
HAL Id: hal-03773708
https://hal.science/hal-03773708v1

Submitted on 9 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Safety Assessment Models to Operational
Diagnosis Models

Nikolena Christofi, Xavier Pucel

To cite this version:
Nikolena Christofi, Xavier Pucel. From Safety Assessment Models to Operational Diagnosis Models.
33rd International Workshop on Principle of Diagnosis – DX 2022, LAAS-CNRS-ANITI, Sep 2022,
Toulouse, France. �hal-03773708�

https://hal.science/hal-03773708v1
https://hal.archives-ouvertes.fr

From Safety Assessment Models to Operational Diagnosis Models

Nikolena Christofi1,4 and Xavier Pucel2,3,4
1IRT Saint Exupéry, LAAS-CNRS, INSA Toulouse

2ONERA, DTIS, Toulouse, France
3Artificial and Natural Intelligence Toulouse Institute (ANITI)

4Université Fédérale de Toulouse, France
e-mail: nikolena.christofi@irt-saintexupery.com, xavier.pucel@onera.fr

Abstract
The operation of industrial systems can involve
complex procedures that must be applied within
narrow time constraints –in particular when deal-
ing with faults. The use of formal models can help
the design of these procedures and their valida-
tion, thus to assist operators. We propose to intro-
duce a new type of Operations Dedicated Model
(ODM) in the system design process, and suggest
a formalism from the Behaviour Tree family. We
assume that Safety Analysis (SA) models describe
dysfunctional aspects of the system, notably via
Fault Tree Analysis (FTA), and propose a method-
ology for creating the ODM from a Fault Tree, so
as to account for all possible fault events consid-
ered by FTA. We demonstrate this methodology
on an Unmanned Aerial Vehicle (UAV) example,
and discuss how this model improves the system’s
operations.

1 Introduction
When operating complex systems with low tolerance for
faults, such as satellites or Unmanned Aerial Vehicles
(UAVs), Fault Detection and Diagnosis (FDD) activities
must take place within a short time-frame. It is therefore
imperative that the information used by the operators to per-
form diagnosis and troubleshooting activities is well orga-
nized. Additionally, the tools used for system monitoring
should take advantage of any knowledge concerning the en-
tire system’s structure and behaviour.

System monitoring tools can be divided into two cate-
gories. On the one hand, some tools completely automate
diagnosis for some parts of the system, such as a compo-
nent, or a function. These tools can be implemented us-
ing a wide range of diagnosis techniques [1–4]. On the
other hand, some tools aim at assisting operators in their
troubleshooting tasks, by aggregating health indicators, or
providing quick access to relevant documentation. Both
types of tools, even those built on so-called data-based ap-
proaches, can only be effective when used for specific tasks,
and when the proper input information in available –that be-
ing model(s) or data. In both cases, specifying these diag-
nostic tools require dedicated views of the system. These
views shall incorporate the appropriate system information
with the defined level of detail, while keeping monitoring
and diagnosis as the main focus. An overly detailed, or un-
structured, view of the system would make the operation

model too heavy and long to exploit; if the view is too coarse
or stays only at high level, the model might lack crucial in-
formation for diagnosis.

Within the model-based trend for system development,
the authors question the current techniques used in diagnosis
during operations. We believe that the use of models shall
become imperative for system monitoring, allowing, on the
one hand, to improve operational diagnosis, and on the
other, to align diagnosis activities with formal data continu-
ity practices put forward by space companies and agencies
worldwide [5, 6]; notably Model-Based Systems Engineer-
ing (MBSE) and Model-Based Safety Assessment (MBSA).
The former contains a system’s functional description –how
the system is expected to behave under nominal conditions,
and the latter dysfunctional –how the system is expected to
behave in case of fault occurrence(s). Hence they can both
produce significant knowledge to aid operators in their FDD
tasks. Within these lines, we propose a model-based ap-
proach which uses the information included in SE/MBSE
and SA/MBSA artifact instances (i.e. data models, require-
ments documents, software or system specifications, archi-
tecture descriptions, program modules, test cases, quality
requirements) [7], to co-design a monitoring model.

