈ F ′
P}

• E− = {f | ⟨Fa|−f ⟩ ∈ F ′
P}

We write P ⇒F ′
P
P ′ to indicate that P ′ is obtained by ap-

plying a set F ′
P of repairs to P .

Another interpretation of a repair in FP is to view it as a
flaw that need to be repaired. For instance, the repair ⟨Fa|+f ⟩
can be interpreted as the flaw that the positive effects of a
lack the proposition f . One remark is that, as we will see in
the later section, such an interpretation is in line with the se-
mantics of a component being abnormal when formulating
a domain repair problem as a diagnosis problem.

After defining the set of atomic repairs for a planning
problem together with the respective semantics, we now for-
mulate the problem of finding a set of repairs that turns a
non-solution action sequence into a solution.

Definition 3. Given a planning problem P and an action
sequence π = ⟨a1 · · · an⟩ with ai ∈ A for each 1 ≤ i ≤ n,
a domain repair problem is the tuple Π = (P, π) that is
to find a minimal cardinality subset F ∗

P ⊆ FP such that
P ⇒F∗

P
P∗ for some P∗, and π is a solution to P∗.

Notice that here we demand that a repair set found for the
domain repair problem must have the minimal cardinality,
because otherwise, we can always find the repair set which
empties the precondition of every action in the plan and adds
all propositions in the goal description to the last action in
the plan. Further, we emphasize that we again distinct the
notion of a minimal repair set from that of a minimal car-
dinality repair set. More specifically, let ∆ be the set of all
repair sets F †

P ⊆ FP such that P ⇒F †
P
P† and π is a so-

lution to P†. A set F †
P ∈ ∆ is said to be minimal if for

a ¬qq b ¬fq

f a ¬qq c ¬qq

fsI = {q} g

Figure 1: An example of the domain repair problem where
the planning problem is P = (F ,A, α, sI , g) with F =
{q, f} and A = {a, b, c}, and the plan is π = ⟨a b a c⟩.
Propositions placed before an action in the figure are propo-
sitions in the precondition of the action, and propositions
placed after an action are those in the effects. A proposition
without the symbol ¬ in front of it is in the positive effects
of an action, otherwise, it is in the negative effects. The so-
lution to the problem is the set of repairs {⟨Fa|−q ⟩, ⟨Fa|+f ⟩}.

any subset F ′
P ⊆ F †

P , F ′
P /∈ ∆, and F †

P is of the minimal
cardinality if |F †

P | ≤ |F ′
P | for any F ′

P ∈ ∆.
Fig. 1 illustrates an example of the domain repair prob-

lem. Consider the planning problem P = (F ,A, α, sI , g)
in which F = {q, f}, A = {a, b, c}, sI = {q}, g = ∅, and
α is the function such that

• α(a) = ({q}, ∅, {q})
• α(b) = ({q, f}, ∅, {f})
• α(c) = ({q, f}, ∅, {q})

The plan π = ⟨a b a c⟩ in Fig. 1 is not executable because
the action b in the plan is not applicable in the state obtained
by applying a in the initial state, and because the proposi-
tions q and f demanded by the actions a and c, respectively,
are removed from the states after applying the actions a and
b. The domain repair problem is to find a minimal cardi-
nality subset F ∗

P of FP such that π will be a solution to the
planning problem P∗ obtained by applying F ∗

P . In this spe-
cific setting, we have FP = Fa ∪ Fb ∪ Fc in which

• Fa = {⟨Fa|pq⟩, ⟨Fa|+q ⟩, ⟨Fa|+f ⟩, ⟨Fa|−q ⟩}
• Fb = {⟨Fb|pq⟩, ⟨Fb|pf ⟩, ⟨Fb|+q ⟩, ⟨Fb|+f ⟩, ⟨Fb|−f ⟩}
• Fc = {⟨Fc|pq⟩, ⟨Fc|pf ⟩, ⟨Fc|+q ⟩, ⟨Fc|+f ⟩, ⟨Fc|−q ⟩}

One set of repairs which can make the plan π be a solution is
F ′
P = {⟨Fa|pq⟩, ⟨Fb|pq⟩, ⟨Fb|pf ⟩, ⟨Fc|pq⟩, ⟨Fc|pf ⟩}, i.e., remov-

ing the preconditions of a, b and c. This is however not a
solution to the domain repair problem because it is not op-
timal. The optimal one is F ∗

P = {⟨Fa|−q ⟩, ⟨Fa|+f ⟩} which is
thus the solution to the domain repair problem.

