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Abstract
Fault diagnosis is a crucial and challenging task in
the automatic control of complex systems, whose
efficiency depends on a system property called
diagnosability. Diagnosability describes the ca-
pability of a system to determine with certainty
whether a fault has effectively occurred, based on
a sequence of observations. The diagnosability
problem of discrete event systems has received
considerable attention in literature. However,
what if a system is revealed as non-diagnosable?
One classical way is to make more events ob-
servable by adding new sensors. In this paper,
we propose a new non-intrusive way to make a
non-diagnosable system diagnosable by merely
adding delay blocks on some observable events,
thus deferring their observations. As far as we
know, this is the first attempt to remove non-
diagnosability with delay blocks without using
controllable events or changing the structure of
the system. Our approach is encoded as an SMT
formula, whose efficiency is demonstrated by our
experimental results.

1 Introduction
Fault diagnosis is a crucial and challenging task in the au-
tomatic control of complex systems ([1; 2; 3; 4; 5; 6; 7;
8]), whose efficiency depends on a system property called
diagnosability. The diagnosability problem for discrete
event systems (DESs) has received considerable attention in
literature. Diagnosability describes the system’s ability to
determine whether a fault has effectively occurred based on
the observations. In a given DES, the existence of two infi-
nite behaviors, with the same observations but one contain-
ing the considered fault and not the other, called a critical
pair, is a witness of non-diagnosability. The existing work
searches for such critical pairs both in centralized ([9; 10;
11; 12; 13]) and distributed ([14; 15; 16]) ways. The most
classical method is to construct a structure called twin plant
that captures all pairs of observationally equivalent behav-
iors to directly check the existence of critical pairs.

As diagnosability is one critical property of the system,
it is important to design a diagnosable system, which will
prove to be substantially convenient for subsequent system
diagnosis. But this goal is not trivial: diagnosability is a
quite strong property, thus designed systems are very of-
ten non-diagnosable. Up to now, most work has focused

on checking diagnosability of the system, while little work
has considered improving diagnosability efficiently and eco-
nomically. It is thus interesting to study how to transform
non-diagnosable systems into diagnosable ones. One sim-
ple way is to add sensors to increase the observability of the
system. Another way relies on introducing control in order
to constrain the system’s behaviors in such a way that the al-
lowed behaviors are diagnosable. A last way is to redesign
a new system, which brings back the issue of guaranteeing
its diagnosability. All these means are costly and intrusive.

In this paper, we propose a new non-intrusive (without
changing the system’s behaviors and without adding sen-
sors) approach for this purpose by merely deferring some
observable events, while keeping the original system struc-
ture. For the sake of simplicity, this work has been con-
ducted on classical DESs, modeled by finite state automata
(FSA). We calculate a minimal set of observable events,
whose deferral can make a non-diagnosable system into a
diagnosable one, as a min-cut of the set of observable transi-
tions in the normal path (and not common to the faulty path)
of the unfolded critical pairs. We make use of the max-flow
min-cut theorem to compute by advance the minimal size of
a cut. More precisely, we adapt finite automata with time-
delay blocks (ADB) ([17]) to eliminate all existing critical
pairs witnessing non-diagnosability by taking care not to
create new ones, so that every faulty trajectory can be distin-
guished by observation from all normal ones. This computa-
tion is encoded in Satisfiability Modulo Theories (SMT), an
extended form of Boolean satisfiability (SAT), where literals
are interpreted w.r.t. a background theory. The reason that
we chose SMT instead of SAT is to make our approach ex-
tensible in order to handle timed automata in a future work.

Our contribution to the design of diagnosable DESs is
multifold. First, in order to eliminate efficiently all pairs
violating diagnosability by adding the fewest delay blocks
possible, we compute a minimal-size set of transitions in
normal trajectories according to the max-flow min-cut the-
orem, encoded in SMT. Secondly, we analyze the scope
of our approach by characterizing the systems for which it
is applicable. Thirdly, we present experimental results on
benchmarks to demonstrate the efficiency of our approach.

2 Preliminaries

In this section, after a reminder of the diagnosability for
DESs and the introduction of ADBs, we present how to use
the latter to make a non-diagnosable system diagnosable.



2.1 Diagnosability of DESs
Definition 1. (System Model) A DES is modeled as an
FSA, denoted by G = (Q,Σ, δ, q0), where:

• Q is a finite set of states;

• Σ is a finite set of events;

• δ ⊆ Q× Σ×Q is a finite set of transitions;

• q0 ∈ Q is the initial state.

The set of events Σ is divided into three disjoint parts:
Σ = Σo⊎Σu⊎Σf , where Σo is the set of observable events,
Σu the set of unobservable normal events and Σf the set of
unobservable fault events. We extend δ ⊆ Q × Σ × Q to
δ ⊆ Q× Σ⋆ ×Q in a straightforward way.

Consider the simple system model depicted in Figure 1,
where Σo = {o1, o2, o3}, Σu = {u}, Σf = {F}, and q0 is
the initial state.
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Figure 1: A system example modeled by an FSA.

