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Abstract

This work proposes a taxonomy for diagnosis
computation methods which allows their stan-
dardized assessment, classification and compari-
son. The aim is to (i) give researchers and practi-
tioners an impression of the diverse landscape of
available diagnostic techniques, (ii) allow them to
easily retrieve the main features as well as pros
and cons of the approaches, (iii) enable an easy
and clear comparison of the techniques based on
their characteristics wrt. a list of important and
well-defined properties, and (iv) facilitate the se-
lection of the “right” algorithm to adopt for a par-
ticular problem case, e.g., in practical diagnostic
settings, for comparison in experimental evalua-
tions, or for reuse, modification, extension, or im-
provement in the course of research.

1 Introduction
Diagnosis computation is one of the most integral tasks in
model-based diagnosis as it allows to generate fault hy-
potheses, which are essential for both fault localization and
repair. Due to its generality, the model-based diagnosis for-
malism has been used to express and tackle a wide diversity
of debugging problems in application areas ranging from
software [1], logic programming [2], recommender systems
[3], ontologies [4] and knowledge bases [5] via hardware
[6], circuits [7] and robots [8] to scheduling [9], aircrafts
[10] and cars [11]. This has led to a remarkable multi-
tude and heterogeneity of the diagnosis computation meth-
ods proposed in literature, which are often motivated by and
tailored for application-specific requirements and problem
cases. As a result, it is a hard task for researchers and prac-
titioners alike to

• get an overview of existing approaches,
• identify the crucial properties of diagnostic techniques,
• assess the methods based on these properties, and
• choose the appropriate approach for a (research- or

application-related) diagnostic task at hand.
With this work, we account for this by presenting a taxon-
omy for diagnosis computation algorithms. Specifically, we
introduce and formally define a range of features which are
arguably vital for a proper understanding, comparison, se-
lection, and use of diagnostic techniques. We explain the
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influence of each feature on the proper selection of a diagno-
sis algorithm for a diagnostic task, discuss the potential im-
pact of different feature manifestations on the performance
of diagnosis algorithms, and examine relationships among
the features. To demonstrate the value and application of
the proposed taxonomy, we provide a multi-dimensional as-
sessment and categorization of several important diagnostic
methods in the literature.

2 Preliminaries
Model-based diagnosis [12] assumes a system (e.g., soft-
ware, circuit, knowledge base, physical device) consisting
of a set of components COMPS = {c1, . . . , cn} (e.g., lines
of code, gates, axioms, physical constituents) which is for-
mally described in some monotonic logical language. Be-
side any relevant general knowledge about the system, this
system description SD includes a specification of the nor-
mal behavior (logical sentence BEH(ci)) of all components
ci ∈ COMPS of the form OK(ci) → BEH(ci). As a re-
sult, when assuming all components to be fault-free, i.e.,
OK(COMPS) := {OK(c1), . . . , OK(cn)}, conclusions about
the normal system behavior can be drawn by means of theo-
rem provers. When the real system behavior, ascertained
through system observations and/or system measurements
(stated as logical sentences OBS and MEAS), is inconsistent
with the system behavior predicted by SD, the normality-
assumption for some of the components has to be retracted.
We refer to 〈SD, COMPS, OBS, MEAS〉 as a diagnosis prob-
lem instance (DPI).

For a DPI, one is interested in finding a diagnosis, i.e.,
a set of components whose abnormality would explain the
observed incorrect system behavior. Formally, a set of
components D ⊆ COMPS is called a diagnosis iff SD ∪
OBS ∪ MEAS ∪ OK(COMPS \ D) ∪ NOK(D) is consistent
where OK(X) := {OK(ci) | ci ∈ X} and NOK(X) :=
{¬OK(ci) | ci ∈ X}. A diagnosis D is termed minimal /
minimum-cardinality iff there is no diagnosis D′ such that
D′ ⊂ D / |D′| < |D|. For efficiency and tractability rea-
sons, the focus in model-based diagnosis is often laid on
minimal diagnoses only [13]. In particular, the minimal di-
agnoses are representative of all diagnoses under the weak
fault model [14], where the system description SD contains
only information about the normal behavior of the system
components (and leaves the components’ behavior unde-
fined in case of failure). We restrict the study in this paper
to diagnosis computation methods relying on a weak fault
model. They address the following problem:



Problem 1 (Diagnosis Computation).
Given: A DPI 〈SD, COMPS, OBS, MEAS〉, an integer k ≥ 1.
Find: Find k minimal diagnoses (satisfying a property p)
for 〈SD, COMPS, OBS, MEAS〉.

