
HAL Id: hal-03773713
https://hal.science/hal-03773713

Submitted on 9 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Water network benchmarks for structural analysis
algorithms in fault diagnosis

Anna Sztyber, Elodie Chanthery, Louise Travé-Massuyès, Carlos Gustavo
Pérez-Zuñiga

To cite this version:
Anna Sztyber, Elodie Chanthery, Louise Travé-Massuyès, Carlos Gustavo Pérez-Zuñiga. Water net-
work benchmarks for structural analysis algorithms in fault diagnosis. 33rd International Workshop
on Principle of Diagnosis – DX 2022, LAAS-CNRS-ANITI, Sep 2022, Toulouse, France. �hal-03773713�

https://hal.science/hal-03773713
https://hal.archives-ouvertes.fr

Water network benchmarks for structural analysis algorithms in fault diagnosis

A. Sztyber1 and E. Chanthery2,3 and L. Travé-Massuyès2,3 and C. G. Pérez-Zuñiga4

1Warsaw University of Technology, Warsaw, Poland
2LAAS-CNRS, University of Toulouse, CNRS, INSA, Toulouse, France

3ANITI, Federal University of Toulouse, Toulouse, France
4 Engineering Department, Pontifical Catholic University of Peru, PUCP, Peru

e-mail: anna.sztyber@pw.edu.pl, echanthe,louise@laas.fr, gustavo.perez@pucp.pe

Abstract
This paper proposes a set of network benchmarks
for diagnostic driven algorithms based on struc-
tural analysis. These have been made available in
a public repository for use of all the DX commu-
nity.

1 Introduction
Structural Analysis is a powerful tool in fault diagnosis
that abstracts the dynamic equations modeling the system
to only the links between equations and variables. Many
complex algorithms are developed to work with structural
models, especially to generate sets of relations leading to
diagnostic tests, i.e. Analytical Redundancy Relations or
parity equations, or to select the most relevant ones. How-
ever, there is a lack of easily accessible large benchmarks for
comparing and testing the algorithm’s computational com-
plexity and memory consumption. In this paper, we present
a set of structural models of water distribution networks
with a wide range of sizes and a Python library for easy
and configurable generation of structural models from wa-
ter network description.

2 Structural models and algorithmic
problems

2.1 Structural Analysis
Structural Analysis (SA) is a general framework that can be
used to analyze complex, dynamic systems. The main idea
is to abstract the dynamic model of a system by just keeping
the links between equations and variables. Thanks to this
abstraction, SA can be applied to large-scale systems, both
linear and non-linear, and even to systems for which the dy-
namic model and the dynamic parameters are not precisely
known. SA relies on a number of very efficient tools related
to graph theory [1]. It enables, from a structural model, to
find the sets of equations allowing to generate diagnostic
tests.

Consider a system described by a set of equations
Σ(z, x,f) for which z is the vector of known (or measured)
variables of a set Z, x is the vector of unknown, i.e., un-
measured variables of a set X and f is the vector of faults
of a set F . Z, X , and F are respectively of cardinal nz , nx,
and nf . Each equation is associated to a component of the
system. The model generally represents nominal behavior,
hence the violation of one equation indicates that the system
is faulty and points at the responsible component.

The structural model of a system Σ(z, x,f) can be ob-
tained by abstracting the functional equations of Σ(z, x,f)

by structural equations. A structural equation eSi abstracts
the links between the functional equation ei and its vari-
ables. The structural model can be represented by the inci-
dence matrix B, whose rows are associated to equations and
columns to variables. B(i, j) = 1 indicates that relation ei
includes variables xj , B(i, j) = 0 otherwise.