3 Formulating Domain Repair Problem as
Diagnosis Problem

In this section, we show how to formulate a domain repair
problem as a diagnosis problem which can then be solved by
exploiting the generic diagnosis algorithm given in Alg. 1.

For this, given a domain repair problem Π = (P, π), we
first specify the set of components in the respective diag-
nosis problem. We can regard the set FP of all repairs as
the component set, i.e., each atomic repair is viewed as a
component. The interpretation of this analogy is straight-
forward, that is, a component is abnormal if the respective
flaw exists, i.e., the corresponding repair should be applied
to the planning domain in order to make the plan become
a solution. Naturally, the set of observations in the respec-
tive diagnosis problem consists solely of one logical state-
ment which is evaluated to true iff the plan is a solution.
We will introduce how this logical statement looks like after
presenting the most complicated part in our formulation –
the system description.

Generally speaking, the system description shall be able
to describe how the system functions. In our context, this
refers to 1) the state trajectory produced by applying π in the
initial state, and 2) how the status of each component (i.e.,
whether it is normal or abnormal) affects the state trajectory.

Suppose s = ⟨s0 · · · sn⟩ is the state trajectory obtained
by applying π in the initial state sI , that is, s0 = sI , and
s0 →∗

π sn. The core aspect of encoding s as a logic state-
ment is to use a proposition fi to indicate whether a plan-
ning proposition f ∈ F holds in the state si (0 ≤ i ≤ n)
and encode the effects of each action in terms of those extra
propositions. More concretely, we define the augmented set
of propositions:

F∗ = {fi | f ∈ F , 0 ≤ i ≤ n}

For some f ∈ F and 0 ≤ i ≤ n, fi is evaluated to true if
fi ∈ si, i.e., fi indicates whether the proposition f holds in
the state si. Consequently, the initial state can be expressed
by the following formula:

τ(s0) =

 ∧
f∈sI

f0

 ∧
 ∧

f /∈sI

¬f0

The remaining states in s are affected by the effects of

each action in the plan together with the state of each com-
ponent. Specifically, the value of fi is computed iteratively
from fi−1, the definitions of ai, and the status of the com-
ponents ⟨Fai

|+f ⟩ and ⟨Fai
|−f ⟩. For each f ∈ F , it is in some

state si (1 ≤ i ≤ n) if one of the following conditions hold:
1) f ∈ eff +(ai), or
2) f is in the state si−1 and will not be deleted by ai.
Conversely, the proposition f cannot be in the state si if one
of the following two conditions hold:
1) f /∈ si−1, f /∈ eff +(ai), and ⟨Fai |+f ⟩ is not abnormal

(i.e., ai is supposed not to add f to the state), or
2) f ∈ si−1, f ∈ eff −(ai), and ⟨Fai |−f ⟩ is not abnormal

(i.e., ai is supposed to remove f from the state).
In order to encode these criteria, we need to consider four
different cases depending on the definitions of ai:

1. If f ∈ eff +(ai) and f ̸∈ eff −(ai), then

τ(fi) = fi

2. If f ̸∈ eff +(ai) and f ̸∈ eff −(ai), then

τ(fi) =
(
¬fi−1 ∧ ¬Ab

(
⟨Fai
|+f ⟩

))
→ ¬fi

3. If f ̸∈ eff +(ai) and f ∈ eff −(ai), then

τ(fi) =
(
¬fi−1 ∨ ¬Ab

(
⟨Fai
|−f ⟩

))
→ ¬fi

4. If f ∈ eff +(ai) and f ∈ eff −(ai),1 then

τ(fi) = fi

We then define τ(si) =
∧

f∈F τ(fi) for i ∈ {1, . . . , n},
and the system description is thus

SD =
∧

0≤i≤n

τ(si).

1This latter case is generally considered impossible in practice,
but it can occur as a consequence of modelling mistakes or when
the model is an abstraction of a more refined model.