In this paper, we address the problem of collecting avail-
able information from MBSE and MBSA and/or Reliabil-
ity, Availability Maintainability and Safety (RAMS) activ-
ities –the latter regarding potential failures, and produce
an Operations-Dedicated Model (ODM), which gathers the
knowledge required for diagnostics during system opera-
tion. As shown in Figure 1, we propose that ODMs are
constructed concurrently with SE and SA models and/or
documents, during the system design phase. Throughout
a classic system development cycle, system architects start
designing a system (collection of components in a defined
architecture), with the purpose that the system’s main func-
tion is accomplished. In the meantime, and based on each
released MBSE model version, the safety analysts perform
studies to ensure that the system conforms with safety con-
straints and regulations. According to our proposal, ODMs
are produced throughout the system architecture develop-
ment cycle, so that, at each design iteration, new informa-
tion is integrated in the ODMs, while, at the same time,
feedback is provided back to the system architects and
safety experts. Hence the system’s architecture –including
fault mitigation techniques, is eventually improved. ODMs
shall be created by a dedicated team of operators and/or op-
erations experts.

Essentially, our approach focuses on fault management

System Architects

MBSE models

ODMs

Operators /
Operations Experts

MBSA / RAMS
models

Safety
Analysts

interchange data
& feedback

interchange data
& feedback

provide input data
create create

create

Figure 1: ODM creation process; concurrent construction
of ODMs at system design phase, along with MBSE &
MBSA/RAMS models.

by the operators, although it does not make any distinction
between automated and manual diagnosis tasks. We assume
that Fault Trees (FTs) have been produced for various types
of feared events, and describe a methodology for building
ODMs from this type of information. These ODMs can later
be exploited to produce a tool that will support operators in
their monitoring tasks: interpreting housekeeping data, trou-
bleshooting problems, and performing system maintenance.
It can also be used to specify the interfaces and performance
requirements of automated diagnosis modules dedicated to
a specific component or function.

For the construction of ODMs, we explore BTs as the se-
lected formalism, and describe a semi-automated creation
of this model from a FT. This approach guarantees that
all faults addressed during SA activities are taken into ac-
count for the creation of the ODMs. Our semi-automated
approach takes advantage of the structured format of FTs,
to quickly create a first draft of a BT model. It then al-
lows system designers with operational experience to elicit
this model and incorporate operational information, so as to
make it more relevant and efficient.

This paper is structured as follows. First, related work is
surveyed, in particular the various model-based techniques
used in industrial system design. Secondly, the requirements
of our ODM are specified, and an appropriate variant of BT
formalism is proposed. Lastly, the proposed methodology is
illustrated on a relevant use case of a UAV system.

2 Related work
In the past decades, the thriving of information technol-
ogy favoured the development of formal methods [8, 9] in
SE and SA, including system-specific, standardised model-
ing languages, along with their accompanying methods and
tools, which, in their turn, enabled MBSE to become com-
mon practise in the industry, as well as in academia. The
implementation of model-checking techniques to systems
and assurance are associated to specific benefits [10], in-
cluding improved management of complex development, re-
duced risk in the development process, improved cost man-
agement, as well as improved design decisions.

Although with the application of MBSE operation anal-
yses are performed (among others, i.e. mission and func-
tional analyses), the models produced focus on the system
design, and not their operation. This means that SE models

are useful for designing a system able to achieve the opera-
tional objectives, however are not adapted to be used during
operations, for monitoring and diagnosis. SE models help
designers define system architecture, but not their operators.
This is the gap our ODM is going to fill.