Diagnostic techniques may solve different manifestations
of this problem. E.g., they might aim at computing n / all
minimal diagnoses (by specifying k := n / k := ∞), or
at finding all minimum-cardinality diagnoses (by specifying
k :=∞ and p := minimum-cardinality).

Useful for diagnosis computation and technically closely
related to the concept of a diagnosis is the notion of a con-
flict, which is a set of components such that the assumption
of all of them being fault-free is inconsistent with the current
knowledge about the system. Formally, a set of components
C ⊆ COMPS is a conflict iff SD ∪ OBS ∪ MEAS ∪ OK(C) is
inconsistent. Again, we call a conflict C minimal iff there is
no conflict C′ with C′ ⊂ C. There are two important links
between diagnoses and conflicts [12]:
Hitting-set Property A (minimal) diagnosis is a (minimal)

hitting set of all minimal conflicts.
(X is a hitting set of a collection of sets S iff X ⊆⋃

S∈S S and X ∩ S 6= ∅ for all S ∈ S.)
Duality Property X is a diagnosis iff COMPS \ X is not a

conflict.
In many cases, there is a substantial number of compet-

ing diagnoses for a given DPI. The goal is then to isolate the
actual diagnosis which pinpoints the actually faulty com-
ponents. Basically, two strategies exist to handle multiple
diagnoses, aiming at reducing or avoiding the effort for a
manual inspection of the diagnoses: (i) rank or restrict the
computed diagnoses based on some informative criterion
such as maximal probability or minimal cardinality [13], or
(ii) apply sequential diagnosis techniques to acquire addi-
tional information about the diagnosed system to gradually
refine the set of diagnoses [7]. Whereas rankings or focus-
ing techniques can be very powerful if the actual diagnosis
appears (early) in the solution list, there is no guarantee that
the actually faulty components will be located (efficiently).

The more sophisticated sequential diagnosis techniques,
on the other hand, gather further system measurements
(MEAS) to iteratively rule out spurious diagnoses. They aim
at solving the following problem (with highest efficiency):
Problem 2 (Sequential Diagnosis).
Given: A DPI 〈SD, COMPS, OBS, MEAS〉.
Find: A sequence (set) of measurements, expressed as logi-
cal sentences m1, . . . ,mk, such that there is a single (highly
probable) minimal diagnosis for 〈SD, COMPS, OBS, MEAS∪
{m1, . . . ,mk}〉.

Many sequential diagnosis methods can be characterized
by a recurring execution of four phases [15]: (1) computa-
tion of a set of (preferred, e.g., most probable) minimal di-
agnoses, (2) selection of the most informative system mea-
surement based on these, (3) conduction of measurement
actions (by some user or oracle, e.g., an electrical engineer
if a circuit is diagnosed), and (4) exploitation of the mea-
surement outcome to update the system knowledge. That is,
the DPI is modified (by extending MEAS) between each two
iterations of these phases. The execution stops if Problem 2
is solved, i.e., sufficient diagnostic certainty is achieved.

3 A Taxonomy for Diagnosis Algorithms
In this section, we propose a collection of pivotal features of
diagnosis computation algorithms, based on which we will

classify and compare some important existing techniques in
Sec. 4 and Tab. 1. In the following, we assume that an al-
gorithm A addresses (some manifestation of) the diagnosis
computation problem (cf. Problem 1) and is given as input
a DPI and possibly some meta information (such as com-
ponent failure rates that allow to derive diagnosis probabil-
ities [7], or algorithm-specific parameters, e.g., stop, prun-
ing or restart criteria [16; 17]).1 We describe each feature
by giving a definition of its possible manifestations, a brief
explanation of its relevance wrt. algorithm selection for a
diagnostic task, a short discussion of the practical impact of
different feature manifestations, and a comment on the re-
lationship to other features. The features can be logically
grouped into five categories, i.e., Output Qualities (Bul-
lets 1–4), Way of Computation (5–6), Sequential Diagno-
sis Context (7–8), Application Context (9–11), and Perfor-
mance (12), as shown in Tab. 1:

