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Water network benchmarks for structural analysis algorithms in fault diagnosis

This paper proposes a set of network benchmarks for diagnostic driven algorithms based on structural analysis. These have been made available in a public repository for use of all the DX community.

Introduction

Structural Analysis is a powerful tool in fault diagnosis that abstracts the dynamic equations modeling the system to only the links between equations and variables. Many complex algorithms are developed to work with structural models, especially to generate sets of relations leading to diagnostic tests, i.e. Analytical Redundancy Relations or parity equations, or to select the most relevant ones. However, there is a lack of easily accessible large benchmarks for comparing and testing the algorithm's computational complexity and memory consumption. In this paper, we present a set of structural models of water distribution networks with a wide range of sizes and a Python library for easy and configurable generation of structural models from water network description.

Structural models and algorithmic problems 2.1 Structural Analysis

Structural Analysis (SA) is a general framework that can be used to analyze complex, dynamic systems. The main idea is to abstract the dynamic model of a system by just keeping the links between equations and variables. Thanks to this abstraction, SA can be applied to large-scale systems, both linear and non-linear, and even to systems for which the dynamic model and the dynamic parameters are not precisely known. SA relies on a number of very efficient tools related to graph theory [START_REF] Cassar | A structural approach for the design of failure detection and identification systems[END_REF]. It enables, from a structural model, to find the sets of equations allowing to generate diagnostic tests.

Consider a system described by a set of equations Σ(z, x, f) for which z is the vector of known (or measured) variables of a set Z, x is the vector of unknown, i.e., unmeasured variables of a set X and f is the vector of faults of a set F . Z, X, and F are respectively of cardinal n z , n x , and n f . Each equation is associated to a component of the system. The model generally represents nominal behavior, hence the violation of one equation indicates that the system is faulty and points at the responsible component.

The structural model of a system Σ(z, x, f) can be obtained by abstracting the functional equations of Σ(z, x, f) by structural equations. A structural equation e S i abstracts the links between the functional equation e i and its variables. The structural model can be represented by the incidence matrix B, whose rows are associated to equations and columns to variables. B(i, j) = 1 indicates that relation e i includes variables x j , B(i, j) = 0 otherwise.

When used for fault diagnosis, SA may determine subsets of equations that will generate diagnostic tests. The degree of redundancy of a system is defined as the difference between the number of equations and the number of unknown variables included in them. The Structurally Overdetermined (SO) subsets of equations (i.e., with more equations than unknown variables) can be used to build residual generators. Among them, the Minimal Structurally Overdetermined Sets (MSO) are very important. These sets have a structural redundancy of 1 (one more equation than unknown variables). The subset of MSOs with equations impacted by faults (FMSOs) are of particular interest because they allow the generation of a diagnostic test. Some works are also interested in Minimal Test Equation Support (MTES) because they develop more powerful tests.

Algorithmic problems

Many algorithmic problems are encountered when using structural methods for diagnostic purposes. Among them, a first class of algorithms (C1) focus on finding, within a structural model, the subsets of equations representing MTES [START_REF] Biteus | An algorithm for computing the diagnoses with minimal cardinality in a distributed system[END_REF], MSO sets [START_REF] Krysander | An efficient algorithm for finding minimal overconstrained subsystems for model-based diagnosis[END_REF] or FMSO sets [START_REF] Pérez | Fault-driven minimal structurally overdetermined set in a distributed context[END_REF].

Another class of algorithms (C2) that can be applied aim at residual generation. Alternative approaches are available and discussed in [START_REF] Armengol | Minimal structurally overdetermined sets for residual generation: A comparison of alternative approaches[END_REF]. Some approaches propose to use databased method to generate residuals [START_REF] Jung | Isolation and localization of unknown faults using neural network-based residuals[END_REF].

As many testable subsets of equations can be found in large systems, a third algorithm class (C3) solves the problem of selecting MTES or FMSO sets to achieve diagnosability requirements when used for diagnosis. We can refer to FlexDx, proposed by [START_REF] Krysander | Flexdx: A reconfigurable diagnosis framework[END_REF]. Another solution is to solve a BILP problem as in [START_REF] Perez-Zuniga | Near-optimal decentralized diagnosis via structural analysis[END_REF], or an A * algorithm [START_REF] Chanthery | Process decomposition and test selection for distributed fault diagnosis[END_REF]. [START_REF] Jung | A combined data-driven and model-based residual selection algorithm for fault detection and isolation[END_REF] proposes to use a data-driven approach for selecting the best residuals. This class of algorithms can also be used for sensor placement.