Meanwhile, system SA techniques are also used exten-
sively during the design of safety-critical systems, and are
traditionally based on both informal and formal design mod-
els, as well as various other documents, e.g. requirements
documents [11]. A variety of methods can be used, such as
Failure Modes and Criticality Effects Analysis (FMECA),
Fault Tree Analysis (FTA) [12], Failure Logic Modelling
(FLM) [13,14], Failure Propagation Modelling (FPM) [15],
or MBSA [15, 16]. In our current approach we focus on
FTA, since it is a common methodology used in many indus-
trial applications, such as aeronautics, UAV, and aerospace
systems.

More specifically, FTA is a systematic and deductive
method which uses a diagrammatic analytical technique for
defining a single undesirable event (fault, or failure event))
and determining all possible reasons that could cause that
event to occur. The undesired event constitutes the top event
–or Feared Event (FE), of a Fault Tree (FT) diagram, and
represents a complete failure of a product or process. Feared
Events are characterised by their importance of impact to
the system itself and its environment (e.g. nature, operators,
passengers) and are more commonly divided into three cate-
gories: catastrophic, hazardous, or major. The FT segments
leading to a Feared Event define all of the things that could
go wrong (faults) to cause that particular FE. FT segments
more standardly use OR and AND gates to represent the
fault propagation logic. FTA performs a top-down (deduc-
tive) analysis, expressed by the FT, which proceeds through
successively more detailed (i.e. lower) levels of the sys-
tem design, until the probability of occurrence of the Feared
Event can be predicted in the context of its environment and
operation [17, 18].

The produced FT can eventually provide the list of mini-
mal cut sets leading to a specific FE i.e. the FT’s top event.
A minimal cut set is a group of sets consisting of the small-
est combinations of basic events which result in the occur-
rence of the top event. They represent all the ways that
the basic events can cause the top (feared) event. A basic
event is a basic initiating fault requiring no further develop-
ment [18]. In this paper we refer as “fault events” any event
mentioned in a FT, including the top event, the basic event
and intermediate events.

FTA can be applied to evaluate system reliability, to iden-
tify potential design defects and safety hazards, to simplify
maintenance and troubleshooting, to identify root causes
during a root cause failure analysis, to logically eliminate
causes for an observed failure, etc. It can also be used to
evaluate potential corrective actions or the impact of design
changes [19]. It cannot, however, be used (solely) for oper-
ational diagnosis purposes.

This is because FTA –and the rest SA methods, can point
to several fault candidates in the case of single feared events,
but it does not account for multiple feared events occurring
simultaneously. Moreover, it only performs analyses based
on the feared events identified by the safety analysts. In
reality, many unexpected events can occur during system
operation, which were not originally identified throughout
FTA.

There have been a few attempts to use SA information as
input to Model-Based Diagnosis (MDD); some work deals
with safety models [20, 21]. In our experience, the pur-
pose of SA models does not align with supporting the op-
erators, and as a consequence, SA models are not directly
usable as a source for diagnosis activities –whether auto-
mated or performed by a human operators. In our selected
use case, where we demonstrate the application of our pro-
posed method using a UAV FT as an input, we demonstrate
SA models’ inadequacy to meet operational diagnosis ob-
jectives –in contrast to ODMs.

3 ODM approach and methodology
Our approach consists in building an ODM that describes
the system’s operational procedures, with particular empha-
sis on fault diagnosis activities. In this section, we elab-
orate on the purpose of this model, its requirements, pro-
pose a variant of Behaviour Tree languages to express it,
and present a methodology to create it from a Fault Tree.

3.1 Requirements
ODMs shall contain both functional and dysfunctional sys-
tem information, necessary for operational diagnostics. In
specific, the ODM formalism shall be able to:

• combine structural (component breakdown and func-
tional description) and behavioural (functional imple-
mentation) system information;

• combine nominal and non-nominal (dysfunctional)
system information;

• integrate information using different types of data as
input;

• model operational activities;
• represent system monitoring information –account for

feared events, faults, and mitigation means such as
troubleshooting and repair.

Additional requirements which fall out of the scope of
this paper, but are considered for future work include:

• support of functional & dysfunctional system analyses,
for the amelioration of system design;

• integration within a diagnostic tool and implementa-
tion of a dedicated User Interface (UI).