Given a system model G, its prefix-closed language
L(G) ⊆ Σ⋆, which describes the normal and faulty be-
haviors of the system, is the set of words produced by G:
L(G) = {s ∈ Σ⋆ | ∃q ∈ Q, (q0, s, q) ∈ δ}. In the fol-
lowing, we call a word from L(G) a trajectory in G and
a sequence q0σ0q1σ1..., with (qi, σi, qi+1) ∈ δ for all i,
a path or run in G, whose associated trajectory is σ0σ1....
(path and trajectory are defined identically starting from
any reachable state, i.e., any state reached from q0 by a
path). A path qiσiqi+1σi+1...σmqi is called a cycle. Given
s ∈ L(G), we denote the post-language of L(G) after s
by L(G)/s, formally defined as: L(G)/s = {t ∈ Σ⋆ |
s.t ∈ L(G)}. The projection of the trajectory s to observ-
able events is denoted by P (s). These notions extend to
infinite paths and trajectories.

For the sake of simplicity, we adopt the two following
conventional assumptions.

Assumption 1: (Aliveness) From any state, there is at least
one outgoing transition. The corresponding language L(G)
is thus live.

Assumption 2: (Convergence) There is no cycle contain-
ing only unobservable events.

Intuitively, a predefined fault is diagnosable in a system
G if one can be sure of its occurrence after sufficient obser-
vations from G, whose formal definition is given as follows
( [9]), where sF denotes a trajectory s ending with fault F .

Definition 2. (Diagnosability) A fault F ∈ Σf is
diagnosable in a DES model G iff

∃k ∈ N, ∀sF ∈ L(G),∀t ∈ L(G)/sF , (|t| ≥ k ⇒
∀p ∈ L(G), (P (p) = P (sF .t) ⇒ F ∈ p)).

The above definition states that for each trajectory sF

in G, for each t that is an extension of sF with sufficient

events, every trajectory p in G that is observationally equiv-
alent to sF .t should contain F . In other words, the diag-
nosability checking consists in verifying the non-existence
of a pair of trajectories p and p′ satisfying the following
three conditions: 1) p contains F and p′ does not; 2) p and
p′ are infinite; 3) P (p) = P (p′). Such a pair is called
a critical pair ([12]), which has been proven to violate
diagnosability defined by Definition 2 and thus witnesses
non-diagnosability. In the example of Figure 1,there are
two critical pairs: CP1 = {o1.o2.F.o1ω, o1.u.o2.o1ω} and
CP2 = {o3.o2.F.o1ω, o3.o2.o1ω}. That is to say, when we
observe the sequence of events o1.o2.o1ω or o3.o2.o1ω , we
can never be sure of the occurrence of the fault as two tra-
jectories exist for which only one contains the fault, while
both have exactly this same sequence as observations.

Theorem 1. Given a system model G, a fault F in G is
diagnosable iff there is no critical pair w.r.t. F in G.

Classically, diagnosability is checked for one single fault
F (with multiple occurrences) at a time (the other fault
being thus considered as unobservable normal events), i.e.
Σf = {F}, and the approach is applied as many times as
the number of faults. Our algorithm will proceed in the
same way. From theorem 1, it is clear that making a non-
diagnosable system model diagnosable boils down to find a
way to eliminate all critical pairs without creating new ones.
We explore achieving this by just deferring some observable
events, i.e., acting only on observation transmission.

2.2 Twin plant for diagnosability checking
One classical algorithm to check the existence of critical
pairs is to construct a structure, often called twin plant in
the literature, by synchronizing normal and faulty trajecto-
ries based on observable events.

Definition 3. (Diagnoser). The diagnoser of a system
model G with a considered fault F is the automaton DG =
(QD,Σ, δD, q0D), where: 1) QD ⊆ Q×{N,F} is the set of
states; 2) Σ is the set of events of G; 3) δD ⊆ QD×Σ×QD

is the set of transitions; 4) q0D = (q0, N) is the initial
state. The transitions of δD are those ((q, ℓ), e, (q′, ℓ′)),
with (q, ℓ) reachable from q0D, such that there is a transi-
tion (q, e, q′) ∈ δ, and ℓ′ = F if ℓ = F ∨ e = F , otherwise
ℓ′ = N .
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Figure 2: Diagnoser of the system in Figure 1.

Intuitively, each state of a diagnoser is a pair of a system
state and a fault label such that the label is F when a fault
occurs on the path being considered from the initial to the
present state, N otherwise. Thus a state is split into two
states in the diagnoser if it is reachable in the system by a
path with F and by a path without F . Figure 2 shows the
diagnoser of the system depicted in Figure 1.



Next we refine the diagnoser by keeping only observable
information, which requires the following operation.
Definition 4. (ϵ-Closure). Given a FSA G = (Q,Σ, δ, q0),
its ϵ-closure w.r.t. Σd, with Σd ⊆ Σ, is ∁Σd

(G) =
(Qd,Σd, δd, q0), where: 1) Qd = {q0} ∪ {q ∈ Q | ∃s ∈
Σ∗,∃σ ∈ Σd, (q0, sσ, q) ∈ δ}; 2) (q, σ, q′) ∈ δd if σ ∈ Σd

and ∃s ∈ (Σ\Σd)
∗, (q, sσ, q′) ∈ δ.
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Figure 3: Refined diagnoser of the system in Figure 1.

