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Abstract
Today, software is an indispensable part of our
daily life. Unfortunately, the more advanced and
complicated software becomes, the more likely it
will malfunction. Predicting the probability of
faulty software components can assist in main-
taining program effectiveness. The volume and
quality of historical data collected by the project’s
version control and issue tracker technologies is
an essential factor for the accuracy of the pre-
diction. However, for new projects, for exam-
ple, there is no historical data from which to
learn. This is referred to as cross-project soft-
ware fault prediction. Previous work presented
cross-project software fault prediction models, in
which fault prediction models from other projects
are used to determine whether or not the compo-
nents of a new project are faulty. In this paper,
we propose a novel approach named OSCLUS.
OSCLUS is a hybrid algorithm that combines the
strengths of two well-known state-of-the-art algo-
rithms for cross-project software fault prediction
approaches: clustering and component-sensitive.
The prediction of OSCLUS is more accurate than
the basic algorithms on their own, according to an
evaluation conducted on a large-scale dataset con-
taining 25 software projects.

1 Introduction
Software is an essential part of our lives today. The more
complicated and complex the software, the more prone it is
to faults. More importantly, the more significant the soft-
ware in our lives, the more critical and dangerous the fault
becomes. Finding and fixing software bugs is one of the
challenges for software developers, and many companies
employ professionals whose job is to perform the debugging
process optimally. Software fault prediction is an automatic
tool that can help to isolate the faulty software component.
Software fault prediction is a binary classification problem
where, for each program component, a label is to be deter-
mined that tells whether or not the component is at fault [1;
2]. One of the significant problems with this tool is that
it requires a lot of historical data to be collected from the
software. This is not a realistic assumption for all software.
This is a well-known problem in the machine learning field,
called the cold-start problem. The most familiar cold-start
phenomenon occurs in recommendation systems. [3].

In this paper, we present a novel approach that combines
two successful and well-known methods to deal with the
cold problem, thus improving the prediction results, and get
a hybrid method that is better than any of these methods on
its own. This paper presents a novel approach that combines
two successful and well-known strategies for dealing with
this problem. Our hybrid method improves the prediction
results, and it outperforms each of the basic strategies on its
own. The first method is presented in [4]. Herbold suggests
a clustering strategy – choosing the training set from the
projects in the same cluster based on the projects’ charac-
teristic vectors. An alternative strategy is K-Nearest Neigh-
bors. The prediction model is built based on the k most
similar projects to the new project. The second method,
the component-sensitive cross-project software fault predic-
tion approach (OSCAR), is presented in our preview work
[5]. The basis of this approach is to have a set of available
projects, and each has a prediction model. The approach
for a new project is twofold. First, a multi-class classifier is
used to assign each of the new project components to a par-
ticular project from the available collection of projects. In
the second phase, we go over all existing projects and utilize
their prediction model for the components that have been as-
sociated with the same project. As a result, each component
receives a prediction about whether it is faulty.

In this paper, we present OSCLUS. A hybrid method that
combines OSCAR and Clustering methods. Clustering is
the task of grouping a set of objects so that objects in the
same group are more similar to each other than to those in
other groups. The clusters allow us to narrow the available
projects for OSCAR. This way, OSCAR can better target
the "most suitable" model for each component.

We suggest two different types of clustering for this pur-
pose:

1. Projects-based clustering - create clusters of similar
projects. We propose two variations. (1) given a new
project, we find the most similar cluster to the project
and use its projects for OSCAR. (2) for each cluster,
we merge the projects’ records that belong to the clus-
ter and build a fault prediction model for each cluster.
Then we use the clusters as projects for OSCAR.

2. Components-based clustering - in this type of clus-
tering, we consider the components rather than the
projects by creating clusters of similar components.
Then we use the clusters as projects for OSCAR.

To evaluate OSCLUS, we compare all the above varia-
tions’ accuracy against previous cross-project clustering ap-



proaches from the literature that do not use OSCAR and
against the basic OSCAR without clustering.

We use the HAWAII dataset that includes 25 real-world
apacHe jAva softWAre projects collected from gIt and
Bugzilla. The results show that the accuracy of the OS-
CLUS approach outperforms the basic methods on their
own, in some variations with statistical significance.