This ODM shall serve a double purpose. On the one hand,
it shall include relevant system monitoring information in
order to perform automatic diagnosis and hint to a single
failure candidate. On the other, it must be easily readable
and usable by operators, in order to aid them in their trou-
bleshooting tasks. We believe that BT semantics can fulfill
both these causes; we have therefore chosen to construct
ODMs using BTs.

3.2 Behaviour Trees (BTs)
BTs offer a way to model discrete event systems. A BT
represents a set of concurrent processes, in which one pro-
cess (the tree) orchestrates the execution of a set of other
processes, which are represented by the tree leaves.

BTs have shown a lot of potential in the last decade
[22, 23], mainly with their application to robotics and Arti-
ficial Intelligence (AI) [24–26]. Initially developed within
the gaming community to replace Finite State Machines
(FSM) with more user friendly models [27], their use could

Operate
system and

mitigate fault

Operate system
(degraded mode)

Operate system
(nominal mode)

Detect fault Control system

Figure 2: The BT for a system operation with fault detection
and mitigation. Children are ordered from left to right.

be widened to the field of operational diagnosis to model,
implement and monitor the state of complex systems.
Definition 1 (Behaviour Tree (BT)). A Behaviour Tree (BT)
is a tuple ⟨B, root , children⟩ where B is a set of behaviours,
root ∈ B is the root behaviour, and children : B → B∗ is
a function which associates each behaviour with an ordered
(and possibly empty) list of children behaviours.

In a BT, each behaviour has exactly one parent –except
the root behaviour, which has no parent.

Figure 2 illustrates a BT, in which the root behaviour is
named “Operate system and mitigate fault”. Its children are
named “Operate system (nominal mode)” and “Operate sys-
tem (degraded mode)”; the former has children behaviours,
while the latter is a leaf behaviour. Each behaviour is com-
posed of its children.
Definition 2 (Behaviour status). The set of possi-
ble statuses for behaviours is the finite set S =
{IDLE, RUNNING, SUCCESS, FAILED}.

At each instant in the execution of a BT, the state of the
BT is a function state : B → S , which associates a status
to each behaviour in the tree.

A behaviour whose status is not RUNNING can be started
by its parent, and its status then becomes RUNNING. A
running behaviour can be interrupted by its parent; its sta-
tus then becomes IDLE. A running behaviour can also au-
tonomously change its status to SUCCESS or FAILED.

Leaf behaviours are used to represent the actual activities
implemented by the system, under the form of concurrent
processes. Their execution is orchestrated by their parent
behaviours, which are usually picked among a set of prede-
fined composite behaviours.

We use four predefined types of composite behaviours:
SEQUENCE, FALLBACK, PARALLELALL and PARALLE-
LANY.
Definition 3 (Sequence behaviour). When a Sequence be-
haviour starts, it starts its first child. When the currently
running child succeeds, the Sequence behaviour starts its
next child, or succeeds if it is the last child. If any child
behaviour fails, the Sequence behaviour fails at the same
instant. In this paper Sequence behaviours are drawn with
gray signal shapes .

Definition 4 (Fallback behaviour). When a Fallback be-
haviour starts, it starts its first child. When the currently

running child fails, the Fallback behaviour starts its next
child, or fails if it is the last child. If any child behaviour
succeeds, the Fallback behaviour succeeds at the same in-
stant. In this paper Fallback behaviours are drawn with
gray octagon shapes .