The refined diagnoser is defined as the ϵ-closure of the
diagnoser w.r.t. the set of observable event Σo and denoted
by Dr

G = ∁Σo
(DG). Figure 3 shows the refined diagnoser

constructed from the diagnoser depicted in Figure 2.
Definition 5. (Twin plant). Given a system model G, its
twin plant TG is obtained by synchronizing the correspond-
ing refined diagnoser Dr

G with itself based on the set of ob-
servable events, i.e., TG = Dr

G ∥Σo Dr
G.
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Figure 4: Twin plant of the system in Figure 1.

Note that, when starting from refined diagnosers, the syn-
chronised product on observable events is just the product.
Each state of a twin plant is composed of a pair of diag-
noser states, which is called an ambiguous state if one of
the fault labels is F and the other is N . An ambiguous cycle
is one that contains only ambiguous states. Figure 4 depicts
the twin plant based on the refined diagnoser shown in Fig-
ure 3. Note that the gray nodes are ambiguous states, whose
self-cycles are thus ambiguous cycles.

As our goal is to identify all critical pairs in order to elim-
inate them later by adding delay blocks, we can further re-
duce the twin plant by retaining only its parts that are useful
for this purpose.
Definition 6. (Critical twin plant). Given a twin plant TG,
its critical version T c

G is obtained by keeping only all its
states from which an ambiguous cycle is reachable (and re-
moving possible normal cycles that could remain on paths
from the initial state to such an ambiguous cycle).

The critical twin plant T c
G obtained from the twin plant

TG of Figure 4 is shown in Figure 5. Actually the label N ,
which is not necessary for our next analysis, can be omitted.
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Figure 5: Critical twin plant of the system in Figure 1.

2.3 Automata with delay blocks (ADB)
We now introduce finite automata with delay blocks
(ADB) ([17]) by adapting them to our problem. ADB, ob-
tained by extending finite state automata with time-delay
blocks, can be used to defer some observable events. Our
idea is to use the deferral aspect of ADB to eliminate all
critical pairs in the twin plant without creating new ones, so
that every faulty trajectory can be distinguished from nor-
mal ones. Values (in time units) of delays can be in general
any natural integer but we need only 0 and 1 delays.

Definition 7. (ADB) An automaton with delay blocks
(ADB) is a quintuple B = (Q,D,Σ, δ, q0), where:

• Q is a finite set of states;

• q0 ∈ Q is the initial state;

• Σ = Σo ⊎ Σu ⊎ Σf is a finite set of events;

• D = {d0, d1} is the set of delay blocks, with respective
delays 0 and 1, where the value 1 is used to defer the
corresponding observable event by one time unit;

• δ ⊆ Q × ((Σo ×D) ⊎ (Σu ⊎ Σf )) × Q is a finite set
of transitions.

There are two kinds of transitions according to the types
of events:

• (q, σ, d, q′) ∈ δ, where σ ∈ Σo, denoting a transition
from q to q′, with the event σ whose observation is
either deferred when the associated value of the delay
block d is 1, or not otherwise.

• (q, σ, q′) ∈ δ, where σ ∈ Σu ⊎ Σf , unobserved transi-
tion without delay block.

For a finite word w, let |w| denote its length, and w[i] its
(i + 1)th element (starting from 0), if |w| > i. Given an
ADB B, its timed language L(B) is defined by:

L(B) = {w ∈ (Σ× {0, 1})∗ | ∃q ∈ Q, (q0, w, q) ∈ δ}
where the timed word w is a finite string of tuples ⟨σ, d⟩ ∈

(Σo×{0, 1})⊎ ((Σu ⊎Σf )×{0}), all unobservable events
being implicitly associated with 0. We refer to the first com-
ponent of the tuple w[i] as the event and to the second as
the timestamp, i.e., either 0 (not deferred) or 1 (deferred).

We redefine for an ADB the projection operator P of a
finite timed trajectory w on observable events. Given w,
P (w) = {P0(w), P1(w)} is made up of two sequences
of observable events in w whose timestamps are all 0 or
1, respectively. Given w and w′, P (w) = P (w′) iff
P0(w) = P0(w

′) and P1(w) = P1(w
′). We will write in

short P (w) as P0(w)#P1(w) where # denotes the demar-
cation between time slot 0 and time slot 1.

Consider the example in Figure 6, which is an ADB ex-
tended from the FSA of Figure 1. Here, the delay val-
ues for all observable transitions are 0 and omitted, ex-
cept for the transitions (q4, o2, q5) and (q0, o3, q6), where



the value is 1. In this ADB, the timed trajectories cor-
responding to CP1 are ⟨o1, 0⟩⟨o2, 0⟩⟨F, 0⟩⟨o1, 0⟩ω and
⟨o1, 0⟩⟨u, 0⟩⟨o2, 1⟩⟨o1, 0⟩ω , whose projections on observ-
able events are o1o2o1ω# and o1ω#o2 respectively, thus
distinct. And the timed trajectories corresponding to CP2

are ⟨o3, 0⟩⟨o2, 0⟩⟨F, 0⟩⟨o1, 0⟩ω and ⟨o3, 1⟩⟨o2, 0⟩⟨o1, 0⟩ω ,
whose projections on observable events are o3o2o1ω# and
o2o1ω#o3 respectively, thus distinct. So, thanks to the de-
lay blocks, F becomes diagnosable.
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Figure 6: An example of ADB from the system in Figure 1.

