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Abstract

This paper addresses the problem of detecting
faults and wear in robotic arms. The problem is
made difficult by the presence of pauses in the
robots’ routine, and by missing data. We pro-
pose a fault detection approach based on a vari-
ant of the Dynamic Time Warping algorithm to
create a fault indicator insensitive to pauses, de-
lays and missing data, but sensitive to deviations
due to faults or wear of the robotic arm’s joints.
The method is tested on real industrial data from
robots that operate in a Printed Circuit Board as-
sembly line.

1 Introduction
Industry 4.0 introduces new technologies in production
plants, which allows real-time communication between hu-
mans, machines and sensors. This creates new opportunities
to reduce downtime, to spot production defects and to im-
prove the supply chain. Robotic arms are used for many
tasks and interact with other machines, their operators and
other people. There can be several dozens of them deployed
in a single production plant. However, each robotic arm
can cause the whole production chain to stop when it fails.
Vitesco Technologies (VT) produces electronic devices for
all types of vehicles, and operates hundreds of robotic arms
across dozens of plants. A factory that depends on a large
fleet of robots must be able to spot any abnormal execution
of robot tasks. Although the robot is equipped with a built-
in alarming system, execution monitoring is still necessary
to detect small deviations, using a separate system to verify
that the robot has succeeded in its task or if its behavior is
anomalous [1].

In this paper, we address the problem of anticipating
robotic arm failures by detecting abnormal behavior. We
assume that the robotic arms repeatedly perform the same
pick-and-place task, for which we have nominal data. The
behavior of each robot is compared to nominal data in order
to detect deviations before the arm fails completely. How-
ever, in this approach we face two challenges. First, the
nominal data is obtained by simulation, the movements are
undisturbed and the sensors’ acquisitions, such as scanning
a barcode, are instantaneous. Second, the actual data col-
lected from the real robot controller suffers from missing
data, which makes it challenging to compare with the simu-
lated behavior.

Our approach consists in creating a fault indicator that re-
lies on Dynamic Time Warping (DTW) to assess the sim-
ilarity between nominal and performed robot trajectories.
The indicator identifies and quantifies the deviation while
remaining insensitive to missing data and pauses in the ex-
ecution. We evaluate our approach on data obtained from
a set of Universal Robot (UR) arms deployed in a Vitesco
Technologies plant.

This paper is organized as follows. First, we review
the state of the art in diagnosis and prognosis of robotic
arms in industrial plants. Second, we describe the use case
which motivates and on which we evaluate our approach.
Third, we formally define our detection approach, based
on DTW. Finally, the performance of the approach is high-
lighted through experimental tests on real execution data
from robotic arms.

2 Related work and presentation of the
problem

A widespread way to avoid production downtime in a
plant is to perform predictive maintenance on its machinery
through the estimation of the Remaining Useful Life (RUL)
[2].

RUL prediction approaches can be grouped into three cat-
egories [3]: statistical model-based, physics model-based
and AI. Model-based techniques are commonly used in in-
dustrial robotics, but it is difficult to establish an accurate
physics model of such a complex mechanical system for
prognostics purposes [3]. The AI (data-driven) approaches
overcome the need for prior knowledge and fault modes of
machinery, but they depend highly on the collection of full
life-cycle voluminous and high-quality datasets [4], [5], [6].

In the case where high-quality historical data is not avail-
able, it is interesting to study the incipient faults that are
not yet critical failures. Indeed, robots are equipped with
sensors for position, speed and acceleration, and an internal
monitoring system which displays warnings and error codes
in case of an event.

Even then, some developing faults might not prevent the
operation of the robot and thus be difficult to detect at an
early stage, but they might contribute to greater issues [7].
Under such circumstances, the need for a fault indicator,
sensible enough to detect developing faults, emerges. The
generation of fault indicators in robotics is often addressed
with the comparison of real data, collected during robot op-
eration, with predicted behavior from a dynamical model
[8], [9], [10], [11]. These approaches take into account nei-



ther the nature of the tasks given to the robot and its operat-
ing conditions, nor the controller’s monitoring system. This
limits the ability to assess the system’s health status.