1. Soundness:
Definition: A is sound iff it outputs only minimal diag-
noses; otherwise, it is unsound.
Relevance: Soundness is necessary if (a) no actually
fault-free components should be marked as faulty in
a diagnostic scenario, e.g., when inspecting or chang-
ing parts unnecessarily is costly such as in a car [18],
or when a modification of correct components impacts
the quality of the system such as for axioms in a knowl-
edge base [19], or if (b) every solution returned by the
algorithm should indeed be a possible explanation for
the observed system misbehavior, e.g., to avoid the ne-
cessity of additional computations and of a potentially
costly post-processing of the solutions. Apart from
that, the soundness requirement is in line with the gen-
erally accepted principles of Parsimony [12] and Oc-
cam’s razor [20], which postulate that from two differ-
ent (fault) explanations, the simpler one is preferable.
Impact: Forgoing the requirement of soundness can
lead to a higher efficiency of diagnosis computation,
as certain unsound algorithms are designed to drop
soundness to the benefit of performance (e.g., [21;
16]). There are basically two forms of unsoundness
for returned diagnoses, i.e., they might be (a) non-
minimal diagnoses (intuitively: “too large” component
sets; cf., e.g., [16]), or (b) non-diagnoses (intuitively:
“too small” component sets; cf., e.g., [21]). Both
cases can be handled by a suitable post-processing
of the returned solutions (cf., e.g., [22]), the cost of
which depends on the number of solutions that are non-
(minimal) diagnoses and on their degree of unsound-
ness (i.e., how much “too small” or “too large” the di-
agnoses are).
Relationship: Unsoundness can entail incompleteness
or a violation of the best-first property, e.g., for sys-
tematic hitting set searches (e.g., [19]).

2. Completeness:
Definition: If A computes a set of diagnoses, it is all-
complete iff it outputs all minimal diagnoses given suf-
ficient time and memory, and it is property-complete iff
it outputs all minimal diagnoses with a particular prop-
erty (e.g., minimum cardinality) given sufficient time
and memory. If A computes a single diagnosis (with a

1Works describing diagnosis algorithms use a wide variety of
notations and formalisms, which can however also be expressed by
means of Reiter’s general theory [12], as reviewed in Sec. 2.



particular property p, e.g., minimum-cardinality), it is
one-complete iff it outputs a minimal diagnosis (with
property p) whenever such a diagnosis exists. Other-
wise, if there is any minimal diagnosis that A might
fail to compute, it is incomplete.
Relevance: Completeness is necessary if it is crucial in
a diagnostic scenario that the actual diagnosis is found
with certainty, or when missing the actual diagnosis or
a diagnosis with a particular property might have seri-
ous consequences, e.g., when diagnosing critical sys-
tems such as aircrafts, medical ontologies or security
software. Moreover, completeness is vital for reason-
able stop conditions in sequential diagnosis scenarios,
e.g., if a single diagnosis remains after taking some
measurements, only completeness implies that this di-
agnosis is the only possible minimal fault.
Impact: Forgoing the requirement of completeness al-
lows for a higher efficiency of diagnosis computation
in many cases, as incomplete algorithms are often de-
vised with a particular focus on performance, cf., e.g.,
[16; 17; 21].
Relationship: If not carefully devised, incomplete al-
gorithms will usually not be best-first.