When used for fault diagnosis, SA may determine sub-
sets of equations that will generate diagnostic tests. The
degree of redundancy of a system is defined as the dif-
ference between the number of equations and the number
of unknown variables included in them. The Structurally
Overdetermined (SO) subsets of equations (i.e., with more
equations than unknown variables) can be used to build
residual generators. Among them, the Minimal Structurally
Overdetermined Sets (MSO) are very important. These sets
have a structural redundancy of 1 (one more equation than
unknown variables). The subset of MSOs with equations
impacted by faults (FMSOs) are of particular interest be-
cause they allow the generation of a diagnostic test. Some
works are also interested in Minimal Test Equation Support
(MTES) because they develop more powerful tests.

2.2 Algorithmic problems
Many algorithmic problems are encountered when using
structural methods for diagnostic purposes. Among them,
a first class of algorithms (C1) focus on finding, within
a structural model, the subsets of equations representing
MTES [2], MSO sets [3] or FMSO sets [4].

Another class of algorithms (C2) that can be applied aim
at residual generation. Alternative approaches are available
and discussed in [5]. Some approaches propose to use data-
based method to generate residuals [6].

As many testable subsets of equations can be found in
large systems, a third algorithm class (C3) solves the prob-
lem of selecting MTES or FMSO sets to achieve diagnos-
ability requirements when used for diagnosis. We can refer
to FlexDx, proposed by [7]. Another solution is to solve a
BILP problem as in [8], or an A∗ algorithm [9]. [10] pro-
poses to use a data-driven approach for selecting the best
residuals. This class of algorithms can also be used for sen-
sor placement.

3 Structural models of water networks
Water Networks (WN) are a crucial component of each city.
It is common to simulate such networks for control and leak
detection purposes. EPANET [11] is a popular free simula-
tion software. It is relatively easy to obtain a large variety
of network data in EPANET (.inp) format.

q1
q2

q3

q4

q5

q6

q7
q8

p2 p3

p4 p5

p6 p7

p1

Figure 1: TLN network with variables’ names

Water networks can be a useful benchmark for many Fault
Detection and Isolation (FDI) algorithms based on SA, be-
cause:

• Many networks are available in .inp format (small to
very large).

• Networks without measurements are just-determined.
Adding sensors (pressure or flow), one can get any de-
gree of redundancy from 0 to the number of possible
sensors.

• EPANET .inp file can be automatically converted to
structural model (see 3.3)

• Some networks are highly connected, and complex-
ity grows rapidly with the number of junctions/pipes.
Therefore, it is challenging to find all MSO sets, even
for small networks.

• Networks can be simulated with EPANET.
• Different types of faults can be injected, the main type

being the leak. We can consider leaks in all network
junctions or any subset of those. Additionally, sensor
faults can be added.

SA methods were already applied to selected water net-
works for: sensor placement [12; 13] and distributed diag-
nosis [14].

3.1 Conversion of water network description to
structural model

To obtain the structural model of WN, the network structure
must be converted to a set of equations. The network struc-
ture is given by a graph G = (V,A), where V is the set
of vertices corresponding to network nodes and A is the set
of edges corresponding to pipes. The set of equations de-
scribing the network contains the set of pipe equations, flow
balance equations, and measurement equations. The con-
version algorithm is based on a method described in [12]
with the addition of sensors faults. The network equations
are presented following the description in [12].

The example of simple network is shown in Fig. 1 - la-
bels pi denotes pressure variables (nodes) and labels qi flow
variables (pipes).

Flow balance equations
Each network junction (graph vertex v ∈ V) represents a
pressure variable pj and a flow balance equation:

Σqi∈Qv
qi = dv, (1)

where Qv is a set of flows incoming and outgoing to the
vertex v and dv is the demand in node v.

Therefore, for each network vertex v, a structural equa-
tion is constructed eSv = {qi ∈ Qv, fv}, where fv is a fault
variable corresponding to a leak in node v. The demands are
assumed to be known and are omitted for simplicity. Con-
sider the node p2 in Fig. 1. It corresponds to the equation
eSp2

= {q1, q2, q3, fp2
}.