In contrast [12] makes direct use of the repetitive behavior
of manipulators to detect deviations in their joint’s torque.
In this work, data batches are collected from the robot’s
controller while a program is executed repeatedly and un-
der such conditions that the wear is accelerated. The first
batch is supposed to represent the healthy state of the robot,
and thus it is used as a reference that is compared to the
next batches. An indicator is designed with the kernel den-
sity estimates and the Kullback-Leibler divergence. In this
work, data batches are associated to exactly one task exe-
cution and are previously separated from one another. The
authors assume that the time series are directly comparable
because there is no distortion in time, the execution pace be-
ing regular, and there is no missing data. In our work, these
assumptions are not met.

Partitioning a data sequence into subsequences of oper-
ating cycles can be seen as a pattern recognition task, i.e.,
the process of finding a specific subsequence or recogniz-
ing a particular shape within a time series. Many techniques
have been proposed for this purpose: [13] reduces the di-
mensions of time series by the Haar Wavelet Transform and
indexes the coefficients of the Haar transformed sequences
for similarity search. In [14] the pattern, to be found in
a search collection, has a waveform shape and is encoded
with Markov Models. The authors argue that this approach
is more flexible than the distance-based ones. In [15], two
series are considered similar if they both fit into an ARIMA
model that captures their necessary characteristics. An is-
sue arises when doing pattern mining on signals that suffer
from different types of distortions in all axes [16]. In that
case, standard similarity (distance) measures are unsuitable
because not robust to distortions.

The Dynamic Time Warping (DTW) technique handles
well time deformations and speed variations in temporal se-
quences (Section 3.2.1 of [17]), which is why we chose it in
our monitoring approach for robotic arms.

3 Use case: a robotized PCB assembly line
The experimental work is performed on industrial collabo-
rative robots from a Printed Circuit Boards (PCB) manufac-
turer. They are located on the Back-End lines dedicated to
adding connectors and the product housing, after the com-
ponents have been mounted on the PCB. The robots, 6-axis
manipulators, perform various tasks such as emptying or
filling containers, stacking, holding a camera for quality
control. Their commands are defined in a high-level lan-
guage directly on the teach pendant of the robot (see Fig-
ure 1) by the integration engineers. They specify the target
points of the manipulator end-effector in the cartesian space
and then the robot control system computes the joint trajec-
tory with inverse kinematics. The positions are monitored
with encoders, and a current controller is used to provide a
target torque on the motors.

This paper focuses on robots with pick-and-place tasks,
especially the ones that unload pallets of components (con-
nectors, PCB, . . . ) to feed welding or test machines, and
might also pick the components from those machines to load
back the pallets. The reason behind that choice is that there
is a significant number of such robots in the VT plants, and
that they execute the same trajectory repetitively. The robot

motion is not based on visual guidance to reach the compo-
nents, instead it follows a fixed trajectory computed using
the defined corner points of the pallet. This article stud-
ies two robots (A and B) carrying out pick-and-place tasks.
Given an operator filled pallet with several components (26
for robot A and 99 for robot B), the robot grasps the com-
ponents one by one with a gripper. Robot A moves the com-
ponents from the pallet to a welding machine, and from the
welding machine to a test machine. Robot B moves the
components from a pallet to a circle conveyor, and closes
the conveyor’s door after each move.

Figure 1: Picture of a UR robot and its teach pendant

The nature of the robot task determines the shape of the
collected output signal: the period of the multivariate time-
series corresponds to all the components being handled from
the pallet until it is emptied and another pallet is sent; we
name this the pallet-cycle. In the signal, a sub-period corre-
sponds to the manipulator’s movement over a row of com-
ponents, this is particularly noticeable in the robot’s base
joint’s angular position.