Sequence and Fallback behaviours have at most one run-
ning child at each instant.
Definition 5 (ParallelAll behaviour). When a ParallelAll
behaviour starts, it starts all its children in parallel. It suc-
ceeds if and only if all its children have succeeded. If one
child fails, ParallelAll behaviour fails and interrupts the rest
of the children. In this paper, ParallelAll behaviours are rep-
resented by gray ∧-shaped trapezia .
Definition 6 (ParallelAny behaviour). When a ParallelAny
behaviour starts, it starts all its children in parallel. It fails
once all its children have failed. If one child succeeds, Par-
allelAny behaviour succeeds and interrupts the rest of the
children. We represent ParallelAny behaviours by ∨-shaped
gray trapezia .
Definition 7 (Inverter behaviour). An Inverter behaviour
has exactly one child. It starts its child when it starts, and is
running when its child is running; succeeds when its child
fails, and fails when its child succeeds. We represent Invert-
ers by triangle arrow decorations .

In addition to composite behaviours, we introduce stan-
dard behaviours related to fault diagnosis.
Definition 8 (Fault detection behaviour). A Detect be-
haviour is an atomic behaviour dedicated to detecting a
fault. In this behaviour, success means that it has detected
the fault. Otherwise, it stays in the running mode and never
fails. Fault detection behaviours are represented by dia-
monds .

In Figure 2, the semantics of the BT are as follows. The
top-most behaviour is a fallback, i.e. it tries to run its first
child, and in case of failure, falls back to its next child. In
this instance, the first behaviour executed is “Operate sys-
tem (nominal mode)”. The nominal mode is implemented
by a ParallelAll behaviour, that runs the inverted “Detect
fault” and “Control system” behaviours in parallel. When
a fault is detected, the “Detect fault” succeeds, so its in-
verter fails, and thus the whole nominal mode behaviour
fails, which interrupts the “Control system” behaviour. Sim-
ilarly, if the “Control system” fails for some internal reason,
the nominal mode fails and interrupts the “Detect fault” be-
haviour as a result. When the nominal mode fails, the root
fallback behaviour starts the “Operate system (degraded
mode)” behaviour.

Finally, our methodology uses a type of behaviours that
can be either atomic or composite, but their semantic is de-
fined with respect to a specific fault event.
Definition 9 (Fault event avoidance behaviour). A Fault
event avoidance behaviour is a behaviour that should fail
when the fault event occurs, and never succeed. It can be
atomic or composite. In this paper, all behaviours whose
names start with “Avoid” are Fault event avoidance be-
haviours.

Fault event avoidance behaviours are always associated
with a fault event from a FT. These fault events represent
the failure of a function or of a failure detection mechanism.
Thus they do not always make sense from an operational
point of view. Fault event avoidance behaviours are merely

an artifact used as a temporary translation between the FT
and the ODM. Moreover, in a composite fault avoidance
behaviour, its children must be compatible with the fault
avoidance specification, otherwise the BT is invalid, and its
semantic hence undefined.

In this paper, for illustrative purposes, we assume that all
fault events can be detected or mitigated, hence included
in the ODM as their corresponding operational activities.
However, in general FTs may contain fault events that can-
not be detected nor mitigated, and therefore cannot be trans-
lated into any behaviour. In this sense, FTs can contain in-
formation irrelevant to operations. This is why we propose
to construct ODMs from BTs in several steps, since (i) an
FT cannot consist an ODM as is, and (ii) new information
must to be elicited –in combination with FT data, so as to
create a coherent and useful ODM.

3.3 Methodology
Our methodology for obtaining a BT –which constitutes our
ODM, is composed of two steps:

1. Translate each FT into a BT. This step is automated;
the purpose is to provide a first draft which accounts
for all the faults that can affect the system.

2. Elicit the BTs to create a single BT, in which each be-
haviour represents an actual activity in operations. This
step i.e. merging BTs into a single BT manually to then
improve it based on one’s knowledge and experience, is
performed manually by a person with modelling skills,
but more importantly, with operational experience e.g.
operator/operations expert.

During the first step, the FT is transformed into a BT as
follows.

Definition 10 (Fault tree transform FT2BT). The trans-
form of a FT into a BT is implemented by the function
FT2BT defined on FT nodes as follows:

• If FTN is a basic event named “Fault event X”,
then FT2BT (FTN) is an atomic fault avoidance be-
haviour named “Avoid fault event X”.