3. Best-First Property:
Definition: A is generally best-first iff it computes and
outputs diagnoses in order according to a given sorting
criterion (often: minimal cardinality or maximal prob-
ability); A is focused best-first iff it is best-first only for
a particular sorting criterion (often: minimal cardinal-
ity); A is only-best iff it computes only the best diag-
nosis (if its type is single-solution, cf. Bullet 4) / diag-
noses (if its type is multiple-solution, cf. Bullet 4) wrt.
a particular property (often: minimum-cardinality); A
is best-subset-no-order iff it computes a subset of all
diagnoses including exactly the best diagnoses wrt. a
particular property (often: minimal cardinality), but the
diagnoses are not computed or output in best-first or-
der; A is any-first iff it does not satisfy any of the above
conditions and cannot guarantee any particular output
order of diagnoses; if A is any-first, but uses heuris-
tic techniques to approximate a particular order of the
computed diagnoses, it is heuristic best-first.
Relevance: The best-first property is useful, e.g., if
(one expects) there is a large number of diagnoses and
the actual diagnosis is likely among the best diagnoses
(e.g., when all components fail with an equal and small
likelihood [13]), if focusing techniques are adopted
where only the best subset of all diagnoses is further
considered [13], if informative samples for sequential
diagnosis should be computed [35], or if users intend
to monitor the best diagnoses throughout the debug-
ging process [23].
Impact: Forgoing the best-first requirement usually
leads to a higher efficiency of diagnosis computation,
as any-first algorithms can use more efficient (e.g.,
depth-first [26] instead of breadth-first [12] or uniform-
cost [19]) diagnosis search techniques. Also, generally
best-first methods might be significantly more expen-
sive than related focused best-first ones (cf., e.g., [23]).
Relationship: To the best of our knowledge, all gen-
erally best-first algorithms are conflict-dependent (cf.
Bullet 5), i.e., rely on a systematic search based on
conflicts (cf. Tab. 1). Moreover, compilation-based ap-

proaches (cf. Bullet 5) are usually only-best techniques
wrt. minimum-cardinality diagnoses (cf. Tab. 1).

4. Type of Output:
Definition: A is called multiple-solution iff it can com-
pute a set of two or more diagnoses per call; otherwise,
if A returns at most one diagnosis, it is called single-
solution.
Relevance: The optimal algorithm choice wrt. this fea-
ture is trivial and depends on whether one or multiple
diagnoses are required in a scenario. Note, most al-
gorithms considered in Tab. 1 can output multiple so-
lutions. Clearly, any such algorithm can also be em-
ployed if only a single solution is desired.
Impact: Single-solution techniques can be highly per-
formant as they may use optimizations that harm com-
pleteness by manipulating the set of all solutions for
the benefit of computational efficiency [30]. To al-
low for some degree of control over their performance,
multiple-solution approaches are sometimes also con-
figurable, e.g., to compute a number of exactly k so-
lutions, to stop after some timeout occurs, to prune a
specified part of the search space, or to stop after a pre-
defined number of search iterations has been performed
[23; 36; 38; 16; 17].
Relationship: Single-solution methods are usually one-
complete (cf. Bullet 2) and only-best (cf. Bullet 3), see
Tab. 1. Simply put, when focusing on only one solu-
tion, approaches normally aim at finding the best diag-
nosis wrt. some property among all minimal diagnoses.

5. Conflict Dependency:
Definition: A is conflict-dependent iff it requires the
computation of (minimal) conflicts; otherwise, i.e., if
A works without taking information about conflicts
into account, it is direct; a direct algorithm which trans-
lates the DPI into a target language and performs di-
agnosis computation based on this alternative problem
representation is called compilation-based.
Relevance: If conflict computation or theorem proving
is very expensive in a diagnostic scenario (cf., e.g., [9]),
then direct algorithms are preferable, or even the only
feasible approach. If a systematic exploration of di-
agnoses (allowing, e.g., inferences that all diagnoses
with a specific property, say minimum-cardinality, are
already computed) is desired [13] or the general best-
first property (see bullet 3) is relevant [23], or the used
method should be optimized for certain sequential di-
agnosis problems [24], then a conflict-dependent ap-
proach might be the only viable choice. When adopt-
ing a conflict-dependent method, it is important to note
that an adequate conflict generation approach—which
is sound and complete wrt. the computation of (mini-
mal) conflicts as well as applicable to and performant
for the DPI at hand—needs to be combined with the di-
agnosis algorithm. Choosing such an approach might
not be an easy task for non-expert users.
Impact: Compilation-based techniques often allow
to answer important diagnostic queries (such as
minimum-cardinality diagnosis computation) in poly-
nomial time in the size of the compilation (which how-
ever might be of exponential size). Hence, these meth-
ods might be the best choice given that the DPI at
hand is amenable to a compact compiled representa-
tion. Direct techniques, some of which (e.g., [25;