This pallet-cycle is our reference pattern; it is used to se-
lect the data batches from the real data stream that should be
compared with a fault-free robot trajectory to generate fault
indicators. Given that the precise health state of the robots
in the plant is unknown, it is not possible to experiment with
a healthy robot as in [12]. Therefore, the nominal trajectory
is obtained with a high-fidelity dynamical simulator as de-
scribed in section 6.1.

3.1 Problem and motivation
A desired joint trajectory qd ∈ R6 is generated by the con-
trol system based on the operations in the robot script. They
describe the motion Ω of the manipulator’s end-effector
while it performs the pick-and-place tasks as executed on
the production line. The actual joint trajectory q ∈ R6 is
read by the virtual joint encoders and is collected from the
control software into a time-series dataset. This dataset is
formed by an ordered sequence for each of the 6 joints, of
data lengths N ∈ N, with a constant sampling period, such



as each time series is in the form:

X = [x1, x2, ..., xN ] (1)

X being the reference trajectory, its length is fixed by the
duration of one pallet-cycle performed by the robot, as de-
scribed in section 3.

The real data consists of the robot signals captured while
it follows the same program as the one used on the simula-
tor. These outputs constitute a multivariate time-series data
stream from which an ordered sequence Y of length M ∈ N
is extracted for each joint:

Y = [y1, y2, ..., yM ] (2)

Y is constituted by a stream of pallet-cycles, but, unlike the
simulated data, there is no indication about the beginning
and the end of the movement over a whole pallet. Besides,
the sampling period is supposed to be the same as for X al-
though the time-steps are irregular because of missing data
at random moments. The interval of length M has less data
points than the sampling should imply. In order to compare
the simulation pallet-cycle against real data pallet-cycles,
these need to be separated in Y .

Assumption 1 (Full cycle). We assume that X represents
exactly one complete pallet-cycle, and that Y contains at
least one complete pallet-cycle.

Our goal is to produce a fault indicator that detects incip-
ient deviations as soon as possible, in a context of missing
data and pauses in the robot cycle execution. To this end we
start by finding the subsequence Y of the sequence Y that
best matches the query pattern X , such as:

Y = [ya, ya+1, ...yb] with 1 ≤ a ≤ b ≤ M (3)

Once the best matching Y subsequence is found, we synthe-
size an indicator that assesses if the robot trajectory Y , for
one pallet-cycle, actually resembles the reference trajectory
X .

Requirement 1 (Sensitivity to deviations). The fault indi-
cator must be sensitive to deviations in the sensor values at
some time of the cycle.

Requirement 2 (Insensitivity to pauses). The fault indica-
tor must be insensitive to missing data and pauses in the
robot movement.

4 Alignment of distorted time sequences
DTW achieves a non-linear mapping of all the samples be-
tween a reference (or a query) and a distorted sequence.
It ignores the global and local shifts in the time dimen-
sion. DTW is able to compare sequences that have different
length without any loss of information, which is not the case
with other methods. The output is the remaining cumulative
distance between the two sequences.

DTW has been extensively used in the audio processing
domain, in particular for classification purposes as in [17],
through the use of the overall similarity metric. On time
series this metric is used to do fast sequential search on a
wide variety of datasets [18]. Conversely, on this paper, the
interest lies in the local similarity between each element of
the sequences formerly aligned by the optimal warping path.

Figure 2: DTW between two signals, with the query pattern
X (in black), the sequence Y (in gray) and some warping
path pairs (in dashed lines).

4.1 DTW
DTW takes as input a reference time-series X and a time-
series Y of respective lengths N ∈ N and M ∈ N.

X = [x1, x2, . . . , xN ] Y = [y1, y2, . . . , yM ]

The output of DTW is a warping path W , that represents
the global alignment between the samples of X and Y with
respect to the euclidean distance:

W = w1, w2, . . . , wK (4)

In a warping path W , each element wk = (n,m) is a tuple
of matching indexes n and m from X and Y . The length K
of W is such that max(N,M) ≤ K < N +M .