Pipe equations
Each graph edge ϵ represents a flow variable qϵ and the cor-
responding flow equation:

qϵ = sgn(pi − pj).c(|pi − pj |)γ (2)

where qϵ is the flow in the pipe corresponding to edge ϵ,
pi and pj are the pressures of the vertices adjacent to edge
ϵ = (vi, vj), and c and γ are parameters modelling physical
properties of the pipe.

Therefore, for each network edge ϵ, a structural equation
is constructed as eSϵ = {qϵ, pi, pj}. Consider the edge q1
in Fig. 1. It corresponds to the structural equation eSq1 =
{q1, p1, p2}.

Sensors
Each flow (corresponding to edge) and pressure (corre-
sponding to vertex) variable can be measured. For each
measured flow variable we construct the structural equation
eSqi = {qi,mqi , fmqi

}, where qi is a flow variable, mqi is a
known measurement variable and fmqi

the fault on the sen-
sor. For each measured pressure variable, we construct the
measurement equation analogously.

3.2 Networks
As a set of benchmark networks, we consider the networks
that were proposed as a benchmark for network design op-
timization problems [15] 1. The set of benchmark networks
is presented in Fig. 2.

3.3 Implementation
The source code, network input files and generated struc-
tural models are provided in a public repository2.

The program converting EPANET network files (.inp)
was implemented in Python with packages wntr (network
loading) and NetworkX (graph processing).

Exemplary .inp file for the TLN network (Fig. 1) is
shown in Fig. 3. It contains a list of network junctions
and pipes with appropriate parameters. It can also contain
tanks and pumps and additional information about simula-
tion (units, time of simulation, demand patterns). Some of
the networks were slightly modified for cooperation with
wntr package reading method (no changes in network
structure were made).

Network files were read with wntr package, converted to
NetworkX undirected graph and structural model is built
from the graph according to the method described in Sec-
tion 3.1. Model is saved in json format as a dictionary
with fields:

• model - dictionary with the equation names as keys
and the sets of variables as values

1https://emps.exeter.ac.uk/engineering/
research/cws/resources/benchmarks/
design-resiliance-pareto-fronts/data-files/

2https://github.com/asztyber/
wdn-sa-benchmark

(a) Two-loop Net-
work (TLN)

(b) Two-reservoir
Network (TRN)

(c) BakRyan Net-
work (BAK)

(d) New York Tun-
nel Network (NYT)

(e) Blacksburg Net-
work (BLA)

(f) Hanoi Network
(HAN)

(g) GoYang Net-
work (GOY)

(h) IP Fossolo Net-
work (FOS)

(i) Pescara Network
(PES)

(j) LP Modena Net-
work (MOD)

(k) Balerma Irriga-
tion Network (BIN)

(l) Exeter Network
(EXN)

Figure 2: Networks

[JUNCTIONS]
;ID Elev Demand
2 150 100;
...
6 165 330;
7 160 200;
[RESERVOIRS]
;ID Head
1 210;
[PIPES]
;ID Node1 Node2 Length Diameter
1 1 2 1000 0.0001;
2 2 3 1000 0.0001;
...
8 5 7 1000 0.0001;

Figure 3: .inp file for TLN network (dots ... denote shorten-
ing for simplicity)

{"model":
{"e0": ["q2", "q1", "q3", "f0"],
"e1": ["q2", "q7", "f1"],

...
"e6": ["q1", "f6"],
"e7": ["q2", "p2", "p3"],

...
"e14": ["q6", "p6", "p7"],
"e15": ["p1", "mp1"],
"e16": ["p2", "mp2"],

...
"e21": ["p7", "mp7"]},

"unknown": ["p1", "p2", ..., "q8"],
"known": ["mp1", "mp2", ..., "mp7"],
"faults": ["f0", "f1", ..., "f6"]}

equation name map
{"e0": "ep2", ..., "e7": "eq2", ...,
"e15": "emp1",...}
fault name map
{"f0": "fp2", ...}

Figure 4: Resulting structural model of TLN network (dots
... denote shortening for simplicity)