• If FTN is an AND gate labelled “Fault event
X” with children nodes FTN1, FTN2, . . . , then
FT2BT (FTN) is a ParallelAny behaviour named
“Avoid fault event X”, with children behaviours
FT2BT (FT1), FT2BT (FT2),

• If FTN is an OR gate labelled “Fault event X” with
children nodes FT1, FT2, . . . , then FT2BT (FTN)
is a ParallelAll behaviour named “Avoid fault
event X”, with children behaviours FT2BT (FT1),
FT2BT (FT2),

The second step of our methodology is performed man-
ually, whilst following several general guidelines. In many
instances, a behaviour named “Avoid something negative”
does not represent a real activity in the system. The purpose
of this step is to replace these unrealistic behaviours with
other behaviours which account for:

• Fault tolerance and robust control.

• Fault mitigation activities.

• The fact that some activities occur in a predetermined
sequence.

• The fact that some faults may have different observable
effects depending on the system configuration, or its
operational phase.

One important aspect of this step is that every transforma-
tion is documented and justified. This guarantees that every
fault event considered in the FT is either directly accounted
for in the BT, or handled by one or several precisely identi-
fied behaviours.

3.4 Example
We illustrate our approach with a FT produced for a UAV
mission. It addresses the FE of crash landing due to a fault
occurred within the Power Supply (PS) subsystem.

The UAV has several procedures for mitigating faults.
First, it can perform a contingency landing, which is a con-
trolled landing at a predefined location. Secondly, it can
use the Flight Termination System (FTS), which deploys a
parachute that slows down the UAV, so that it crashes with a
ground speed as limited as possible.

There exist various faults that can lead to a crash landing.
They are all modelled in this paper as a degradation of the
PS, with varying severity. Plenty detection capabilities are
associated to these faults, both on-board and at the control
station, from where the pilot operates the UAV.

The UAV implements a fault escalation strategy: a low-
criticality fault occurring but staying undetected or un-
mitigated, transforms into a higher-criticality event. The
highest-criticality event is the FE itself, i.e. the crash land-
ing. The FT we take as input for our ODM creation method-
ology is depicted in Figure 3. It has 6 basic events:

• Critical PS failure: a fault occurs in the PS in a way
that completely shuts down its function.

• Major PS failure: a fault occurs in the PS in a way that
significantly alters its function.

• Contingency landing failure: something goes wrong
during the contingency landing procedure, e.g. an ad-
ditional degradation of the PS, or an actuator failure,
etc. This makes it impossible to carry out the proce-
dure.

• UAV detection failure: the automatic fault detection
mechanism on-board the UAV does not detect that the
PS is faulty.

• Communication failure: the information that would let
the pilot know that the PS is faulty is not communicated
from the UAV to the pilot.

• Pilot monitoring failure: the pilot fails to realise some-
thing is wrong with the PS, even though they have all
necessary information in order to detect the fault.

The other nodes in the FT represent how the individual
faults can be combined to escalate into the FE.

The first draft of the ODM, shown in Figure 4, is obtained
by applying the transformation FT2BT to the FT depicted
in Figure 3. One can observe that the result is a straightfor-
ward reformulation of the FT into a hierarchical fault man-
agement behaviour.

We depict in Figure 5 what the ODM would look like
if the operator applied the following elicitation steps to the
first BT:

1. Behaviour “Avoid Emergency landing cause PS” in-
volves a mitigation measure (the FTS). So we replace

Emergency land-
ing cause PS

Activate Flight
Termination System

due to critical
battery failure

Critical PS failure
Critical degra-
dation of PS

Unhandled Ma-
jor PS failure

Major PS fail-
ure occured and
is not mitigated

Major PS failure

Major degra-
dation of PS

Mitigation mea-
sure failure

Failure to mitigate
major PS failure

Contingency
landing failure

Failure of the
contingency landing
mitigation measure

Detection failure
Failure of major PS

detection mechanisms

UAV detection failure
Onboard detection

mechanism fails to de-
tect a major PS failure

Pilot detection failure
Pilot cannot detect
major PS failure

Communication failure
Loss of communi-
cation with UAV

Pilot moni-
toring failure

Pilot has the infor-
mation to detect a

major PS failure but
does not realize it

Figure 3: FT leading to the emergency landing of a UAV
due to an unmitigated PS failure (feared event).