26]) are based on the Duality Property (cf. Sec. 2),
sometimes allow to escape computational bottlenecks
concerning memory consumption [26] or time [16] by
forgoing a systematic enumeration of the diagnoses.
Most of the algorithms in the literature appear to be
conflict-dependent (cf. Tab. 1), and most (but not all,
e.g., [27]) of them are based on the Hitting-set Prop-
erty (cf. Sec. 2); hence, there is a great selection of
such methods, which cover numerous different combi-
nations of other features, so that there will be a reason-
able choice among them for many diagnosis tasks and
applications.
Relationship: Considering the literature, it appears that
conflict-dependency implies (if judgeable) the general
applicability of an algorithm (cf. Bullet 9 and Tab. 1).
The reason for this is that, for diagnosis computation,
the set of minimal conflicts is representative of a DPI
(cf. [28, Theorem 1]), and thus can be seen as a kind of
general abstraction from the DPI, which can be applied
to any DPI. Hence, algorithms relying on this abstrac-
tion (usually) do not make assumptions about system
specifics.

6. Way of Conflict Computation:
Definition: (Prerequisite: A is conflict-dependent, cf.
Bullet 5) A is preliminary iff it requires (a non-empty,
non-singleton subset of) all minimal conflicts to be
given as an input, or if it computes (a non-empty, non-
singleton subset of) all minimal conflicts preliminarily,
before the diagnosis computation starts; otherwise, if
conflicts are computed on-demand in the course of di-
agnosis computation, A is on-the-fly.
Relevance: If the prior generation of all minimal con-
flicts is feasible or even practical in a diagnosis sce-
nario, there are highly efficient preliminary techniques
available for diagnosis computation (cf., e.g., [29;
30]). These preliminary techniques can also benefit
from insights of a significant body of research regard-
ing the minimal hitting set problem (cf. [31] for an
overview). On-the-fly algorithms, on the other hand,
are often still efficiently applicable even if preliminary
conflict generation is infeasible. That said, it might in
certain diagnostic use cases not be necessary to explic-
itly derive all (minimal) conflicts, e.g., in sequential di-
agnosis scenarios [13; 32] where only a subset of diag-
noses is required per iteration. Some preliminary tech-
niques (e.g., [7]) can be modified to act on-the-fly, but
not all of them (e.g., ones that exploit the structure in
the collection of minimal conflicts [33]). Any on-the-
fly algorithm can be modified to be preliminary in a
straightforward way (by pre-computing the collection
of minimal conflicts and by choosing appropriate con-
flicts from this collection on-the-fly).
Impact: Forgoing the preliminary computation of the
(full) set of minimal conflicts and intermixing conflict
generation with diagnosis computation can allow to es-
cape a combinatorial explosion and thus enhance the
performance of diagnosis methods [13].
Relationship: Usually, preliminary algorithms do not
incorporate mechanisms for generating minimal con-
flicts, but assume them to be given from the outset
(e.g., [34; 33; 30]). For such methods, we cannot assess
the features general applicability, black-box reasoning,
and logics-agnosticism (cf. Bullets 9, 10 and 11) be-

cause these methods do not directly use the DPI, but
require some “external” technique to provide the re-
quired collection of conflicts, where the three said fea-
tures above depend on the adopted conflict generation
technique.

7. Focus on Sequential Diagnosis:
Definition: A is sequential iff it provides mechanisms
to address the sequential diagnosis problem (cf. Prob-
lem 2), e.g., in terms of measurement proposal tech-
niques or system knowledge update procedures after
measurement actions; otherwise, A is one-shot.
Relevance: To solve a sequential diagnosis problem,
algorithms devised specifically for this purpose will
often be more practical than iteratively re-invoking
a one-shot algorithm for the various DPIs (succes-
sively extended by new measurements, cf. Sec. 2)
during a sequential diagnosis session (cf., e.g., [36;
37]). Apart from that, the former techniques will of-
ten be directly applicable to a sequential diagnosis task,
whereas a user might need to adapt the implementation
of a one-shot algorithm to make it ready for sequen-
tial diagnosis. On the other hand, if sequential diagno-
sis is not the task in a diagnostic scenario, then a user
is generally better off (wrt. efficiency, implementation
complexity, etc.) when using one of the often less so-
phisticated (cf., e.g., [24]) one-shot techniques.
Impact: Relying on sequential techniques will usu-
ally boost the performance of diagnosis computation
in a sequential setting, but will generally also tend to
worsen the performance in non-sequential settings.
Relationship: Sequential techniques are usually sound,
complete and stateful (cf. Bullets 1, 2, and 8, and
Tab. 1) where the former two properties can be use-
ful for diagnostic decision-making (e.g., measurement
proposal, stop criteria) and the latter can improve the
time performance of an algorithm (cf. [24; 7]).