Note that the introduction of delay blocks changes in
general the order of observable events in a run. But it
may happen the order remains unchanged and neverthe-
less the observations can be distinguished thanks to the
timestamps that are assumed to be observed too (equiva-
lent to # being observable). For example, if the second
1-valued delay block is with the transition (q7, o1, q7) in-
stead of (q0, o3, q6), the observations of the timed trajecto-
ries corresponding to CP2 are o3o2o1ω# and o3o2#o1ω

respectively, so are distinct, though the ordered sequences
of events are the same, i.e., o3o2o1ω . Unlike P (L(G)),
the timed observation language P (L(B)) is no longer live
in general (o1n#o2 is not the prefix of o1n+1#o2), but at
least one of P0(L(B)) or P1(L(B)) is live. Note also that
the time chosen for the delay (here, one unit) plays actually
no role: more than a time-delay, it is actually a logical de-
lay. But time-delays could be useful if we would consider
time automata instead of automata. As for material imple-
mentation in a physical device, one can imagine to send
the observable events issued from the sensors equipped in
the model with a 1 delay block to a different terminal than
the default one used for communication from all other sen-
sors, being assumed that the order of observable events in a
run is respected by the communication channel to each dis-
play. When simply changing the order of observable events
is enough, implementing time-delay blocks could be done
simply by buffering the signal issued from the concerned
sensors.

3 Computing delay blocks for making a
non-diagnosable system diagnosable

Our novel diagnosable transformation approach, based on
ADBs, which delays some observations, comprises the fol-
lowing major steps:

1. Synchronizing on observable events the refined diag-
noser Dr

G with itself to get the twin plant TG, as seen
above.

2. Unfolding its critical version T c
G into a flow network

FN .

3. Calculating a constrained min-cut set of FN and
adding to each selected transition of this min-cut a 1-
valued delay block such that the corresponding critical
pairs disappear in the resulting ADB.

3.1 Unfolding twin plant into flow network
We now briefly introduce the classical notion of flow net-
work before showing how to unfold a given FSA into a
specific flow network adapted to our approach (see [18] for
more details about flow network theory).
Definition 8. (Flow network) A flow network is a directed
and connected graph FN = (V,E) with a capacity function
w assigning a nonnegative weight to each edge:

• V is the set of nodes (vertices);
• E ⊆ V × V is the set of edges;
• source node s ∈ V and target node t ∈ V are two

distinguished nodes;
• w is a function : E → R∞ = R+ ∪ {+∞}.
Given an FSA, we unfold it as a flow network, by adapt-

ing the Floyd’s cycle detection algorithm in order to link the
last node of each cycle to a newly created node, the target
node t. We just extend slightly the definition of a flow net-
work by keeping the original transition labels of the FSA in
addition to the weights. And, in our case, we give each edge
the unique weight 1 since our goal is to find a min-cut set of
all the critical pairs.

We thus unfold T c
G as a flow network FN . The way we

construct FN guarantees that any reachable cycle in T c
G is

transformed into a path reaching the target node t (note that
T c
G contains only ambiguous cycles). In other words, if we

can block (role of the min-cut set) all paths from s to t,
we can then forbid (by adding delay blocks to transitions
present in the min-cut set) all ambiguous cycles, thus all
critical pairs.

Figure 7 shows the unfolding FN of the critical twin-
plant T c

G of Figure 5.
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Figure 7: Flow network obtained by unfolding the critical
twin plant of the system in Figure 1 (all capacities equal 1).

3.2 Encoding min-cut
To reduce costs (of installing delay blocks), we want to cal-
culate a minimum number of transitions, such that adding
delay blocks to them will eliminate all existing critical pairs
simultaneously. We encode this in SMT as a min-cut prob-
lem. In graph theory, a cut of a given flow network partitions
the set of nodes into two disjoint subsets.
Definition 9. (Min-cut) Given a flow network FN =
(V,E) with the source node s and the target node t, an s-
t cut (S, T ) is a partition of V such that s ∈ S and t ∈ T .
The corresponding set of cutting edges X(S,T ) is:

X(S,T ) := (S × T ) ∩ E = {(u, v) ∈ E | u ∈ S, v ∈ T}.
The capacity c(S, T ) of a cut (S, T ) is the total weight of
the corresponding cutting edges:



c(S, T ) := Σ(u,v)∈X(S,T )
w(u, v).

A min-cut of FN is a cut whose capacity is minimum over
all cuts of FN .

For an s-t cut, if we remove all its cutting edges, no path
exists from s to t and consequently there is no positive flow
from s to t. Conversely, finding a subset of edges whose
removal interrupts the flow from s to t defines an s-t cut.