The rest of the paper is organized as follows: In the next
section, we present a general background to the software
fault prediction problem and define this problem in the con-
text of cross-project fault prediction. In Section 3 we in-
troduce OSCLUS as a novel hybrid method to solve cross-
project software fault prediction problem. In Section 4 we
present the research questions and the experiments we con-
ducted. In Section 5 we discuss the difficulties and chal-
lenges we cope with in the experiments. In Section 6 we
present a summary of the literature published in the domain
of software fault prediction problem. In Section 7 we con-
clude and present future work.

2 Background and Problem Definition
Typically, a software project is developed in a manner that
every few revisions a new version is declared. Let S =
(s1, ..., scur) be a sequence of software versions of project
S, where s1 stands for the first version and scur for the cur-
rent version (last one). A version of a software project S is
composed of a set of components si = {ci1 , . . . , cim}.

For the ongoing discussion, we assume that a software
component is a class that belongs to a software project. Nev-
ertheless, our algorithm also holds for different component
granularity levels, e.g., where each component is a func-
tion, a program statement, a file, etc. A software component
could be either healthy or faulty. Software fault prediction
is a classification problem: given a software component, the
goal is to determine its state - either healthy or faulty. Su-
pervised machine learning algorithms are commonly used to
solve classification problems. They work as follows: They
are given a training set as input, which includes pairs of
instances and their labels, i.e., the class (status) of each in-
stance. The instances are processed before they are inserted
into the training set to extract features from them. In our
case, instances are software components (later, we elaborate
on the feature extraction), and the labels include whether
each software component is healthy or not. Using the train-
ing set, a learning algorithm outputs a classification model,
which predicts a label for a new unlabeled instance (in our
case, whether it is healthy or faulty).

Many factors can influence the quality of the software
fault prediction model [6]. Lessmann et al. [7] describe
different classification algorithms that are used for software
fault prediction and conclude that the classification algo-
rithm does not influence much on the accuracy of the pre-
diction model. On the other hand, the software metric set
(features) choice dramatically impacts the model accuracy.
Previous work dealt with studying and developing various
software metric sets and dividing them into three categories:

The first category includes traditional metrics based on
static code analysis [8] The second category is Object-
Oriented. These metrics target the effect of components
on the system, and the relationship between components [9;
10]. Both traditional metrics and Object-Oriented metrics
analyze the current version of source files without address-
ing past changes in the code. The third category includes

the process metrics, which aim to measure the influence of
changes in the code [11; 12]. This category has been proved
as a critical factor in the success of the prediction model
[13]. The historical data of the project is used to generate
a within-project fault prediction model, formally: Within-
project fault prediction creates a prediction model that is
built within the context of a specific software project. Re-
call S = (s1, ..., scur) is a sequence of software versions
of project S, Within-project fault prediction aims to predict,
for each one of the software components in the last version
of the project (scur), whether it is faulty:
Definition 1 (Within-project fault prediction). A within-
project software fault prediction algorithm gets as input
S ′ ⊆ S \ {scur} and returns a prediction model PMscur

such that given a component ci ∈ scur it determines
whether is it healthy or faulty.

Within-project fault prediction relies on features ex-
tracted from previous versions of the software project used
for the training set. However, this is not feasible for all soft-
ware projects due to different reasons. Most commonly, the
software might be new. In this case, it does not have his-
torical versions. An additional possible reason is that the
software is not publicly documented or may be classified,
so access to historical versions is not possible for outsiders.
This situation defines a cold-start project:
Definition 2 (Cold-start project). A software project that
has no recorded historical versions. Let SCS denote a cold-
start project, then SCS = {scur}.

Given a cold-start project, extracting features from the
third category (process metrics) is infeasible. This makes
the fault prediction task even harder since the process met-
rics are very influential and significant for creating a high-
quality prediction model. More importantly, there are no
historical versions to learn from, and there are no labels for
any instance. That means that practically it is impossible to
construct a within-project fault prediction model from the
information available. Cross-project fault prediction sug-
gests relying on other software projects to get labeled in-
stances for learning a qualitative classification model for the
cold-start project.

To formalize cross-project software fault prediction, we
define a set of software projects. Let SP be a set of software
projects SP = {S1, ...,Sn}, and let SCS /∈ SP be the cold-
start project.
Definition 3 (Cross-project fault prediction). A cross-
project software fault prediction algorithm gets as input
SP and a cold-start project SCS = {scur}, and returns
a prediction model PMscur , such that given a component
ci ∈ scur it determines whether ci is healthy or faulty.