All warping paths satisfy the following constraints:
• Both the first and the last elements of the time-series
X and Y are aligned to each other: w1 = (1, 1) and
wK = (N,M).

• Every element of X and Y belongs to at least one
alignment wk.

• The steps of the path in the matrix are monotonically
increasing with the step size condition:

wk+1 − wk ∈ {(1, 0), (0, 1), (1, 1)} (5)

DTW uses the cost matrix C ∈ RN*M computed with a
local cost measure. In this paper we use the euclidean dis-
tance:

C(n,m) = ∥xn, ym∥ (6)
The total cost of a warping path W , that represents how

well the warped X and Y coincide, is defined as:

cost(W ) =
∑

(n,m)∈W

C(n,m) (7)

The warping path with minimal cost, denoted P , is the
path that starts at cell (1, 1), ends at cell (N,M) of the ac-
cumulated cost matrix D ∈ RN*M. This matrix is defined
as:

D(1,m) =

m∑
k=1

C(1, k) for m ∈ [1..M ] (8)

D(n, 1) =

n∑
k=1

C(k, 1) for n ∈ [1..N ] (9)

D(n,m) = C(n,m) + min
(i,j)∈∆

D(n− i,m− j) (10)

for ∆ = {(1, 0), (0, 1), (1, 1)}, n ∈ [2..N ],m ∈ [2..M ]



Figure 3: The optimal warping path between two time-series
according to DTW is illustrated by black dots through the C
(left) and the D (right) matrices.

The global similarity metric is noted and computed as
DTW (X,Y ) = cost(P ) = D(N,M).

In practice, P is computed, according to the original ver-
sion described by Müller in [17], with an algorithm based
on dynamic programming. The content of matrix D is com-
puted backwards through equations (8), (9), and (10) start-
ing at D(N,M) until it reaches D(1, 1).

Figure 2 depicts two time series, as well as some pairs
of the optimal warping path between them in dashed lines.
Figure 3 represents the matrices C and D used to compute
this warping path.

4.2 Subsequence-DTW
Subsequence-DTW (S-DTW) was proposed by Müller in
[17]. The idea is that the standard DTW can be applied with-
out the constraint that X and Y ’s boundaries match, i.e. the
pattern X can be synchronized with any subsequence Y in
the time-series Y if they happen to match (minimizes the
DTW metric to X). This variant of DTW is originally used
in audio matching where a short audio clip standing as a
query is looked for within an audio database, so that all the
corresponding fragments are identified. Based on the prop-
erties of DTW, temporal deformations are allowed, so that
an audio query can be recognized in another audio piece
even if it is played differently.

S-DTW starts, similarly to DTW, by computing the cost
matrix C using equation (6). However, the accumulated cost
matrix D is defined such as the first row does not accumu-
late any cost and does not penalize the beginning of X to
match with the closest value of Y instead of constraining
the endpoints together. Thus, equation (8) is replaced with:

D(1,m) = C(1,m) for m ∈ [1..M ] (11)

while (9) and (10) remain the same.
Then, the dynamic programming procedure to find the

optimal warping path P is applied in the same way as in
standard DTW, but the start and stop conditions are mod-
ified. Instead of starting at cell D(N,M), it starts at cell
D(N, b) such that:

b = argminj∈[1:M ]D(N, j) (12)

In addition, instead of reaching the cell D(1, 1) as in the
standard DTW, S-DTW stops as soon as it reaches a cell of
the form D(1, a) for some a ∈ [1..M ]. At this point, the
subsequence Y = [ya, ..., yb] that optimally matches X has
been found.

Figures 4 and 5 illustrate the same example as Figures 2
and 3, except that the S-DTW algorithm is used instead of
the DTW one.

Figure 4: Query pattern X (in black) and sequence Y (in
gray) are represented with the alignment given by the opti-
mal warping path between their elements. Note that only a
subsequence of Y , denoted by Y in the text, is matched to
X .