Lastly we present the encoding of the observation Obs
on top of the system description which asserts that the plan
must be a solution. The solution criteria for a planning prob-
lem demand that the precondition of each action in the plan
together with the goal description of the planning problem
must be satisfied, that is, for each ai with 1 ≤ i ≤ n, if
f ∈ prec(ai) and the component ⟨Fai

|pf ⟩ is not abnormal
(i.e., ai demanding f is not a flaw), then f must be in si−1.
Consequently, the formula encoding that every action’s pre-
condition is satisfied is as follows:

τ(π) =
∧

1≤i≤n
f∈prec(ai)

¬Ab
(
⟨Fai
|pf ⟩

)
→ fi−1

The constraint over the goal description is also trivial:

τ(g) =
∧
f∈g

fn

Hence, the observation is the following:

Obs = τ(π) ∧ τ(g)

Having introduced the transformation from a domain re-
pair problem into a diagnosis problem, we formally prove
the correctness of the procedure.
Theorem 1. Given a domain repair problem Π = (P, π)
and the respective diagnosis problem Π∗, a set of repairs
F ∗
P is a diagnosis to Π∗ iff π is a solution to P∗ in which
P ⇒F∗

P
P∗.

Proof. (⇐=): Let F ∗
P be a set of repairs such that P ⇒F∗

P
P∗ and π is a solution to P ′. We assume that, without loss
of generality, π = ⟨a1 · · · an⟩ (n ∈ N), and s = ⟨s0 · · · sn⟩
is the state sequence obtained by applying π in the initial
state of P∗ (i.e., π is applied in the updated domain). One
can verify that the formula SD ∧ Obs ∧ φ(F ∗

P) is evaluated
to true under the truth assignment where for each f ∈ F , fi
is assigned true if f ∈ ai for each 0 ≤ i ≤ n.

(=⇒): For the other direction, the key observation here
is again that for each 0 ≤ i ≤ n, if fi is assigned true,
then f ∈ si. The basis for this argument is that the formula
τ(si) simulates how the state si is computed in terms of ai’s
effects and the repairs applied to ai. Further, the truthhood
of Obs asserts that the plan π is a solution to P∗.

We mentioned earlier that in order to use the diagnosis
algorithm given in Alg. 1, the set of all diagnoses for a di-
agnosis problem must be monotonic. Here, we prove this
property holds for the domain repair problem.
Theorem 2. Let Π = (P, π) be a domain repair problem,
F ′
P ⊆ FP a set of repairs, if π is a solution to P ′ with
P →F ′

P
P ′, then for any set F ∗

P of repairs with F ′
P ⊆ F ∗

P ,
π is a solution to P∗ with P →F∗

P
P∗.

Proof. Let s′ = ⟨s′0 · · · s′n⟩ and s∗ = ⟨s∗0 · · · s∗n⟩ be the state
sequences which are obtained by executing π in P ′ and P∗,
respectively. Since F ′

P ⊆ F ∗
P , we have s′i ⊆ s∗i for each

0 ≤ i ≤ n. Thus, π is also a solution to P∗.

4 Oracle for Domain Repair Problem
As mentioned earlier, for using the diagnosis algorithm, we
have to implement the oracle targeted specifically at the do-
main repair problem which can 1) determine whether a di-
agnosis candidate can serve as a diagnosis and 2) compute a

conflict given an invalid diagnosis candidate. We introduce
here how this oracle works.

We start with the procedure for deciding whether a diag-
nosis candidate is a diagnosis. This is trivial because, given
a diagnosis candidate, which is a subset F ′

P of FP for some
planning problem P = (F ,A, δ, sI , g), we only need to ac-
complish the following two steps:
1) apply the diagnosis candidate (i.e., the set of repairs) to

the domain, and
2) check whether the solution criteria are satisfied in the

updated domain by the given plan.
One can easily verify that the time complexity for the entire
procedure is O(|F ′

P | + n|F|) in which n is the length of
the input plan, and the term n|F| is the time for checking
whether the solution criteria are satisfied because the pre-
condition of an action can have up to |F|many propositions.
In particular, we have |F ′

P | ≤ |FP |, and the right-hand side
is bounded by the polynomial number:

|FP | ≤ 3× |F| × |A|

The key observation here is that for each action a ∈ A, the
total number of repairs for its precondition, positive effects,
or negative effects cannot exceed |F|. Consequently, the
procedure for determining whether a diagnosis candidate is
a diagnosis has polynomial time complexity.