Now we show how to build an SMT formula Ψ, whose
any satisfying assignment corresponds to a cut set. Ψ is
composed of different parts to provide a comprehensive de-
scription. Given a flow network FN obtained by unfolding
an FSA as above, we first encode the essential static parts
and then the S and T sets by integers 0 and 1 through a func-
tion C : V → {0, 1}, where integer 0 encodes the nodes in
S and 1 the nodes in T .

Initialization
The source state s and the target state t should be in S and
T , respectively.

ΦInit := ((C(s) = 0) ∧ (C(t) = 1))

Uniqueness
We formalize here that every state is in S or in T . In ad-
dition, due to the way an SMT codes a function, a variable
cannot be assigned different values simultaneously, that is,
a state cannot both belong to S and T .

ΦUniqueness := (
∧

q∈V

(C(q) = 0 ∨ C(q) = 1))

Weight of the edges
The weights of the edges are valued by 1 or 0 through a
function CE : E → {0, 1}, according to their membership
to the cut set or not (remember that capacities of all edges
are equal to 1). For any edge (q, q′) ∈ E, with q ∈ S
and q′ ∈ T , this edge is in the cut set and its weight is 1.
Otherwise, its weight is 0.

ΦWeight :=
(

∧
(q,q′)∈E

(C(q) = 0 ∧ C(q′) = 1 ⇒ CE(q, q′) = 1)

∧(C(q) = 1 ∨ C(q′) = 0 ⇒ CE(q, q′) = 0))

Size of the cut
In the calculation process, at each step i, we consider a new
edge (q, q′), whose weight is added to the current flow.

ΦUpdate := ((
n−1∧
i=1

(process(i) =

(process(i− 1) + CE(q, q′)))) ∧ (process(0) = 0))

where n is the number of edges. Here the function
process(i) denotes the current number of edges in the cut
set in construction at step i, which is updated based on the
weight of the current edge (q, q′) ∈ E chosen at step i and
the previous number. This function is initialized to 0.

Bounding the size
B being a given upper-bound of the cut’s size, we are only
interested in computing a cut of size at most B.

ΦBound
B := (

n−1∧
i=0

(process(i) ≤ B))

We have formalized all conditions, whose satisfying as-
signment can be easily proved to correspond to a cut set of
size at most B. Thus we have:
ΨB := ΦInit∧ΦUniqueness∧ΦWeight∧ΦUpdate∧ΦBound

B

and the cut set corresponding to any given solution is ob-
tained as the set of the edges (q, q′) such that CE(q, q′) = 1.

Min-cut
To compute a min-cut set, we have just to iterate succes-
sive calls to the SMT solver about satisfiability of ΨB , with
B initialized to +∞ and updated before each new call to
B := M − 1, where M is the value of the size of the cut
set solution of the last call, up to an unsat answer. Then the
solution of the last successful call is a min-cut set.

SMT formula for a min-cut
Now, we can improve the computation of a min-cut by
avoiding this iteration process thanks to the use of the max-
flow min-cut theorem and of the Ford-Fulkerson algorithm.
Theorem 2. (Max-flow min-cut theorem) In a flow network,
the value of a maximum flow passing from the source node
to the target node is equal to the capacity of a min-cut.

The computation of a min-cut set is thus as follows:
(i) Pre-computing the value MF of a max-flow based on

the Ford-Fulkerson algorithm. MF is equal to the ca-
pacity of a min-cut by the max-flow min-cut theorem
and thus equal to the number of all the cutting edges.

(ii) Calculating the cutting edges of a min-cut through SMT
encoding as above by using this value MF as bound B.

Ψ := ΦInit ∧ΦUniqueness ∧ΦWeight ∧ΦUpdate ∧ΦBound
MF

Note that a min-cut set is not unique, but the formula Ψ
ensures that for every path from s to t, representing a critical
pair, at least one of its transitions will be counted in the min-
cut set. For the unfolded T c

G of the Figure 7, there are a
priori sixteen (4× 4) min-cut sets of size two (i.e., the value
of the max-flow or min-cut), corresponding to its eight (4 +
4) transitions.

3.3 Computing delay blocks
Applied to the flow network FN which is the unfold-
ing of the critical twin plant T c

G of the system G, a min-
cut set is thus made up of pairs of transitions in G, each
one corresponding to observable transitions in the faulty
path and the normal path, respectively, of some critical
pair. The idea is thus to defer the observable event in
one or the other transition of such each pair by adding to
it a 1-valued delay block. But it may happen that both
transitions of a pair are equal, what we will call a twin-
transition. This is the case of (q0, o1, q1) from the exam-
ple depicted in Figure 1, which appears twice in the transi-
tion (((q0, N), (q0, N)), o1, ((q1, N), (q1, N))) of the cor-
responding T c

G of Figure 5 and thus in the first transition
(s, o1, ((q1, N), (q1, N))) of its unfolded FN of Figure 7.
Obviously, adding a delay block to a twin-transition would
have the same deferring effect on the normal and faulty tra-
jectories of the concerned critical pair, that will thus not
be disambiguated. So, all min-cut sets containing a twin-
transition have to be discarded. For the example, it means
that min-cut sets containing the first transition of FN above
have to be discarded and thus only twelve (3 × 4) min-cut
sets remain. In practice, to avoid filtering the min-cut sets
afterwards, we use one or the other of the following equiva-
lent two methods.
(A) Eliminate the twin-transitions when constructing the

unfolding of T c
G by considering them as silent and ap-

plying the ϵ-closure (see Figure 8 (above)).
(B) Assign the weights of these twin-transitions to +∞ and

consider only those min-cut solutions whose capacity
is a finite integer (see Figure 8 (below)).
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Figure 8: Flow network of Figure 7, where common tran-
sitions are eliminated (above) or assigned infinite capacity
(below).