OSCAR Previous work proposed cross-project fault pre-
diction methods, which learn a prediction model for the
cold-start project by generating a training set collected from
other projects or applying a within-project prediction model
of one of these projects. This approach raises a challenge.
When using a training set to learn a fault prediction model,
an implicit assumption is that the training set and the test set
are taken from the same distribution. This assumption ex-
plains why we can predict the label of a software component
in the test set by learning from the training set. However,
previous cross-project fault prediction methods predict all
of the components in the new project using a fault predic-
tion model which has been trained with instances of other



projects (s). Thus, the training set used to generate the fault
prediction model is not produced from the same project as
the test set (the new project). This drawback motivated the
creation of OSCAR [5]. OSCAR examining every compo-
nent in the test set (the cold-start project) by itself (rather
than considering all the components together) and predict
whether it is faulty according to the prediction model of
the most "suitable" project among a set of other software
projects (SP). To determine which project is most suitable
for a component, a multi-class classification model (belong-
ingness classifier) is trained to learn the belongingness of a
software component to a software project.

The training set to create such a belongingness classi-
fier is assembled from all the software components from
all the projects with version history (SP). Each compo-
nent’s features for the belongingness training set include the
same features extracted for the components in the within-
project prediction model’s training set. This component’s
class is the name of the project that it belongs to (rather than
healthy/faulty in the within-project fault prediction model).
Using this classification model, OSCAR can classify each
component in the cold-start project to a project among the
set of available projects SP, and then use that project’s
within-project fault prediction model to determine whether
the component of the cold-start project is faulty or not.

Based on OSCAR’s belongingness classifier characteris-
tics, there are two possible ways to improve the accuracy of
OSCAR. 1) Improving the homogeneity of all the available
projects. Doing so will make it easier for the belongingness
classifier to determine the classification of each component
classification. 2) Focusing the set of projects on a subset of
the most suitable projects. The belongingness classifier will
become a much more accurate expert if it learns from fewer,
more appropriate projects to the specific cold-start project.

These two options for improving OSCAR accuracy mo-
tivated us to create OSCLUS hybrid-approach, where each
one of the techniques we used is aimed to focus on one of
the possible ways to improve the accuracy of OSCAR.

3 Method Description
In this paper, we present OSCLUS. This hybrid method
combines the strength of two known methods in the soft-
ware fault prediction domain. OSCLUS suggests improve-
ment of the OSCAR method using a clustering algorithm.
We believe that narrowing down the projects available for
OSCAR and getting OSCAR to focus on the most suitable
projects OSCAR will yield better accuracy results. Our pro-
cess consists of two steps. First, we create the clusters, Then
use those clusters combined with OSCAR in different vari-
ations. We suggest two ways to create clusters: by projects
and by components.

3.1 Projects-based clustering
In this type of clustering, each cluster is comprised of sim-
ilar projects. To cluster similar projects, we consider two
types of characteristic vectors for a project:

1. Meta-Features: we extract meta-features based on the
features of the projects’ components in the training
sets. These meta-features include the mean, std, min,
and max values of the numeric features and the unique
values, frequency, and count values for the categorical
features. We do not include the label (faulty or not) in
this process.

2. Project Features: we use the source code of the
project to extract features representing the project.
Each project is represented by a profile (vector of char-
acteristics) including 21 known features: Halstead Cu-
mulative Length and Volume, Halstead Difficulty, Hal-
stead Bugs, Halstead Cumulative Bugs, Halstead Ef-
fort, Halstead Vocabulary, Halstead Volume, # Meth-
ods, # Comments,# Statements,# Packages, # classes,
Loc, average Loc, max cc, average cc,tcc, cumula-
tive Number Of Comments, maintainability Index and
maintainability Index NC.

The K-means algorithm is then used to cluster the
projects, either by the Meta-Features or by the project Fea-
tures characteristic vector. Once the projects’ clusters have
been created, there are two variants to use OSCAR com-
bined with the clusters.

OSCAR Inside Cluster In this variant, we reduce the
software projects set SP to include only the cluster projects
rather than all the projects. Thus, given a cold-start project,
we create a characteristic vector for that project (either by
Meta-Features or Project Features). Then we use a similar-
ity function to match this project to one of the clusters in
SP, and use the projects in this cluster as the training set SP
for OSCAR.

OSCAR With Clusters In this variant, we introduce the
software projects set SP to include the clusters as projects.
In this way, each project in SP actually includes a cluster
of projects. To transform a cluster of projects into a sin-
gle project, we merge all the projects’ components from
the same cluster and create a within-project fault prediction
model based on the merged projects. Then, given a cold-
start project, we use the clusters in SP as the training set for
OSCAR.