Next we introduce the procedure for computing a conflict
provided a diagnosis candidate which is not a diagnosis. A
generic template of such a procedure is given by [8], accord-
ing to which, given a diagnosis candidate F ′

P in our context,
a conflict is a subset F †

P of FP such that F †
P ∩ F ′

P = ∅,
and the given plan is not a solution to the updated planning
problem after applying the set of repairs FP \ F †

P . For the
reason why this result holds, we refer to the work by [8].

Given a diagnosis candidate F ′
P , a set F †

P satisfying the
above criteria can be found as follows. Let P ′ be the plan-
ning problem with P ⇒F ′

P
P ′. According to our hypoth-

esis, the input plan π = ⟨a1 · · · an⟩ is not a solution to P ′

(because F ′
P is not a diagnosis). Therefore, there must exist

an action aj (1 ≤ j ≤ n) which has a proposition q in its
precondition that is not satisfied. We randomly pick such
aj and q and find the largest index i with 1 ≤ i < j ≤ n

such that q ∈ eff −(ai), and for each k with i < k < j,
q /∈ eff −(ak). Notably, for each such ak, it is impossible
to have q ∈ eff +(ak) because otherwise, q will be satisfied.
Given i and j, the set F †

P is thus

F †
P = {⟨Fai

|−q ⟩, ⟨Faj
|pq⟩} ∪ {⟨Fak

|+q ⟩ | i ≤ k < j}

Clearly, F †
P ∩ F ′

P = ∅, because if it is not the case, then
q will be satisfied. Further, the plan π will not be a solution
after applying the repair set FP \ F †

P . The key observation
for this is that the proposition q demanded by aj will still
be deleted by ai because the repair ⟨Fai

|−q ⟩ is not allowed,
and q will not be added by any ak with i ≤ k < j because
⟨Fak
|+q ⟩ is also forbidden. Moreover, since ⟨Faj

|pq⟩ is also
not allowed, q cannot be removed from prec(aj).

The procedure for computing a conflict clearly has poly-
nomial time complexity, more precisely, O(n) with n being
the length of the input plan because, at the worst case, we
pick the last action in the given plan whose precondition is
not satisfied, and the action with the largest index deleting
the respective proposition is the first action in the plan.

Figure 2: Runtimes against percentages of solved instances.

5 Experimental Results
Thus far, there exist no benchmark sets of flawed planning
domains. Therefore, for the empirical evaluation, we have to
create our own benchmark set. For this, we choose 100 plan-
ning problems from 10 planning domains in the fast down-
ward benchmark collection2 each of which contains 10 plan-
ning problems. For each planning problem, we first invoke
the fast downward planning system [10] to find a solution
plan to it, and afterward, for each such pair of planning prob-
lem and solution plan, we create 5 domain repair problem
instances by randomly introducing 10%, 15%, 20%, 25%,
and 30% errors to the actions in the plan, that is, we ran-
domly select 10%, 15%, 20%, 25%, and 30% actions from
the plan, and for each selected action, we make one of the
following three changes: 1) adding a proposition to the ac-
tion’s precondition, 2) adding a proposition to the action’s
negative effects, or 3) removing a proposition from the ac-
tion’s positive effects.

We ran the experiments on an Intel i7-10700 CPU and
recorded the cardinality of the solution (i.e., a minimal car-
dinality set of repairs) found for each domain repair problem
instance as well as the respective time for finding the solu-
tion. Further, as said in the introduction, the performance
of our method relies on a minimal hitting set solver. In this
paper, find a minimal hitting set is done by invoking the
respective procedure implemented by [11] which encodes a
minimal hitting set problem as a weighted SAT problem and
solves it by the state-of-the-art MaxSAT solver [12].