Figure 5: The optimal warping path between two time-series
according to S-DTW is illustrated by black dots through the
C (left) and D (right) matrix.

5 Deviation tracking in the robot movement
trajectories

In this paper, we implement the pattern-recognition tech-
nique S-DTW to monitor the execution of robot manipula-
tion tasks. Let us consider a sequence X of reference an-
gular values from a pallet-cycle and a sequence Y of actual
angular values. Y is taken of length at least twice as long as
X to guaranty that Assumption 1 is fulfilled. By computing
S-DTW between X and Y , we are able to:

• find the indexes a and b that characterize a complete
pallet-cycle Y within Y ,

• synchronize each element of Y with the elements of X
described by the optimal warping path P ,

• detect anomalies thanks to the cost function that can be
interpreted as the deviation of the manipulator from its
nominal task.

The output of S-DTW is the optimal warping path P de-
scribed by:

P = p1, p2, ..., pL (13)

where
max(N,M) ≤ L < N +M

with p1 = (1, a) and pL = (, b) and the middle elements of
P are tuples of matching indexes from X and Y :

pl = (nl,ml) ∈ N ×M, l = 2, . . . , L− 1

The optimal warping path describes the alignment be-
tween a reference pallet-cycle and the one actually per-
formed by a robot. Even if the real signal is distorted, due



Figure 6: Angular position time-series on two joints (base and shoulder) from an extract of real robot B data.

Figure 7: Angular position time-series on two joints (base and shoulder) from simulation of robot A during a pallet-cycle.

to a different production speed compared to the theory, and
is suffering from missing data, the alignment is correct.

The synchronization being done, we are able to compare
the ideal and the real movements of the robot by defining
a local similarity measure obtained for every element of the
optimal warping path. This local similarity measure is taken
as fault indicator:

F(nl,ml) = C(nl,ml), l ∈ [1..L] (14)

where C(nl,ml) is the cost defined in equation (6). The
deviations in the task execution are identified by abnormal
points in the signal F .

6 Experimental results
We validate our approach by testing it on experimental data
obtained in Vitesco Technologies plants. We first, describe
how the reference sequence X and the actual sequence Y
are recovered. Then, we evaluate our approach according to
the following qualities:

• Sensitivity to pauses in the robot’s movement.

• Sensitivity to intervals of missing data.

• Sensitivity to previously identified deviations.

• Scalability (in terms of the X pattern size).

6.1 Data acquisition setup
We collect the data from dozens of robots in real-time, while
they perform their daily tasks in the production lines. Each
sample includes the timestamp, the angular position of the
6 robot joints, and other variables such as the current and
the voltage measures. However only the position measure is
used for the sake of this paper. Data acquisition is achieved
non-intrusively using a standard TCP/IP connection and the
Real-Time Data Exchange (RTDE) interface designed by
Universal Robots.

A Python client sets up the variables to collect and the
RTDE interface sends the requested output data with a sam-
pling frequency of 125 Hz. For security reasons, the real-
time loop in the controller has a higher priority than the

Observation Time (s) Angle (rad)
Joint 0

Angle (rad)
Joint 1

1 0 -1.737 -1.716
2 0.008 -1.740 -1.714
3 0.016 -1.748 -1.711
4 0.152 -1.801 -1.696
5 0.16 -1.803 -1.695

Table 1: Example of the angular position on joint 0 and 1
collected on a robot with missing values

RTDE interface, and, accordingly, the controller will skip
output packages if it lacks enough computational resources
to carry on its tasks. This causes significant gaps at irreg-
ular times in our databases, and impacts the diagnosis pos-
sibilities. An example of a gap can be seen in sample Ta-
ble 1 were data collection is interrupted for 136ms. Sev-
eral interpolation methods have been examined, regrettably,
they don’t capture complex patterns with these significant
gaps. Predicting the missing values has also been consid-
ered, however, since the collector is only activated when the
robots are moving, the randomness of missing data makes
the task challenging. Besides, distinguishing the missing
values that should be filled from the actual standstill mo-
ments is difficult with the given information. For illustration
purposes some irregularly spaced signals are represented in
Figure 6.