• unknown - list of unknown variables
• known - list of known variables
• faults - list of faults

The resulting structural model for the TLN network is
shown in Fig. 4. The naming convention is as follows:

• equations are labelled with letter e and are sequentially
numbered from 0,

• flows are labelled with letter q and a number; the num-
ber corresponds to pipe number in .inp file, i.e. q1 is
flow in a pipe with id 1,

• pressures are labelled with letter p and a number corre-
sponding to the junction number in .inp file, i.e. p1
is pressure in a junction with id 1,

• faults are labelled with letter f and are sequentially
numbered from 0,

• measurements are labelled with prefix m and variable
name.

Additionally, maps of faults and equation names are saved.
In the example in Fig. 4, e0 is the flow balance equation
in junction p2. It contains fault f0, which is a leakage in
junction p2. e7 is the equation of pipe q2, and e15 is
the measurement equation of the pressure sensor placed in
junction p1.

The exemplary usage is shown in Fig. 5. class
EpanetConverter provides the functionality of net-
work conversion to structural model and saves the re-
sults in .json file. The user should provide to the
class constructor: path to the input .inp file, list
of pressure sensors, list of flow sensors, list of nodes
with possible leaks, and boolean information if model
should contain sensor faults (sensor_faults). The
method structural_from_epanet converts the net-
work structure to the structural model and the method
save_files dumps the model and name maps into
json format. The fields model, eq_name_map and
f_name_map contain respectively structural model, equa-
tions and faults name maps.

The repository also contains exemplary Python and Mat-
lab usage of the generated structural models.

3.4 Example algorithm application
Created structural models have been analysed with the
Python interface of the Fault Diagnosis Toolbox 3 [16] and
MSOs and MTES [3] subsets of equations have been calcu-
lated. Results for different networks and sensor configura-
tions are shown in Tab. 1. Columns of the table show respec-
tively: network symbol, number of junctions |V |, number of
pipes |A|, number of pressure sensors |S|, number of faults
|f | (leakages), number of MTES and number of MSOs. In
can be noted, that the number of MSOs grows rapidly with
the number of sensors (i.e. degree of redundancy) and net-
work size. For large networks, only MTES were calculated
because MSO algorithm quickly runs out of RAM (on 8GB
machine). It shows that the proposed benchmarks are a chal-
lenge to FDI algorithms.

4 Conclusions
The benchmarks available to test algorithms from the DX
community have always been few in number, which affects
their evaluation. This work exploited an existing water dis-
tribution network repository to build a set of benchmarks

3https://faultdiagnosistoolbox.github.io/

pressure_sensors = [’1’, ’2’, ’3’]
flow_sensors = [’6’]
leaks = [’1’, ’4’, ’6’]
epn_conv = EpanetConverter(input_file_name, pressure_sensors=pressure_sensors,

flow_sensors=flow_sensors, leaks=leaks, sensor_faults=True)
epn_conv.structural_from_epanet()

epn_conv.save_files(output_folder, output_name)

Figure 5: Example usage

Name |V | |A| |S| |f | |MTES| |MSO|
TLN 7 8 7 7 7 3934
TRN 12 14 12 12 12 1558096
BAK 36 58 4 36 4035 75861
NYT 20 21 7 20 574 75695
BLA 31 35 4 31 536 3606
HAN 32 34 4 32 289 1840
GOY 23 31 4 23 677 9792
FOS 37 58 4 37 7046 131431
PES 71 99 8 22 151 -

MOD 272 317 4 55 25033 -
BIN 447 454 7 26 611 -
EXN 1893 2467 4 38 2867 -

Table 1: FMSO/MTES results

for diagnostic driven algorithms based on structural analy-
sis. These have been made available in a public repository
for use of all the community. Examples have been run both
on python and matlab code, showing benchmark flexibility.
Tests performed with large networks show that there is still
research to be done, at least for scaling up.