The metric we are concerned with for evaluating the per-
formance of our approach is the runtime required for solving
a domain repair problem instance. Fig. 2 depicts the per-
centages of the solved instances against the runtimes which
are created by respectively introducing 10%, 15%, 20%,
25%, and 30% errors, i.e., the percentages of instances (the
x-axis) that can be solved with a specific time (the y-axis).
As we can see from the figure, all instances can be solved
in one second. Consequently, we believe that our diagnosis-
based domain repair approach is efficient.

Further, Tab. 1 lists some of our experiment results in
which we present the minimal cardinalities of the diagnoses
found for the respective domain repair problem instances.
Each row is a planning problem. The first column indi-
cates the name of the domain of each planning problem.
The last column is the length of the plan which is supposed

2https://github.com/aibasel/downward-benchmarks

Minimal Cardinality Diagnosis for
Domain 10% Error Rate 15% Error Rate 20% Error Rate 25% Error Rate 30% Error Rate Plan Length

PIPESWORLD

4 (0.6667) 6 (0.6667) 7 (0.5833) 8 (0.5333) 10 (0.5556) 62
4 (0.3333) 12 (0.6667) 13 (0.5200) 20 (0.6452) 24 (0.6486) 125
6 (0.8571) 5 (0.5000) 9 (0.6429) 11 (0.6111) 15 (0.7143) 72
8 (0.7273) 9 (0.5625) 16 (0.7273) 22 (0.8148) 21 (0.6364) 110
4 (0.5714) 5 (0.4545) 9 (0.6000) 9 (0.5000) 15 (0.6818) 75

VISITALL

3 (0.6000) 3 (0.4286) 5 (0.5000) 3 (0.2308) 6 (0.4000) 52
10 (0.3704) 19 (0.4750) 17 (0.3148) 21 (0.3088) 38 (0.4691) 272

5 (0.2273) 13 (0.3824) 21 (0.4667) 20 (0.3509) 27 (0.3971) 228
20 (0.4545) 30 (0.4545) 28 (0.3182) 49 (0.4414) 54 (0.4060) 444

5 (0.3125) 13 (0.5417) 19 (0.5938) 20 (0.4878) 24 (0.4898) 164

TPP

14 (0.4667) 25 (0.5556) 39 (0.6500) 32 (0.4267) 42 (0.4667) 302
7 (0.4375) 12 (0.5000) 20 (0.6250) 16 (0.4000) 23 (0.4792) 163
9 (0.4737) 15 (0.5172) 15 (0.3846) 24 (0.5000) 34 (0.5862) 195
4 (0.4000) 9 (0.6000) 7 (0.3333) 15 (0.5769) 15 (0.4839) 105

18 (0.6207) 23 (0.5227) 30 (0.5085) 44 (0.5946) 42 (0.4719) 299

Table 1: A partial summary of the experiment results listing the minimal cardinality diagnoses found for the domain repair
problems instances created by introducing 10%, 15%, 20%, 25%, and 30% errors, respectively. Each fraction in a parenthesis
indicates the ratio between the respective minimal diagnosis cardinality and the number of random modifications introduced.

to be a solution to the respective planning problem. The
five columns in the middle present the minimal cardinalities
of the diagnoses found for the domain repair problem in-
stances created by randomly introducing 10%, 15%, 20%,
25%, and 30% errors to the domain, respectively. Specif-
ically, each fraction in a parenthesis indicates the ratio be-
tween the respective minimal diagnosis cardinality and the
number of random modifications introduced for creating the
problem instance. For instance, for the first row, the plan-
ning problem is from the domain PIPESWORLD, and the
length of the plan that is supposed to be a solution to this
planning problem is 62. The minimal cardinality of the di-
agnosis for the domain repair problem instance created by
introducing 10% errors is 4. Further, introducing 10% er-
rors means that we applied 62 × 10% ≈ 6 modifications.
Thus, the ratio between the minimal cardinality of the diag-
nosis and the number of modifications is 0.6667.

The reason that we only show some results in Tab. 1 is
that since our approach guarantees to find a minimal car-
dinality diagnosis, the statistical data reported in the table
cannot be used as a metric to evaluate the performance of
our approach. Thus, the main purpose of the table is to sim-
ply provide some intuitions about the minimal number of
repairs required to fix a planning domain.