To summarize, there are two ways of creating clus-
ters and two variations for using OSCAR combined with
the clusters. These lead to a total of four combina-
tions: (1) Meta-Features+OSCAR Inside Cluster, (2)
Meta-features+OSCAR With Clusters, (3) Project Fea-
tures +OSCAR Inside Cluster, and (4) Project Features
+OSCAR with clusters.

Projects-based clustering consists of two steps. First,
we create the clusters. To be able to create the clusters,
the algorithm obtains the clustering method - in our case -
projects or components, and the characteristic vector extrac-
tion Method, in our case - Meta-Features or Projects Fea-
tures as explained in Section 3.1). This allows us to measure
the similarity between projects or components. Then in the
second stage, we combined those clusters with OSCAR. To
combine OSCAR in different ways, the algorithm obtains
the available project’s method that uses the clusters to cre-
ate SP - the set of software projects available for OSCAR.
We present the methods used in Sections 3.1 and 4.1.

3.2 Components-based clustering
In this type of clustering, each cluster consists of similar
components. To cluster the components, we first combine
all the components from all the available project’s training
sets (SP). The K-means algorithm is then used to reorganize
the components into clusters forming new software projects
set SP in the size of the number of required clusters. Then,
given a cold-start project, we use the clusters in SP as the
training set for OSCAR.



4 Evaluation
This section describes a series of experiments conducted
to evaluate OSCLUS against other existing cross-projects
software fault prediction algorithms. In particular, we ad-
dress the following research questions:
RQ1. Does combining clustering methods with OSCAR
improve OSCAR’s accuracy?

RQ1 asks whether reducing the software projects set
SP by using clustering methods rather than using all
the available projects improves OSCAR’s accuracy.

RQ2. Which clustering configuration performs the best?

In Section 3 we presented different configurations for
clustering. RQ2 asks which configuration receives
the best prediction results.

In Section 4.1 we describe the entire experimental setup. In
Section 4.2 we present the results and analyze them.

4.1 Experimental Setup
In this section we describe the data-set used for the exper-
iments, OSCLUS implementation, competing algorithms,
the experimental process and the evaluation metrics.

Data-sets:
We evaluated the algorithms with a large-scale data-set that
we collected. Creating this data-set is one of the paper’s
contributions. The standard known data-set used for cross-
project defect prediction, PROMISE, is relatively small and
outdated. This led us to create the following data-set.

HAWAII: 1

To be able to use clustering in a meaningful way, a sufficient
amount of projects and features are required. PROMISE
[14], a well-known data-set for cross-project defect pre-
diction, includes only ten projects. Also, APRIL [5], a
state-of-the-art data-set, includes only eight projects. This
small number of projects could be too small to evaluate
the clustering-based methods. Thus we created a new data-
set called HAWAII. HAWAII includes 25 real-world Java
projects. These projects belong to the APACHE software
foundation. Apache, the world’s largest open-source foun-
dation, has hundreds of programmers and projects. Apache
projects are independent and managed independently2. The
projects we used are listed in Table 1. Creating this large
data-set is an additional contribution to this paper. In
HAWAII, a software component granularity level is a class.
The training set includes a set of classes’ features, where
each component is labeled whether it is faulty or not. Man-
ually labeling the root cause of past bugs is not scalable.
Instead, we automatically extract the training set from the
project’s issue tracking and version control system, as de-
scribed below. Most projects use an issue tracking system,
such as Jira and Bugzilla, and a version control system, such
as Git and Mercurial. Issue tracking systems record all re-
ported bugs and track changes in their status. They associate
each bug with a unique issue ID. Version control systems
track modifications – commits – done to the source files.
Commonly, a commit contains only the required changes to
resolve a specific task. A best practice in software develop-
ment, usually enforced, is to add a modification description
to each commit. In particular, when a commit fixes a bug,

1https://github.com/inbalros/HAWAII
2https://httpd.apache.org/.

the bug’s issue ID should be written in the commit’s de-
scription. We use this information to match fixed bugs to
the commit that fixed them. For a bug X , let Φ(X) denote
the set of software components modified to fix X , as men-
tioned in the commit. In the absence of manual labeling of
faulty software components, we assume that all components
in Φ(X) are blamed as faulty.