The reference dataset consists of the sequences defined
in (1), obtained by running a simulation of the robot on the
manufacturer’s software URSim. The output data, joint an-
gles, are also collected via RTDE. In Figure 7 these refer-
ence profiles are plotted for two of the virtual robot A joints;
they represent a single pallet-cycle while the simulator per-
forms the task given to the real robot. The difference is that
the pace is artificial and ideal compared with the actual one
from the operating line.

6.2 Experiments
The following section presents the confirmation of the as-
sumptions mentioned in section 3.1 supported by experi-



mental results. Our synchronization and similarity assess-
ment framework was tested on databases acquired from
robot A (experiments 1 to 3) and B (experiment 4): the
recording of the simulation and the monitoring of the real
data as explained in section 3. The computation of S-DTW
on two sequences was based on the python package librosa
[19], originally designed for audio and music signal pro-
cessing. The virtual machine which is used for the experi-
ments has 128 GB of RAM.

Figure 8: Signals used for Experiment 1. X (above), Y
(below), and some S-DTW warping pairs (in gray) during
pauses in the robot’s movement.

Figure 9: Fault indicator computed for Experiment 1.

Experiment 1 (Sensitivity to pauses in the robot’s move-
ment). In this experiment, we select data sets in which the
robot is standstill during a few moments. This is due to a
new pallet being unloaded or a machine having to open, or
even to the production line being stopped. This causes con-
stant segments in the sequence Y .

Figures 8 and 9 illustrate how our fault indicator F be-
haves in this experiment. Figure 8 shows X on top, and Y
below, and draws in gray some of the pairings in the warping
path. It shows that the constant segments in Y are correctly
associated to their shorter segment in X . Furthermore, dur-
ing these time windows, Figure 9 shows that the indicator’s
value is negligible between the corresponding indexes iden-
tified by the dots. This means that our indicator is insensitive
to pauses in the robot’s movement.

Experiment 2 (Sensitivity to missing data). In this experi-
ment we select Y signals in which there are missing values
in the available datasets. This is due to the data collection
environment as explained in section 6.1.

Figure 10: Signals used for Experiment 2. X (above), Y
(below), and some S-DTW warping path pairs (in gray and
blue).

In Figure 10, reference X and search sequence Y are plot-
ted with lines drawn from an extract of the S-DTW map-
ping. The gap produced by missing data is rectified by the
alignment (in grey) of a long sequence of points from X
with a single one from Y . Then, the blue lines show that the
algorithm correctly associates reference values with the Y
values when they are present. In our case-study, we have
systematic missing values and knowledge to characterize
the gaps that are induced (as explained in Section 6.1). If
we want the fault indicator to be insensitive to these gaps,
a threshold can be determined beforehand with normal data
including the gaps.

Figure 11: Sequences X (above) and Y (below) used for Ex-
periment 3. The vertical black lines indicate the start and the
end of subsequence Y . The segments underlined in black
are associated with a high value in the fault indicator.

Experiment 3 (Sensitivity to deviations). In this experi-
ment we focus on a Y sequence featuring a significant devi-
ation from the reference trajectory due to abnormal behav-
ior from the robot.

Figure 11 illustrates the reference sequence X and the
search sequence Y that were used for this experiment. The
collected signal of the real trajectory displays an abnormal
behavior. The computation of S-DTW returns the indexes a
and b (see Equation (12)) which identify correctly the pallet-
cycle, as represented by the vertical black lines on the fig-
ure (one somewhere before index 20000 and the other after
index 80000). In Figure 12, the fault indicator shows two
occurrences of significantly high cost, and the indexes from
sequence Y to which they refer are underlined in black in



Figure 12: Fault indicator computed for Experiment 3.