6 Discussion and Related Works
Diagnosis techniques have been proposed to find discrepen-
cies between models and real world. Most notably, Belard
et al. [13] introduced the idea of meta-diagnosis, where the
goal is to diagnose the model. Earlier, Crow and Rushby
[14] and Stumptner and Wotawa [15] proposed to use diag-
nosis techniques to reconfigure a system, which is an alter-
native view of the domain repair problem. Further, our work
is also in line with the idea of redesigning an almost correct
system via diagnosis [16].

Our work also bears some similarities with software de-
bugging in which a faulty piece of code (akin to our plan-
ning domain) is provided alongside some test cases (akin
to our valid plans). The task is then to identify the faulty

lines in the code and, ideally, possible corrections. Soft-
ware debugging is a very difficult task—undecidable in
general—and successful solutions revolve around using sta-
tistical analysis [17]. The repairs available in our case are
much narrower, which explains why we are able to compute
a complete repair.

To our best knowledge, this paper is the first that turns
a non-solution plan into a solution. It is however certainly
not the first one considering modifying a planning domain
(or a planning problem itself). Many of those works modify
planning domains for the purpose of building Explainable
AI Planning (XAIP) systems [18] among which one notable
framework is called model reconciliation [19; 20] sharing a
lot of similarities with ours.

The configuration for model reconciliation is as follows.
It has three inputs: 1) a plan π that is observed by a user, 2) a
human mental model PR

h , i.e., a planning problem which,
according to a user’s assumption, is deployed in some robot,
and 3) a robot model PR i.e., a planning problem that is
actually deployed in the robot. Specifically, the plan π is
not a solution (or not an optimal solution) to PR

h , but it is
a(n) (optimal) solution to PR. The objective is to modify
the domain of PR

h such that π will be an optimal solution
to the updated problem and the changes applied should be
compatible to PR.

Compared with our domain repair framework which only
demands one input model (i.e., an input planning problem),
the model reconciliation framework demands two (i.e., two
input planning problems). Further, the model reconciliation
framework demands that the given plan must be an optimal
one in the updated model, which raise the complexity of the
respective problem to Σ2

p [20]. In contrast, our framework
does not require that the given plan should be optimal in the
updated model, and hence the domain repair problem is also
computationally cheap (i.e., NP-complete [7]).

Apart from frameworks that modify a planning domain
to turn a non-solution plan into a(n) (optimal) solution, sev-
eral works have attempted to turn an unsolvable planning
problem into a solvable one by modifying the planning do-

main (or the planning problem). For instance, the work by
[21] modify the initial state of a planning problem for this
purpose (note that changing the initial state of a planning
problem is not equivalent changing the domain). Recently,
an extension of this work done by [22] modifies the domain
of an unsolvable planning problem in order to make it solv-
able. Compared with our configuration, the problem studied
in [22] only has one input which is an unsolvable planning
problem, and the authors there only allowed adding propo-
sitions to actions’ positive effects.

7 Extensions
In this section, we introduce some possible extensions of
our work. The first one is to repair lifted planning domains
instead of grounded domains. Compared with grounded do-
mains which are formulated in propositional logic, lifted do-
mains are formulated in terms of first-order logic. This ex-
tension is of great importance for our future work because a
great many planning problems (domains) are lifted in prac-
tice. Such an extended domain repair problem can also be
solved via formulating it as a diagnosis problem in which
we could define each component as a lifted one.

Another extension is to introduce prior probability dis-
tributions over whether a component is flawed. More con-
cretely, given a diagnosis problem which is a formulation of
a domain repair problem and in which FP is the set of com-
ponents, we define a probability distribution P over FP such
that P (x) for each x ∈ FP indicates the probability of the
component x being flawed. In this configuration, our objec-
tive is thus to find a diagnosis F ∗

P such that
∏

x∈F∗
P
P (x) is

maximal, i.e., the component set F ∗
P has the maximal prob-

ability of being flawed. One remark is that this setting can
be applied to both the grounded and lifted versions of the
domain repair problem and solve the respective diagnosis
problem via diagnosis algorithms.