To create the within-project software fault prediction, we
chose five versions and their reported bugs. We used the first
four versions as the training set and the last one as the test
set. Let (s1, s2, .., s5) be the selected five versions of project
S. A version control system records for every version si its
release date, and an issue tracking system records for every
bug, the date it was reported, and its status. We associate
with version si the entire set of bugs reported between the
release of version si and the release of version si+1. To
ensure a reasonable amount of bugs and changes associated
with each version, we chose versions that the time between
versions is at least six months.

To summarize, we gathered 125 versions from real-
world-up-to-date java software projects, which left us with
25 available projects to use. Each project consists of the
same number of versions, making the data-set fair and ap-
propriate to the field. We chose versions with approximately
the same percentage of bugs. Moreover, We tried to mini-
mize the difference between the number of bugs in the train-
ing set and each project’s test set. We extracted even more
information about these versions, which enabled us to in-
clude sophisticated features, such as statistical features re-
garding methods belonging to the class. In detail, for each
feature we collected regarding the methods that belong to
the class (the component), we computed the mean, std, min,
and max values of each numeric feature. We computed the
unique, frequency, and count values for categorical features.
We used only non-process features to imitate the cold-start
problem for the features derived from the components. The
complete list of features can be found in Github repository
mining3.

OSCLUS implementation:
Implementing OSCLUS includes the implementation of all
clustering variations and OSCAR. For the within-project
software fault prediction models used by OSCAR, we used
the same set-up and method used by [5] - Balanced Ran-
dom Forest learning algorithm with 1000 estimators. For
the clustering algorithm, we used the K-means algorithm
(sklearn.cluster python library). We tried different numbers
of clusters: 2,3,4, and 5. We found that using k=3 as the
number of clusters yields the best result in a preliminary
comparison. Decreasing the number of clusters or increas-
ing the number to 5 led to worse performance. Increasing
the number to 4 did not significantly affect the accuracy of
the classification model.

Competitive Algorithms
To estimate the improvement of our hybrid approach OS-
CLUS, we compared all the OSCLUS variations with OS-
CAR without clustering and with clustering methods with-
out OSCAR. To answer RQ2, we used two baseline cluster-
ing methods that do not use OSCAR. The first variation is
called "Majority-Voting." It proceeds as follows:

1. Cluster the projects in SP into clusters either by Meta-
Features or Project Features.

3https://github.com/amir9979/repository_mining/



Project Train Train Train bugs- Test Test Test bugs-
name components bugs components ratio components bugs components ratio

Archiva 2747 255 9.28% 643 50 7.78%
Cassandra 1282 93 7.25% 336 16 4.76%
CommonsCodec 275 96 34.91% 103 16 15.53%
CommonsDBCP 381 18 4.72% 98 27 27.55%
CommonsIO 608 122 20.07% 224 58 25.89%
CommonsJexl 491 60 12.22% 201 16 7.96%
Commonslang 980 238 24.29% 291 67 23.02%
CommonsValidator 524 34 6.49% 137 6 4.38%
Continuum 1792 256 14.29% 554 78 14.08%
Crunch 1835 258 14.06% 531 61 11.49%
DirectoryServer 1857 114 6.14% 1218 93 7.64%
Helix 2630 242 9.20% 640 21 3.28%
Juneau 2332 324 13.89% 873 25 2.86%
Knox 2357 345 14.64% 847 66 7.79%
Metron 2203 287 13.03% 744 86 11.56%
MyFaces 1270 53 4.17% 418 18 4.31%
MyfacesTobago 2388 298 12.48% 709 112 15.80%
Nutch 1320 229 17.35% 481 55 11.43%
Parquet 1956 284 14.52% 561 48 8.56%
QpidJMS 2067 251 12.14% 594 105 17.68%
Samza 1463 265 18.11% 849 130 15.31%
Struts 2975 143 4.81% 731 18 2.46%
Surefire 510 94 18.43% 212 12 5.66%
Tapestry-5 4738 1942 40.99% 1433 108 7.54%
Tika 1378 282 20.46% 469 113 24.09%

AVERAGE 1694 263 14.72% 556 56 11.54%

Table 1: Basic information about HAWAII’s projects.

2. Given a cold-start project, match that project to the
most similar cluster Ci, based on the characteristic vec-
tor.

3. Use the within-project fault prediction models of the
projects in cluster Ci as an ensemble of models. The
prediction for each component of the cold-start project
will be chosen by majority voting between these mod-
els.

Note that steps 1 and 2 are similar to the "OSCAR In-
side Cluster" variation. The third step is different. While
OSCAR Inside cluster uses OSCAR for the prediction
method, the Majority-Voting baseline uses the majority vot-
ing prediction method.