Now, it is reasonable, in a pair of transitions of G constitut-
ing an element of a min-cut set, to choose to add a 1-valued
delay block to the transition belonging to the normal path
(as the normal part of G is the one issued from its nominal
design). Thus a solution to our attempt to make the system
G diagnosable will be obtained from any given min-cut set
X by adding a 1-valued delay block to all the transitions in
G appearing in X as the normal components (in our case,
the second component) of the pairs of transitions it is made
up of. We denote by δX the set of these transitions:

δX = {t ∈ δ | ∃tF ∈ δ, ∃t′, t′′ ∈ δ∗ (t′′tF , t
′t) ∈ X}

where X = {e ∈ E | CE(e) = 1} in a solution of Ψ

(use of t′ and t′′ is due to the refinement process applied).
And we know by the elimination above that tF ̸= t.

Note that it may happen that two distinct transitions
of the min-cut set X have the same normal component
(this means that this normal transition appears in two
different critical pairs). Thus |δX | may be smaller than
|X|. It may also happen that two different min-cut sets
X and X ′ give rise to the same solution in terms of
transitions to be delayed: δX = δX′ . Actually, though
by construction there is no cycle in FN , which is derived
from the unfolded TC

G , it may occur cycles, and thus
several occurrences of a same transition of G, in the normal
path corresponding to a path from s to t in FN , thus
a same transition of G may appear several times as a
candidate to block some critical pair. This is the case of
the example as the two transitions ((q2, q5), o1, (q9, q5))
and ((q9, q5), o1, t) of Figure 8 give rise to the same normal
transition (q5, o1, q5) of G (see Figure 1) to delay, and the
two transitions ((q2, q7), o1, (q9, q7)) and ((q9, q7), o1, t)
give rise to the same normal transition (q7, o1, q7) of G to
delay. There are thus only six ways of adding two 1-valued
delay blocks to transitions of G to make G diagnosable:
{(q4, o2, q5), (q0, o3, q6)}, {(q4, o2, q5), (q6, o2, q7)},
{(q4, o2, q5), (q7, o1, q7)}, {(q5, o1, q5), (q0, o3, q6)},
{(q5, o1, q5), (q6, o2, q7)}, {(q5, o1, q5), (q7, o1, q7)}.
The first solution corresponds to the ADB of Figure 6.
Solving Ψ provides one of these solutions and all six can
be obtained by enumerating all solutions. Computing
the max-flow and computing a min-cut have polynomial
complexity, as all constructions above (such as the twin
plant), thus the whole method has a polynomial complexity.
It is also polynomial in the number of distinct faults, as
each fault is processed at its turn.

3.4 Diagnosability making condition
If the method above finds a solution X (a finite min-cut set)
after having dealt with twin-transitions by the method (A) or
(B) above, it is thus clear from the construction that adding
1-valued delay blocks to all transitions in δX eliminates all
critical pairs in the system G. But the method can fail to
provide a solution due to the existence of twin-transitions.
If the method (A) is used to get rid of these twin-transitions,
the method fails if and only if there is a path in FN from s
to t composed only of twin-transitions, giving thus rise after
their elimination to an empty path from s to t for which no
cut exists. If it is the method (B) which is used, then the
method fails if and only if the pre-computed value of the
max-flow equals +∞. Which means again that it exists a
path in FN from s to t composed only of twin-transitions
(of weight +∞), the only way to get an infinite flow as all
non-twin-transitions have weight 1. In this case, it is ob-
vious that is is impossible to eliminate all critical pairs by
adding delay blocks.

Now, does the elimination of all critical pairs, when possi-
ble, ensure the diagnosability of G equipped with the delay
blocks? Unfortunately, not in general, because the newly
created that way sequences of observations (i.e., contain-
ing at least one deferred observation) may create new crit-
ical pairs. But note that this can occur only in very spe-
cial cases: necessarily the faulty path of such a critical pair
has to contain a delay block, thus a transition belonging
to a normal path of some critical pair. This is the case of
the system depicted at left of Figure 9: in the only critical
pair made up of the normal path t2t3t6ω and the faulty path
t2t4t5t6ω , t2 and t6 are twin-transitions and thus the only
way to eliminate this critical pair is to add a 1-valued delay
block to transition t3, which also belongs to the faulty path
t1t3t6ω . And actually the obtained system is not diagnos-
able as this faulty path constitutes a new critical pair with
the normal path t2t3t6ω , both having now the same obser-
vation o1ω#o2. But note that we can iterate our method
from this ADB and this new critical pair: t3 and t6 are now
twin-transitions and the only solution is to add a 1-valued
delay block to transition t2. Now, t2t3t6ω has for obser-
vation o1ω#o1o2, distinguishable from o1ω#o2. And it is
easily verified that no new critical pair is created.
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Figure 9: Two systems with twin-transitions {t2, t6} and
common transitions {t2, t6, t3}, that do not satisfy the suf-
ficient condition for diagnosability. Adding a 1-valued de-
lay block to transition t3 is the only way to eliminate the
only critical pair, but the obtained system at left is still non-
diagnosable while the one at right is now diagnosable.