8. Maintenance of State:
Definition: A is stateful iff it can maintain its state
when used throughout a sequential diagnosis process
(e.g., by storing or reusing data structures, intermedi-
ate values, etc.); otherwise, A is stateless.
Relevance: Since this feature describes the internal
workings of an algorithm, users might basically be in-
different whether the used diagnosis method is state-
ful or stateless. However, requirements wrt. the algo-
rithm’s performance may (ceteris paribus) have a bear-
ing on the proper choice between stateful and stateless
algorithms (see below).
Impact: When memory is the more critical resource,
e.g., on small or mobile devices, stateless algorithms
may be a way to trade more time for less space,
whereas, when time is the more critical resource, state-
ful algorithms may be preferable [24; 38].
Relationship: Stateless algorithms are usually (but not
always, cf. [26]) one-shot (cf. Bullet 7), and algorithms
that can be used in a stateful way are normally (but not
always, cf. [39]) sequential (cf. Bullet 7). See Tab. 1.

9. General Applicability:
Definition: A is generally applicable iff it can be used
for any diagnosis problem expressible by means of
Reiter’s theory [12], i.e., for any DPI as specified in
Sec. 2; otherwise, e.g., if A makes certain assump-
tions about (e.g., the structure or some properties of)



the tackled DPI, it is problem-dependent.
Relevance: The appropriate choice of diagnosis algo-
rithm depends on its application area and scope. E.g.,
if only certain system types (such as circuits) are ad-
dressed, then a problem-dependent algorithm that con-
siders and leverages the peculiarities of this system
type will be the proper and often much more perfor-
mant approach (cf. [40; 37; 39]). If, on the other
hand, a diagnosis system’s intended use is for fre-
quently changing application domains (e.g., in the Se-
mantic Web context, where a multitude of different do-
mains are modeled in terms of ontologies with highly
heterogeneous content, structure, expressiveness, rea-
soning complexity and used logical languages [4; 19;
23]), problem-dependent techniques might not be eli-
gible and generally applicable ones allow to deal with
various diagnosis problems without modifying the di-
agnosis system.
Impact: If general applicability is required, the price
to pay for this is the use of general-purpose diagnostic
techniques which naturally cannot match up in terms
of performance to approaches geared to optimizing di-
agnostic efficiency for specific problem cases.
Relationship: General applicability implies logics-
agnosticism (cf. Bullet 11) since an algorithm inca-
pable of dealing with some (monotonic) logical lan-
guage is, by definition, not generally applicable. How-
ever, there might be logics-agnostic techniques which
exploit structural properties of a particular system type
(regardless of how it is modeled), which are thus not
generally applicable. Moreover, most (but not all, cf.
[7]) of the generally applicable methods are black-box
(wrt. reasoning), i.e., can use an arbitrary (sound and
complete) inference mechanism (cf. Bullet 10).

10. Black-Box Reasoning:
Definition: A is black-box (wrt. reasoning) iff it uses
a reasoner as a black-box oracle (for consistency or
model checking) and can use an arbitrary (sound and
complete) reasoner for the logical language used to ex-
press the DPI; otherwise, if A requires additional com-
putations or mechanisms (e.g., operations pertinent to a
specific problem representation [41; 42] or bookkeep-
ing techniques [7]) from a reasoner beyond the main
reasoning result, it is reasoner-dependent.2
Relevance: If the logic used to model the diagnosed
system is stable in an application area, then reasoner-
dependent approaches might be the better choice as
they might be advantageous in terms of diagnostic effi-
ciency (given a suitable “glass-box” reasoner for the re-
spective logic). E.g., when DPIs expressible by means
of propositional logic are the target use case of a di-
agnosis system, then a reasoner-dependent algorithm
based on propositional logic might be preferable to a
black-box one with otherwise equal features. If, on
the other hand, different formalisms might be used
to describe the faulty system [23], black-box tech-
niques can be more expedient. They can always sim-
ply use the best reasoner for the particular problem
at hand without needing to incorporate any modifica-
tions into the reasoner (or the diagnosis algorithm)—
unlike reasoner-dependent approaches, which require