The second variation is called the "Best-Cluster-Model".
A variation of this method has been presented by [15]. It
proceeds as follows:

1. Cluster the projects in SP into clusters either by Meta-
Features or Project Features.

2. Given a cold-start project, match that project to the
most similar cluster Ci, based on the characteristic vec-
tor.

3. Create a within-project fault prediction model for Ci

based on a merged set of all project components be-
longing to Ci. Use this model to predict the cold-start
project’s components.

To summarize, there are four combinations for the com-
petitive algorithms. Two baseline methods, each uses two
clustering methods: (1) Meta-Features+Majority-voting, (2)
Meta-Features+Best-Cluster-Model, (3) Project Features
+Majority-voting, and (4) Project Features +Best-Cluster-
Model. Table 2 summarizes the clustering configurations
we proposed as well as the baselines.

Experiment process:
The experiment was carried out in rounds, where at each
round, one project was simulated as the cold-start project by
using only its last version - the test set. The other projects
were included in SP, and used as the projects that have

within-project fault prediction models. The results of the
experiments are the average scores of the collected metrics
results over all the rounds.

Metrics:
Software Fault prediction is a binary classification task. Bi-
nary classifiers accept an instance to classify (in our case, a
software component), and output one of two classes: posi-
tive (in our case, a faulty software component) or negative
(a healthy software component).

We define four possible outcomes of the classifier as fol-
lows:

1. TP (True Positive): A component that belongs to class
faulty was classified as faulty.

2. FP (False Positive): A component that belongs to class
healthy was classified as faulty.

3. TN (True Negative): A component that belongs to the
class healthy was classified as healthy.

4. FN (False Negative): A component that belongs to the
class faulty was classified as healthy.

True-positive rate (TPR) and false-positive rate (FPR) are
two primary metrics used to evaluate binary classifiers: TPR
is the proportion of correctly identified positives, and FPR
is the proportion of negatives wrongly identified.

Another known metric is precision (also called positive
predictive value), which is the fraction of positive identi-
fications among the retrieved instances and calculated as

TP
TP+FP . Recall (also known as sensitivity) is the fraction
of actual positives that have been retrieved over the total
amount of positives instances and calculated as TP

TP+FN .
To evaluate the results, we use the following metrics:

1. F score: a weighted average of precision and recall.

2. F2 score: In this metric, recall has a higher weight
than precision. In the software domain, this feature is
significant since classifying components as healthy in-
correctly is worse than classifying valid components as



Using OSCAR or Clustering Type Characteristic Vector Cross-Projects
Baseline Prediction

Using OSCAR Components-based clustering Available Features OSCAR with Clusters

Using OSCAR Projects-based clustering
Meta-Features OSCAR Inside Cluster

OSCAR with Clusters

Project Features OSCAR Inside Cluster
OSCAR with Clusters

Baseline Projects-based clustering
Meta-Features Majority-voting

Best-Cluster-Model

Project Features Majority-voting
Best-Cluster-Model

Table 2: A summary of the proposed clustering-based configurations, as well as the baseline methods.

faulty

F2 = 5 · precision · recall
4 · precision+ recall

3. Area Under the Curve (AUC): A commonly used
metric for evaluating binary classifiers [16]. The AUC
metric is calculated as the area under the receiver oper-
ating characteristic (ROC) curve. The ROC curve plots
the FPR as a function of the TPR.

4. Precision Recall Curve (PRC): A precision-recall
curve shows the relationship between precision and re-
call for different thresholds. The main difference be-
tween ROC curves and precision-recall curves is that
the number of true-negative results is not used for PRC,
making the PRC a better metric for imbalanced data.

4.2 Results
To answer RQ1 and RQ2, we performed experiments on
HAWAII data-set with the configurations presented in Ta-
ble 2. We present the experiments in the following order:
First, we discuss the results of the Projects-based cluster-
ing configurations. Then we compare the results achieved
by using Projects-based clustering against the Components-
based clustering. Finally, we examine the improvement the
using clustering to the basic OSCAR.

Project-based clustering
Tables 3 and 4 present the average scores by comparing OS-
CAR Inside Cluster and OSCAR With Clusters with the
baseline methods for experiments with Meta-Features and
Project Features, correspondingly. Every row represents an
algorithm for both tables, and the columns represent the
metrics. The highest average in each column is bolded. It
is easy to see that OSCAR With Clusters method achieves
the highest average along with all metrics in both clustering
similarity methods (Meta-Features and Projects Features).
Although the improvement is relatively small, it is consis-
tently higher, along with all the metrics. In this domain,
even a small improvement is significant.