Figure 11. This demonstrates that the abnormal behavior
has been well pointed out with the proposed approach.

Comparing Figures 12 and 9, we can claim that our fault
indicator is significantly more sensitive to the actual devi-
ation of Experiment 3 than the standstills of Experiment 1.
Even though in both experiments the indicator value is not
null, it is possible to set a threshold, for example 0.2 rad,
to separate indicator noise from actual faults. Other factors
may generate noise in our indicator: missing data, as in Ex-
periment 2, or differences between the physical robot and its
numerical model, but in both cases a threshold is sufficient
to distinguish noise from actual deviations.

Figure 13: Simulation after downsampling (above) and ac-
tual (below) signals of robot B in Experiment 4. The vertical
black lines indicate the start and the end of subsequence Y .

Figure 14: Fault indicator computed for Experiment 4.

Experiment 4 (Scalability). In this experiment we address
a robot with a very long activity cycle, which generates a
relatively long reference signal X .

The datasets from robot A that were used in the first ex-
periments are an optimistic case as they do not have a lot of
missing data. As a matter of fact, they were collected out-
side the collector presented in Section 6.1. Robot B how-
ever is connected to this data collector and there is indeed
a difference in the quality of the collected data as shown
in Figure 13. The pallets unloaded by robot B having 99
components, a pallet-cycle is quite lengthy and the cost ma-
trix becomes too large to be handled directly. To limit the
memory consumption on our machine, we downsampled the
reference signal by half (62.5 Hz) without losing informa-
tion. Then, we computed the S-DTW with its classical algo-
rithm version as in Section (4.2). It stands for 16 minutes of
recording which is enough for any of our robots’ tasks. The
algorithm succeeded in finding the indexes that characterize
a pallet-cycle (illustrated in Figure 13 by the black lines).
We noticed that the result is even more accurate when the
inputs X and Y are 6-dimensions matrices with every joint
angles. However, a challenge remains: the fault indicator
displayed in Figure 14 shows that the gaps induce high costs
so extra care is required to differentiate them from real de-
viations.

6.3 Discussion
As seen with experiment 4, we have memory issues when
performing S-DTW if the length of the query is N > 50000
and the length of the search sequence is M > 80000. Indeed,
the classic S-DTW algorithm requires storing a matrix of
shape (N,M) to compute the optimal alignment between the
sequences. In [17], the audio recordings are first prepro-
cessed with a chroma-based feature representation before
being compared with DTW, which reduces their size conse-
quently. Attempts have been made to reduce the complexity
of DTW: FastDTW [20] is a memory-efficient approxima-
tion of it that linearizes the complexity while keeping a good
accuracy of the warping path. With its multilevel approach,
the warping path is only computed with two columns re-
tained at a time. It is a saving in memory but it implies that
the output is only the overall distance between two time-
series, and not their index alignment, because the informa-
tion has been discarded along the algorithm steps. Besides,
this contribution and the others such as [21] focus on DTW
and not the subsequence variant that we are interested in.
We intend to optimize our approach, based on a memory-
efficient version of S-DTW [22] which seems promising.

7 Conclusion
A framework based on the S-DTW algorithm is designed to
monitor robot motions by assessing the similarity between
a reference pattern trajectory for an activity cycle and the
real trajectory of the robot during operation. It is based on
the alignment of the joint angles time-series. S-DTW makes
it possible even in the presence of pauses in the movement
and of missing data. The approach synthesizes a fault in-
dicator that identifies and quantifies the deviations from the
reference execution. This has been illustrated by a set of
experiments performed on real data from a fleet of Univer-
sal Robots of the Vitesco Technologies company. The fault
indicator is a step torwards predictive maintenance and it
can be useful for remote monitoring of the robots. It should



be noted that there is a bias in using the controller angular
position outputs as actual data. There can be inherent er-
rors in the angle measurements due to faulty calibration of
the encoders. This implies that further work should be done
by considering variables that do not depend on calibration
matters but are still sensitive to faults.
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