Thus a sufficient condition to avoid creating new critical
pairs and ensuring diagnosability is to forbid a delay block
to take place at a transition that belongs to both an infinite
normal path and an infinite faulty path, i.e., to both the nor-
mal and the faulty diagnoser, what we will call a common
transition (e.g., t3 in our example). So, we are sure that a
given solution X ensures diagnosability if X does not con-
tain any common transition. Note that we can get rid of



|Transitions| |Clauses| |Cut| SAT? Time (without MF, with (A)) Time (with MF and (A)) Time (with MF and (B))

ex1 13 79 2 Yes 10.03 7.53 8.58
ex2 213 1703 2 Yes 11.56 7.56 8.45
ex3 500 19782 2 Yes 80.23 20.44 22.34

hvac1 14 191 2 Yes 0.72 0.58 0.64
hvac2 114 1920 2 Yes 0.82 0.63 0.71
hvac3 500 8576 2 Yes 40.33 10.44 11.05
Su1 14 64 1 Yes 0.27 0.18 0.18
Su2 108 643 1 Yes 0.50 0.61 0.66
Su3 500 6753 1 Yes 18.22 9.83 10.30

Mehdi1 12 407 2 Yes 0.70 0.18 0.32
Mehdi2 116 3248 2 Yes 0.80 0.65 0.82
Mehdi3 500 8975 2 Yes 49.33 12.22 13.22
Jiang1 10 36 2 No 0.48 0.03 0.01
Jiang2 114 450 2 No 0.63 0.42 0.01
Jiang3 500 8675 2 No 28.33 9.22 4.33

Table 1: Experimental results

all common transitions in exactly the same way we did for
twin-transitions (and actually twin-transitions are common
transitions). Thus if a finite min-cut set is obtained after
this processing, we are sure the obtained system is diagnos-
able. But this condition is not necessary, as shown by the
system depicted at right of Figure 9, which does not satisfy
it and nevertheless becomes diagnosable when a 1-valued
delay block is added to t3.

Theorem 3. Given a non-diagnosable system model G, and
the flow network FN derived from its unfolded critical twin
plant T c

G after getting rid of twin-transitions (i.e., identi-
cal in the normal and faulty paths) either by eliminating
them (A) or assigning them an infinite capacity (B), all ex-
isting critical pairs of G can be suppressed by introducing
1-valued delay blocks if and only if there does not exist an
empty path from s to t (A) or, equivalently, the value MF of
the max-flow of FN is finite (B). In this case the observable
normal transitions to equip with delay blocks are given by
δX for any min-cut solution X of the SMT formula Ψ. In to-
tal, finding a solution δX or proving it does not exist is poly-
nomial in the input G. Now, a sufficient, but not necessary,
condition for such a solution δX to not create new critical
pairs, and thus to ensure diagnosability of the system ob-
tained, is that δX does not contain any common transition,
i.e., belonging to both the normal and the faulty diagnoser.
The existence of at least one such solution is thus guaran-
teed when a solution exists after getting rid of common tran-
sitions, which can be polynomially verified by method (A) or
(B) as above, by replacing twin-transitions by the larger set
of common transitions. But even when this necessary condi-
tion is not satisfied, it may happen that a solution δX with a
common transition does not create new critical pairs or that
the newly created critical pairs can be eliminated in turn by
iterating the present process a finite number of times.

The simplest prototypical case where suppressing all crit-
ical pairs is impossible that way is when G is made up of
one faulty and one unobservable transitions, both from the
initial state q0 to a state q1, followed by an observable loop
in q1, constituting thus a critical pair. The latter transition
is a twin-transition, so deferring its observable event cannot
eliminate the critical pair.

Note also that a loop of an observable transition that is
not a twin-transition, so an infinite succession of a same ob-
servable event in each path of a critical pair, does not pose
a problem only if we take care to consider timed observa-
tions, i.e., to observe also timestamps: adding a delay block
to such a transition does not change the trajectory observed

when considering only order but changes it when also con-
sidering timestamp. This is the case in our example (see
Figure 1) when adding a delay block to (q5, o1, q5) or to
(q7, o1, q7) or to both: the untimed normal trajectories re-
main identical, and the same as the untimed faulty trajecto-
ries, i.e., o1o2o1ω and o3o2o1ω , while the timed normal tra-
jectories become o1o2#o1ω and o3o2#o1ω , different from
the timed faulty trajectories o1o2o1ω# and o3o2o1ω#. In
our example, only the two first of the six solutions do not
need the observation of the timestamps, but just of the or-
der of the observable events, to make the system diagnos-
able. But for some systems, it is impossible to make them
diagnosable by simply buffering some observable events to
change their order without taking into account timestamps,
while it is possible when observing timestamps too. The
simplest prototypical case of such a system is when G is
made up of one faulty transition from the initial state q0 to
a state q1, followed by an observable loop in q1, and of one
unobservable transition from q0 to another state q2, followed
by an observable loop in q2, with the same observable event
o that in q1. Adding a 1-valued delay block to this loop
in q2 provides the normal observation #oω distinguishable
from the faulty observation oω# only if the timestamp is
observed.