2Methods we call reasoner-dependent are sometimes also re-
ferred to as glass-box techniques [43; 44; 45].

the incorporation of the necessary additional mecha-
nisms into any adopted reasoner. And, performances
of various reasoners might differ substantially [46]. As
a rule of thumb, if the performance for one fixed sys-
tem description language should be maximized, then
reasoner-dependent approaches tend to be more favor-
able, whereas black-box methods tend to be preferable
if the performance over variable modeling languages
should be optimized.
Impact: Reasoner-dependent techniques can lead to an
improved time performance [44; 45], e.g., when rea-
soners extract conflicts as a byproduct of consistency
checks [44; 45] or store supporting environments3 for
derived entailments [7], but might also incur mem-
ory overheads [47]. Advantages of black-box methods
are, e.g., their robustness (no sophisticated, and poten-
tially error-prone, modifications of complex reasoning
algorithms), their simplicity (internals of reasoner ir-
relevant), their flexibility (e.g., black-box methods can
use a portfolio reasoning approach by switching to the
most efficient reasoner in a simple plug-in fashion de-
pending on the language used to describe the diag-
nosed system [48]), and their up-to-dateness (black-
box methods can directly benefit from advances in the
general research on automated reasoning).
Relationship: There are no general implications on
other features resulting from the presence or absence of
the black-box property; however, it is often (but not al-
ways) the case that black-box techniques are also gen-
erally applicable, logics-agnostic, sound, complete and
multiple-solution (cf. Bullets 1, 2, 9, 11 and 4).

11. Logics-Agnosticism:
Definition: A is logics-agnostic iff it can deal with
DPIs expressed by arbitrary (monotonic) logics; oth-
erwise, A is logics-dependent.
Relevance: If a diagnosis approach is intended to
be used with only one fixed system description lan-
guage, then a user should choose the method with
(expected/reported) best performance for the faced
diagnostic task, regardless of whether it is logics-
agnostic or -dependent. Logics-dependent approaches,
however, can offer very attractive features, e.g.,
compilation-based approaches (e.g., [39; 41; 42]) can
often compute diagnoses in polynomial time once the
DPI has been compiled into a target representation;
however, they are restricted to propositional logic sys-
tem descriptions. If a diagnosis approach needs to deal
with diverse system modeling languages, the adoption
of a logics-agnostic method might be the only choice.
Impact: As our literature study suggests, logics-
dependent approaches are usually particularly attrac-
tive in terms of performance. The reason for this is that
these methods often use sophisticated (e.g., representa-
tion, optimization or reasoning) techniques specific to
one logic, which is propositional (Horn) logic for all
logics-dependent approaches considered in Tab. 1.
Relationship: The property of logics-agnosticism ap-
pears to come along with the black-box property (cf.
Bullet 10) in most (but not all, cf. [7]) cases. Fur-
thermore, logics-agnostic techniques are often gener-
ally applicable (cf. Bullet 9).

3Roughly: sets of logical sentences sufficient for the entailment
to hold. Environments are also termed justifications [44].



12. Space Efficiency:
Definition: A is space-efficient iff its worst-case mem-
ory complexity is polynomial in the input size; other-
wise, A is space-inefficient.
Relevance: If time is the resource to be minimized
and the diagnostic task is expected to manage with the
available memory, then space-inefficient methods can
be the better choice, due to their generally lower time
complexity. If, on the other hand, the available memory
capacity of a device is low (such as with IoT or smaller
mobile devices) or the diagnostic task is expected to
be memory-intensive (e.g., if diagnosis cardinality is
likely to be high [26]), then space-efficient algorithms
might be the only viable approach (as memory con-
sumption increases exponentially with the size of di-
agnoses for many space-inefficient techniques). Note,
only few space-efficient diagnosis computation strate-
gies have been proposed in literature, thus there is not
plenty of choice for the user, which is why a trade-off
between space-efficiency and other properties might be
necessary. Only recently, a space-efficient algorithm
exhibiting all desirable properties wrt. the features dis-
cussed here, along with a reasonable time performance,
has been suggested [23].
Impact: Space-efficiency is often bought for a higher
(empirical or theoretical) time complexity [23], or for
a dropping of other desirable properties such as best-
firstness [26; 25] or completeness [17].
Relationship: With the exception of the algorithm pro-
posed in [23], space-efficiency appears to be achievable
only for algorithms that do not guarantee a best-first
diagnosis computation (cf. Bullet 3), or that require a
preliminary computation of conflicts (cf. Bullet 6) and
whose complexity thus does not take into account the
conflict generation phase.