8 Conclusion
In this paper, we proposed a method for solving the domain
repair problem in which we are given a plan and a planning
problem in which the plan is not a solution to the planning
problem, and the goal is to repair the domain of the planning
problem so that the plan will be a solution. The method for-
mulates a domain repair problem as a diagnosis problem by
viewing each atomic repair as a component and the planning
problem together with the plan as a system.

References
[1] Raymond Reiter. A theory of diagnosis from first prin-

ciples. AIJ, 32(1):57–95, 1987.
[2] Johan de Kleer and Brian C. Williams. Diagnosing

multiple faults. AIJ, 32(1):97–130, 1987.
[3] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Au-

tomated Planning and Acting. Cambridge University
Press, 2016.

[4] Stuart Russell and Peter Norvig. Artificial Intelli-
gence: A Modern Approach. Pearson, 2020.

[5] Thomas Leo McCluskey, Tiago Stegun Vaquero, and
Mauro Vallati. Engineering knowledge for automated
planning: Towards a notion of quality. In K-CAP 2017,
pages 14:1–14:8. ACM, 2017.

[6] Alan Lindsay, Santiago Franco, Rubiya Reba, and
Thomas Leo McCluskey. Refining process descrip-
tions from execution data in hybrid planning domain
models. In ICAPS 2020, pages 469–477. AAAI, 2020.

[7] Songtuan Lin and Pascal Bercher. Change the world -
how hard can that be? on the computational complex-
ity of fixing planning models. In IJCAI 2021, pages
4152–4159. IJCAI, 2021.

[8] John Slaney. Set-theoretic duality: A fundamental fea-
ture of combinatorial optimisation. In ECAI 2014,
pages 843–848. IOS, 2014.

[9] Richard E. Fikes and Nils J. Nilsson. STRIPS: A
new approach to the application of theorem proving
to problem solving. AIJ, 2(3–4):189–208, 1971.

[10] Malte Helmert. The fast downward planning system.
JAIR, 26:191–246, 2006.

[11] Alexey Ignatiev, Antonio Morgado, and Joao
Marques-Silva. PySAT: A Python toolkit for prototyp-
ing with SAT oracles. In SAT 2018, pages 428–437.
Springer, 2018.

[12] António Morgado, Alexey Ignatiev, and João
Marques-Silva. MSCG: robust core-guided maxsat
solving. JSAT, 9(1):129–134, 2014.

[13] Nuno Belard, Yannick Pencolé, and Michel Comba-
cau. A theory of meta-diagnosis: reasoning about
diagnostic systems. In IJCAI 2011, pages 731–737,
2011.

[14] Judith Crow and John M. Rushby. Model-based re-
configuration: Toward an integration with diagnosis.
In AAAI 1991, pages 836–841. AAAI, 1991.

[15] Markus Stumptner and Franz Wotawa. Reconfigura-
tion using model-based diagnosis. In DX 1999, pages
266–271, 1999.

[16] Johan de Kleer, Alexander Feldman, and Ion Matei.
The duality of design and diagnosis. In DX 2018,
pages 259 – 265, 2018.

[17] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Ar-
jan J.C. van Gemund. A practical evaluation of
spectrum-based fault localization. JSS, 82(11):1780–
1792, 2009.

[18] Tathagata Chakraborti, Sarath Sreedharan, and Sub-
barao Kambhampati. The emerging landscape of ex-
plainable automated planning & decision making. In
IJCAI 2020, pages 4803–4811. IJCAI, 2020.

[19] Sarath Sreedharan, Tathagata Chakraborti, and Sub-
barao Kambhampati. Foundations of explanations as
model reconciliation. AIJ, 301:103558, 2021.

[20] Sarath Sreedharan, Pascal Bercher, and Subbarao
Kambhampati. On the computational complexity of
model reconciliations. In IJCAI-ECAI 2022. IJCAI,
2022.

[21] Moritz Göbelbecker, Thomas Keller, Patrick Eyerich,
Michael Brenner, and Bernhard Nebel. Coming up
with good excuses: What to do when no plan can be
found. In ICAPS 2010, pages 81–88. AAAI, 2010.

[22] Alba Gragera, Ángel García-Olaya, and Fernando Fer-
nández. Repair suggestions for planning domains with
missing actions effects. In XAIP 2022, 2022.