Structural models of water networks

Water Networks (WN) are a crucial component of each city. It is common to simulate such networks for control and leak detection purposes. EPANET [START_REF] Rossman | EPANET 2 USERS MANUAL[END_REF] is a popular free simulation software. It is relatively easy to obtain a large variety of network data in EPANET (.inp) format. Water networks can be a useful benchmark for many Fault Detection and Isolation (FDI) algorithms based on SA, because:

• Many networks are available in .inp format (small to very large). • Networks without measurements are just-determined.

Adding sensors (pressure or flow), one can get any degree of redundancy from 0 to the number of possible sensors. • EPANET .inp file can be automatically converted to structural model (see 3.3) • Some networks are highly connected, and complexity grows rapidly with the number of junctions/pipes. Therefore, it is challenging to find all MSO sets, even for small networks. • Networks can be simulated with EPANET.

• Different types of faults can be injected, the main type being the leak. We can consider leaks in all network junctions or any subset of those. Additionally, sensor faults can be added. SA methods were already applied to selected water networks for: sensor placement [12; 13] and distributed diagnosis [START_REF] Gupta | Decentralized fault diagnosis using analytical redundancy relations: Application to a water distribution network[END_REF].

Conversion of water network description to structural model

To obtain the structural model of WN, the network structure must be converted to a set of equations. The network structure is given by a graph G = (V, A), where V is the set of vertices corresponding to network nodes and A is the set of edges corresponding to pipes. The set of equations describing the network contains the set of pipe equations, flow balance equations, and measurement equations. The conversion algorithm is based on a method described in [START_REF] Sarrate | Sensor placement for fault diagnosis performance maximization in Distribution Networks[END_REF] with the addition of sensors faults. The network equations are presented following the description in [START_REF] Sarrate | Sensor placement for fault diagnosis performance maximization in Distribution Networks[END_REF]. The example of simple network is shown in Fig. 1 -labels p i denotes pressure variables (nodes) and labels q i flow variables (pipes).

Flow balance equations

Each network junction (graph vertex v ∈ V ) represents a pressure variable p j and a flow balance equation:

Σ qi∈Qv q i = d v , (1) 
where Q v is a set of flows incoming and outgoing to the vertex v and d v is the demand in node v. Therefore, for each network vertex v, a structural equation is constructed e

S v = {q i ∈ Q v , f v }
, where f v is a fault variable corresponding to a leak in node v. The demands are assumed to be known and are omitted for simplicity. Consider the node p 2 in Fig. 1. It corresponds to the equation e S p2 = {q 1 , q 2 , q 3 , f p2 }.

Pipe equations

Each graph edge ϵ represents a flow variable q ϵ and the corresponding flow equation:

q ϵ = sgn(p i -p j ).c(|p i -p j |) γ (2) 
where q ϵ is the flow in the pipe corresponding to edge ϵ, p i and p j are the pressures of the vertices adjacent to edge ϵ = (v i , v j ), and c and γ are parameters modelling physical properties of the pipe. Therefore, for each network edge ϵ, a structural equation is constructed as e S ϵ = {q ϵ , p i , p j }. Consider the edge q 1 in Fig. 1. It corresponds to the structural equation e S q1 = {q 1 , p 1 , p 2 }.

Sensors

Each flow (corresponding to edge) and pressure (corresponding to vertex) variable can be measured. For each measured flow variable we construct the structural equation e S qi = {q i , m qi , f mq i }, where q i is a flow variable, m qi is a known measurement variable and f mq i the fault on the sensor. For each measured pressure variable, we construct the measurement equation analogously.

Networks

As a set of benchmark networks, we consider the networks that were proposed as a benchmark for network design optimization problems [START_REF] Wang | Two-Objective Design of Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front[END_REF] 1 . The set of benchmark networks is presented in Fig. 2.

Implementation

The source code, network input files and generated structural models are provided in a public repository 2 . The program converting EPANET network files (.inp) was implemented in Python with packages wntr (network loading) and NetworkX (graph processing).