Acknowledgments This project is supported by ANITI
through the French ”Investing for the Future – PIA3” pro-
gram under the Grant agreement noANR-19-PI3A-0004.

References
[1] J. Cassar and M. Staroswiecki. A structural approach

for the design of failure detection and identification
systems. In IFAC Conference on Control of Industrial
Systems, vol. 30(6), pp. 841-846, 1997.

[2] J. Biteus, M. Nyberg, and E. Frisk. An algorithm for
computing the diagnoses with minimal cardinality in a
distributed system. Engineering applications of artifi-
cial intelligence, 21(2):269–276, 2008.

[3] M. Krysander, J. Åslund, and M. Nyberg. An efficient
algorithm for finding minimal overconstrained subsys-
tems for model-based diagnosis. IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems
and Humans, 38(1):197–206, 2008.

[4] C. G. Pérez, E. Chanthery, L. Travé-Massuyès, and
J. Sotomayor. Fault-driven minimal structurally
overdetermined set in a distributed context. In The
27th International Workshop on Principles of Diagno-
sis: DX-2016, 2016.

[5] J. Armengol, A. Bregón, T. Escobet, E Gelso,
M. Krysander, M. Nyberg, X. Olive, B. Pulido, and
L. Travé-Massuyès. Minimal structurally overdeter-
mined sets for residual generation: A comparison of
alternative approaches. IFAC Proceedings Volumes,
42(8):1480–1485, 2009.

[6] D. Jung. Isolation and localization of unknown faults
using neural network-based residuals. arXiv preprint
arXiv:1910.05626, 2019.

[7] M. Krysander, F. Heintz, J. Roll, and E. Frisk. Flexdx:
A reconfigurable diagnosis framework. Engineer-
ing applications of artificial intelligence, 23(8):1303–
1313, 2010.

[8] C.G. Perez-Zuniga, E. Chanthery, L. Travé-Massuyès,
and J. Sotomayor. Near-optimal decentralized diag-
nosis via structural analysis. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 2022.

[9] E. Chanthery, A. Sztyber, L. Travé-Massuyès, and
C. G. Pérez-Zuñiga. Process decomposition and test
selection for distributed fault diagnosis. In Inter-
national Conference on Industrial, Engineering and
Other Applications of Applied Intelligent Systems,
pages 914–925. Springer, 2020.

[10] D. Jung and C. Sundstrom. A combined data-driven
and model-based residual selection algorithm for fault
detection and isolation. IEEE Transactions on Control
Systems Technology, 27(2):616–630, 2017.

[11] L A. Rossman. EPANET 2 USERS MANUAL. U.S.
Environmental Protection Agency, Washington, D.C.,
2000. EPA/600/R-00/057, 2000.

[12] R. Sarrate, F. Nejjari, and A. Rosich. Sensor placement
for fault diagnosis performance maximization in Dis-
tribution Networks. 2012 20th Mediterranean Confer-
ence on Control and Automation, MED 2012 - Confer-
ence Proceedings, pages 110–115, 2012.

[13] R. Sarrate, J. Blesa, F. Nejjari, and J. Quevedo. Sen-
sor placement for leak detection and location in water
distribution networks. Water Science and Technology:
Water Supply, 14(5):795–803, 2014.

[14] V.Gupta and V. Puig. Decentralized fault diagnosis us-
ing analytical redundancy relations: Application to a
water distribution network. 2016 European Control
Conference, ECC 2016, pages 1752–1757, 2017.

[15] Q. Wang, M. Guidolin, D. Savic, and Z. Kapelan. Two-
Objective Design of Benchmark Problems of a Water
Distribution System via MOEAs: Towards the Best-
Known Approximation of the True Pareto Front. J.
of Water Resources Planning and Management, 144,
2015.

[16] E. Frisk, M. Krysander, and D. Jung. A toolbox for
analysis and design of model based diagnosis sys-
tems for large scale models. IFAC-PapersOnLine,
50(1):3287–3293, 2017. 20th IFAC World Congress.