4 Implementation and Validation
To show the feasibility of our approach, we implemented a
prototype using Python together with the SMT solver Z3.
All our experimental results are obtained by running our
programs on a Mac OS laptop with the processor 2.7 GHz
Intel Core i5, 8 Go 1600 MHz DDR3 of memory. Source
code and experiments are available at https://github.com/lu-
1993/Designing-DIA-via-delay-blocks.

We reported on several versions of five benchmarks from
the literature, which are all non-diagnosable DESs. The first
one, ex1, concerns the example shown in Figure 1. The sec-
ond, hvac1, is about the HVAC system from [9]. The third,
Su1, is a modified model from [19]. The fourth, Mehdi1,
is an example from [20]. And the last one, Jiang1, was
presented in [10]. Furthermore, considering that such litera-
ture examples are normally quite small, in order to study the
scalability we tested also some hand-crafted versions whose
state space was generated in a partially random way while
keeping the verdicts. They are noted with 2 and 3 subscripts.

Table 1 shows part of our experimental results: the 2nd
column gives the number of transitions in the system, the
3rd shows the size of the formula Ψ expressed by its num-



ber of clauses, the 4th is the min-cut value, which equals the
max-flow value, the 5th is the satisfiability verdict, the 6th
is the execution time in seconds when an iteration process
is applied to obtain a min-cut and method (A) is used, the
7th (resp., 8th) is the execution time when the value of the
max-flow is pre-computed and common transitions are dealt
with by the method (A) (resp., (B)). As can be seen, our ap-
proach is feasible in practice as Z3 can get the min-cut set
in the time we specified (set to 1500 seconds). In addition,
it shows that the use of the min-cut value, computed in ad-
vance as the value of the max-flow, improves the efficiency
(7th or 8th column compared to the 6th one), which justifies
our strategy of using the max-flow min-cut theorem. More-
over, using either the method (A) or the method (B) to get
rid of the common transitions provides similar efficiency,
with a small advantage to the method (A) in the SAT case.
It is worth noting that we have carefully chosen (and mod-
ified) the example Jiang1, for which our approach cannot
work for the reason explained in Section 3.4.

5 Related Work
After the diagnosability definition of DESs has been intro-
duced, a fair amount of research has dealt with how to guar-
antee this property under limited sensor capacities, which is
an important decision-making problem for automated sys-
tems. One well-known approach, called active diagnosis,
has been initially proposed by [21]. Precisely, if a given sys-
tem is not diagnosable, then a partial-observation controller
is synthesized in order to force the system to stay within a
diagnosable subset of its behaviors. An active diagnoser is
composed of the controller and the diagnoser. After that,
[22] has proposed another planning-based approach by con-
structing a twin plant. Then [8] has proved that the active di-
agnosability problem is EXPTIME-complete and proposed
a way to synthesize a memory-optimal active diagnoser.

Another way to handle this problem is to start with a large
amount of observable events such that the initial system is
diagnosable and to calculate a subset of those observable
events with minimum cardinality which ensures that the di-
agnosability property is still satisfied if all events outside
this subset are supposed to be unobservable . This problem
has been proved to be NP-complete by [23]. Then followed
some work on designing a mimimal sensor set for diagnos-
ability, that contains the original sensor set when the original
system is not diagnosable ([24; 25]). However, its cardinal-
ity could be quite large and thus not very useful in practice.

Different from the above methods, our approach is ap-
plied on the existing non-diagnosable system to make it di-
agnosable with delay blocks in a non-intrusive way, whose
complexity is polynomial.

6 Conclusion
Given a non-diagnosable system, we have shown how to
find a relatively small set of transitions such that adding
delay blocks to them can disambiguate all critical pairs, if
possible. This is encoded in SMT as a min-cut problem on
a flow network derived from the critical twin plant of the
system. We have shown the efficiency of our algorithm on
some benchmarks and how this efficiency is significantly
improved by making use of the max-flow min-cut theorem.
We have characterized the systems for which this method
succeeds and we gave a sufficient condition on the system

to ensure that it becomes diagnosable this way. Future re-
search will be devoted to find a necessary and sufficient con-
dition of diagnosability and to extend this method to the case
of timed automata, handling various event occurrence times
and using general delay blocks, with various delays com-
puted in order to eliminate all critical pairs and avoid as far
as possible creating new ones. From a practical point of
view, we will study how finding an effective way for adding
delays in the underlying system, i.e., equipping sensors with
adequate software (for example, in the system of Figure 6,
it is possible, even probable, that all o2 events labeling four
different transitions are actually produced by the same sen-
sor, in what case deferring only one of those events and not
the three others will require automaton state tracking during
the functioning of the system or adding in the model some
way of activating or not delay of an observation).
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