Exemplary .inp file for the TLN network (Fig. 1) is shown in Fig. 3. It contains a list of network junctions and pipes with appropriate parameters. It can also contain tanks and pumps and additional information about simulation (units, time of simulation, demand patterns). Some of the networks were slightly modified for cooperation with wntr package reading method (no changes in network structure were made).

Network files were read with wntr package, converted to NetworkX undirected graph and structural model is built from the graph according to the method described in Section 3.1. Model is saved in json format as a dictionary with fields:

• model -dictionary with the equation names as keys and the sets of variables as values {"model": {"e0": ["q2", "q1", "q3", "f0"], "e1": ["q2", "q7", "f1"], ... "e6": ["q1", "f6"], "e7": ["q2", "p2", "p3"], ... "e14": ["q6", "p6", "p7"], "e15": ["p1", "mp1"], "e16": ["p2", "mp2"], ... "e21": ["p7", "mp7"]}, "unknown": ["p1", "p2", ..., "q8"], "known": ["mp1", "mp2", ..., "mp7"], "faults": ["f0", "f1", ..., "f6"]} # equation name map {"e0": "ep2", ..., "e7": "eq2", ..., "e15": "emp1",...} # fault name map {"f0": "fp2", ...} The repository also contains exemplary Python and Matlab usage of the generated structural models.

Example algorithm application

Created structural models have been analysed with the Python interface of the Fault Diagnosis Toolbox3 [START_REF] Frisk | A toolbox for analysis and design of model based diagnosis systems for large scale models[END_REF] and MSOs and MTES [START_REF] Krysander | An efficient algorithm for finding minimal overconstrained subsystems for model-based diagnosis[END_REF] 

Conclusions

The benchmarks available to test algorithms from the DX community have always been few in number, which affects their evaluation. This work exploited an existing water distribution network repository to build a set of benchmarks 

Figure 1 :

 1 Figure 1: TLN network with variables' names

  Figure 2: Networks

Figure 3 :

 3 Figure 3: .inp file for TLN network (dots ... denote shortening for simplicity)
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 4 Figure 4: Resulting structural model of TLN network (dots ... denote shortening for simplicity)

  subsets of equations have been calculated. Results for different networks and sensor configurations are shown in Tab. 1. Columns of the table show respectively: network symbol, number of junctions |V |, number of pipes |A|, number of pressure sensors |S|, number of faults |f | (leakages), number of MTES and number of MSOs. In can be noted, that the number of MSOs grows rapidly with the number of sensors (i.e. degree of redundancy) and network size. For large networks, only MTES were calculated because MSO algorithm quickly runs out of RAM (on 8GB machine). It shows that the proposed benchmarks are a challenge to FDI algorithms.

Table 1 :

 1 FMSO/MTES resultsfor diagnostic driven algorithms based on structural analysis. These have been made available in a public repository for use of all the community. Examples have been run both on python and matlab code, showing benchmark flexibility. Tests performed with large networks show that there is still research to be done, at least for scaling up.

	pressure_sensors = ['1', '2', '3']	
	flow_sensors = ['6']			
	leaks = ['1', '4', '6']			
	epn_conv = EpanetConverter(input_file_name, pressure_sensors=pressure_sensors,
						flow_sensors=flow_sensors, leaks=leaks, sensor_faults=True)
	epn_conv.structural_from_epanet()	
	epn_conv.save_files(output_folder, output_name)
							Figure 5: Example usage
	Name	|V |	|A|	|S| |f | |M T ES| |M SO|
	TLN	7	8	7	7	7	3934
	TRN	12	14	12 12	12	1558096
	BAK	36	58	4	36	4035	75861
	NYT	20	21	7	20	574	75695
	BLA	31	35	4	31	536	3606
	HAN	32	34	4	32	289	1840
	GOY	23	31	4	23	677	9792
	FOS	37	58	4	37	7046	131431
	PES	71	99	8	22	151	-
	MOD 272	317	4	55	25033	-
	BIN	447	454	7	26	611	-
	EXN 1893 2467	4	38	2867	-

https://emps.exeter.ac.uk/engineering/ research/cws/resources/benchmarks/ design-resiliance-pareto-fronts/data-files/

https://github.com/asztyber/ wdn-sa-benchmark

https://faultdiagnosistoolbox.github.io/
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