Although, on average, using the "Meta-Features" presen-
tation with OSCAR With Clusters yields the best results
in both clustering similarity methods, we did not find these
results statistically better than OSCAR Inside Cluster.

Project-based clustering VS components-based
clustering
In the next experiment, we compare the performance of
projects-based clustering against components-based cluster-
ing. Table 5 presents the Components-based clustering re-
sults with 5 and 7 clusters against the best-performed al-
gorithm we achieved while using the project-based clus-
tering with Meta-Features+OSCAR With Clusters. For

Algorithm F F2 AUC PRC

OSCAR Inside Cluster 0.270 0.407 0.639 0.459
Majority-voting 0.309 0.427 0.672 0.453
Best-Cluster-Model 0.316 0.439 0.680 0.463
OSCAR With Clusters 0.319 0.442 0.688 0.466

Table 3: Project-based clustering, k=3 using Meta-Features. Av-
erage metrics over all the projects.

Algorithm F F2 AUC PRC

OSCAR Inside Cluster 0.276 0.423 0.643 0.464
Majority-voting 0.311 0.420 0.673 0.444
Best-Cluster-Model 0.309 0.432 0.677 0.462
OSCAR With Clusters 0.312 0.441 0.686 0.464

Table 4: Project-based clustering, k=3 using Project Features. Av-
erage metrics over all the projects.

the components-based clustering method, we tried different
numbers of clusters and found in preliminary comparison
that 5 and 7 yield the best result.

We can see that, on average, the best results are achieved
by project-based clustering with Meta-Features+OSCAR
With Clusters. However, this result is not statistically sig-
nificant.

OSCAR VS clustering
Next, we compare the performance of combining OSCAR
with clustering to the basic version of OSCAR.

Table 6 presents the results of basic OSCAR compared
to the best-performed algorithm we achieved while using
the project-based clustering and the component-based clus-
tering.

It is clear that all clustering-based algorithms perform
better, on average than basic OSCAR. Nevertheless, only
the AUC gap was approved as statistically significant (with
a significance level of 5%).

Conclusions of the Results
• Regarding RQ4, we can conclude that combining clus-

ters with OSCAR improves the cross-projects fault
prediction performance. The basic OSCAR was
beaten by the combined clusters methods on average in

Algorithm F F2 AUC PRC

Components-based clustering 0.317 0.438 0.686 0.462
k = 5
Components-based clustering 0.311 0.430 0.682 0.458
k = 7
project-based clustering, 0.319 0.442 0.688 0.466
Meta-Features+OSCAR With Clusters

Table 5: Average metrics over all the projects



Algorithm F F2 AUC PRC

OSCAR 0.277 0.406 0.649 0.440
Components-based clustering 0.317 0.438 0.686 0.462
k = 5
project-based clustering 0.319 0.442 0.688 0.466
Meta-Features+OSCAR With Clusters

Table 6: Average metrics over all the projects

terms of F, F2, AUC, and PRC. The difference among
most metrics is not statistically significant, except for
the AUC metric.

• Regarding RQ5, using projects-based clustering and
applying Meta-Features presentation with OSCAR
With Clusters method configuration performs the best
on average (in terms of F, F2, AUC, and PRC). Never-
theless, this result is not statistically significant.

5 Threats To Validity
While experimentation in software engineering is necessary,
it is not easy to run experiments in software due to the spe-
cific environmental conditions of each project [17]. More-
over, it is challenging to conclude from experiments in the
software domain since it is a vast domain with significant
variance between projects. We tried to cope with these chal-
lenges by adding HAWAII data-set and increasing the num-
ber of features. Ideally, our study would be replicated with
more projects from different domains, different metrics, and
more project characteristics.

The process of data extraction for HAWAII has been
done systematically using automated and proven data ex-
tractors. We got a vast number of features and chose a sub-
set of them, adding statistical information regarding each
class’s methods. As shown before, the features we used for
the OSCLUS classifier affected greatly on OSCAR accu-
racy. Hence, it should be mentioned that other researchers
can choose different sub-set of features and receive different
results.

6 Related Work
As discussed above, Cross-project software fault prediction
uses a training set collected from different projects. The
challenge in cross-project fault prediction is choosing the
most suitable training set or prediction model for a new
project among multiple projects.