Remarks:

• We do not propose a feature concerning the time com-
plexity. This is due to well-known complexity results
[49; 50], which imply (unless P = NP) that there can-
not be an algorithm that computes at least two minimal
diagnoses and generally finishes in polynomial time;
this holds even if reasoning (consistency checking) is
in P, which however is already NP-complete if (only)
propositional logic models are used (let alone more ex-
pressive logics such as Description Logics [51]).

• The list of proposed features is certainly not an ex-
haustive account of all possible properties diagnosis
computation algorithms might have. There are fur-
ther conceivable aspects from the (a) theoretical view-
point, such as whether an algorithm uses abstractions
or alterations of a DPI, or whether computations are
executed in a distributed or centralized way (cf. [24,
Sec. 4]), (b) empirical viewpoint, such as whether an
algorithm was experimentally evaluated, which dataset
from which domain was used to evaluate an algorithm,
or which other methods an algorithm was compared
against, (c) presentation viewpoint, such as whether
formal proofs for algorithm properties are given, or
from the (d) pragmatic viewpoint, such as whether
there are freely accessible implementations of or tools
relying on an algorithm. Exploring other features like
these is on our future work agenda.

4 Classification of Existing Works
Tab. 1 gives a classification of several existing works based
on their characteristics wrt. the features suggested in Sec. 3.
Remarks:

• The table can be read row-wise to inspect the features
of the diagnostic techniques, and column-wise to find
methods with certain characteristics wrt. the features.

• We assessed the algorithms enumerated in the table as
they are described in the respective cited work, without
assuming any modifications or extensions.

• The list of algorithms studied in the table raises no
claim to completeness. Rather, the idea is to illustrate
the use(fulness) of the presented features for algorithm
assessment and comparison by presenting the proper-
ties of some important methods in literature. We plan
to analyze further ones as part of our future work.

5 Conclusions
This work proposes a taxonomy for diagnosis computation
algorithms, with the intention of helping researchers and
practitioners in assessing, comparing, and selecting diag-
nostic techniques for their tasks and purposes. More specif-
ically, we present a set of 12 crucial features of diagnosis
techniques and classify some important existing methods
based on these. In our study of the works in the litera-
ture, we observed that, for some algorithms, it was relatively
hard to determine their properties regarding the proposed
taxonomy since various algorithmic aspects are often left
implicit or not addressed at all. Moreover, even if properties
are discussed, not all works provide formal proofs of these
(which is certainly not least because of strict space restric-
tions at many publication venues). Hence, we encourage
authors (whenever possible) to explicitly discuss the mate-
rial properties of their proposed diagnostic approaches, for
which we hope the suggested taxonomy will constitute a
useful basis and guideline. Making algorithm characteris-
tics explicit, clear and accessible will certainly help other
researchers put novel works appropriately into the context
of existing works, and sticking to shared assessment and
categorization criteria while doing so can have several ad-
vantages. Examples are (a) fair empirical evaluations that
contrast methods which are actually comparable (e.g., com-
paring an incomplete method against a complete one wrt.
performance might under circumstances be pointless, as the
methods simply accomplish different things and have dif-
ferent use cases), (b) the potential inspiration for and de-
tection of open research questions (e.g., find an algorithm
which has a particular subset of the features, which are not
met by any of the existing algorithms), (c) an easier, faster
and more informed finding of a suitable algorithm for a par-
ticular purpose (e.g., is there a space-efficient method for
a mobile device that is at the same time sound, complete
and best-first?), (d) the better understanding of the evolution
and reality in research and practice (e.g., that certain fea-
ture combinations are the reason why some techniques are
not used in some application domains while they are state-
of-the-art in others), or (e) the realization that basically all
algorithms have their right to exist, as they cover a wide va-
riety of feature combinations and thus address a broad range
of diagnostic problem scenarios, and that algorithms “super-
seding” others due to performance improvements most often
achieve this at the cost of losing some desirable properties.
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