Zimmermann et al. [18] experiment logistic regression
prediction models to transfer from one project to another
on real-world projects. They consider a project’s prediction
model as a strong predictor if all the measures that the pre-
diction produced are above a certain threshold. Only 3.4%
of the cross-project prediction models passed the threshold.
They conclude that cross-project prediction is a challeng-
ing task, meaning that simply using projects from the same
domain for training does not yield an accurate prediction
model. Process, data, and domain need to be quantified, un-
derstood, and evaluated before prediction models are built
and used. He et al. [15] use a brute force strategy that con-
siders all the combinations between the project versions in
PROMISE to find the best prediction model that can be cre-
ated for the cold-start project. Obviously, the challenge is
to find which combination of projects will yield a good pre-
diction model in advance. To address this challenge, They
investigate the relationship between the training set’s distri-
butional characteristics and the cross-project fault prediction

accuracy. They found that distributional data characteristics
are informative for training data selection. Herbold [4] sug-
gests some strategies to select the training data for a project
with no recorded data. These strategies are also based on
distributional characteristics of the available data. He sug-
gests a clustering strategy – choosing the training set from
the projects in the same cluster based on characteristic vec-
tors of the projects. Guo et al. [19] suggests two methods
to deal with the cold-start problem in the analytic software
field. The first algorithm finds the best overall performing
fault prediction model. It is selected according to the av-
erage of the F2 metric. The second algorithm matches a
cold-start project to the most similar project among the set
SP (represented by a vector of characteristics), and uses its
within-project fault prediction model. He et al. [20] cope
with the problem of imbalanced feature sets between the
source and target projects in cross-project fault prediction.
They map the instances’ characteristic vectors of all projects
onto the same latent space. They evaluate their model on
eleven projects, most taken from PROMISE. Zhang et al.
[21] suggest two types of unsupervised classifiers of fault
prediction. The first is a distance-based classifier (k-means),
and the second is a connectivity-based classifier. They com-
pare these two types of classifiers using PROMISE and an-
other two less known and very small data-sets. Bal and Ku-
mar [22] use the PROMISE data-set. The main contribution
of this paper is by empirically showing that Extreme Learn-
ing Machine techniques are comparable to known predic-
tors. Wen et al. [23] compare cross-project fault predic-
tion combinations between source selection (features and
projects) and transfer learning. They use the PROMISE
data-set and use only logistic regression classifiers in their
experiments.

Prior studies have mainly investigated how to select the
training data from other projects while considering the
projects as a whole. They focus on the characteristics of
the project as a criterion to find the most similar projects
that can be used to create the cross-project fault predic-
tion model. The paper presented in [5] presents a differ-
ent approach where the cold-start project’s instances are
distributed among other projects’ prediction models. OS-
CAR is a component-sensitive cross-project approach that
first separately classifies each component in the new project
to its most similar project. Then, OSCAR uses the fault
prediction model of that project to predict whether the com-
ponent in the new project is faulty. Although this approach
is unique and has managed to get better results than previous
approaches, we believe that it has not reached its full poten-
tial. This is because the classification of each component is
among all existing projects. As shown in this article, we be-
lieve that reducing and more intelligent selection of projects
using clusters will allow greater success for the proposed al-
gorithm. Moreover, this paper proposes HAWAII - a more
up-to-date and large-scale data-set, which is another contri-
bution of the paper.

7 Conclusions and Future Work
Models for software fault prediction can assist programmers
in isolating faults and planning tests. To produce an accu-
rate fault prediction model, significant size training data is
required to learn from, which is unrealistic for cold-start
projects. Previous work proposed learning from other ex-
isting projects. However, the training and test sets were



drawn from various distributions, resulting in non-accurate
prediction models. In this paper, we propose OSCLUS, a
novel hybrid strategy that combines OSCAR and clustering
approaches to improve the accuracy of each method indi-
vidually. We compared OSCLUS to the standard OSCAR
and two other clustering variants. We used a novel data-set
HAWAII to evaluate OSCLUS variants, which contains 25
real-world Java projects with 125 versions in total. The re-
sults demonstrated that by intelligently restricting the avail-
able relevant projects for OSCAR, it is possible to better
focus each component on the "best suited" model. The OS-
CLUS methodology outperformed the baseline approaches,
and OSCLUS increased OSCAR’s performance by inte-
grating clustering methods with OSCAR and constructing
different types of clusters and data characteristic vectors. In
the future, clusters will be combined in more sophisticated
ways to boost OSCLUS performance even further.
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