Avoid Emer-
gency landing

cause PS

Avoid Critical
PS failure

Avoid Unhan-
dled Major
PS failure

Avoid Major
PS failure

Avoid Miti-
gation mea-
sure failure

Avoid Detec-
tion failure

Avoid Con-
tingency

landing failure

Avoid Pilot
detection failure

Avoid UAV
detection failure

Avoid Commu-
nication failure

Avoid Pilot
monitor-

ing failure

Figure 4: First version of the BT, derived automatically from
the FT diagram (Figure 3).

Operate UAV
with Critical

PS faults

Activate FTS
Operate UAV

without critical
PS faults

Detect
critical

PS faults

Operate UAV
with major
PS faults

Operate UAV
without major

PS faults

Perform
Contingency

Landing

Detect major
PS failure

Control UAV

Detect faults in
detection system

Detect faults
in UAV

detection

Detect faults in
pilot detection

Detect
communi-
cation fault

Validate
pilot inputs

Figure 5: Second version of the BT, derived from eliciting
the first version (Figure 4).

it with the fault mitigation pattern depicted in Figure 2.
The topmost behaviour is called “Operate UAV with
Critical PS faults”; the nominal mode is called “Op-
erate UAV without Critical PS faults”; the degraded
mode is “Activate FTS”.

2. Behaviour “Avoid Critical PS failure” is replaced with
the fault detection behaviour from the critical fault mit-
igation pattern, called “Detect critical PS faults”.

3. Behaviour “Avoid Unhandled Major PS failure” takes
place of the control behaviour is the critical fault miti-
gation pattern.

4. In addition, behaviour “Avoid Unhandled Major PS
failure” also involves a mitigation measure (contin-
gency landing). So we also replace it with the miti-
gation pattern of Figure 2. The topmost behaviour is
called “Operate UAV with major PS faults”, the nom-
inal mode is named “Operate UAV without major PS
faults”, and the degraded mode is called “Perform Con-
tingency landing”. The command behaviour is named
“Control UAV”.

5. Behaviour “Avoid Mitigation measure failure” is part
of the major fault mitigation pattern, and is deleted.

6. Behaviour “Avoid Detection failure” is the most deli-
cate one: fault detection mechanisms may fail them-
selves, but the question is whether there exists a mon-
itoring activity for these mechanisms. In this instance,
we decide that if we lose communication, detect that
the UAV cannot detect major PS faults anymore, or
suspect the pilot in incapacitated, we try a contingency
landing. So “Avoid Detection failure” is transformed
into a “Detect faults in detection system” that is a sib-
ling (and thus has the same effect) as “Detect major PS
failure”.

7. Behaviour “Avoid UAV detection failure” is trans-
formed into a fault detection behaviour, and renamed
as “Detect faults in UAV detection”.

8. Behaviour “Avoid Pilot detection failure” is trans-
formed into a fault detection behaviour, and renamed
“Detect faults in pilot detection”, and is left as a Paral-
lelAll behaviour.

9. Communications failures cannot be prevented nor mit-
igated, we can only detect them. So behaviour
“Avoid Communication failure” becomes a detection
behaviour “Detect communication fault”.

10. Behaviour “Avoid Pilot monitoring failure” consists in
validating the orders sent from the pilot. It is trans-
formed into an atomic behaviour named “Validate pilot
inputs”. Note that if the pilot sends absurd orders, the
“Validate pilot inputs” fails. However, since its parent
is a fault detection behaviour, fault occurrences should
be a success. Thus, we invert the outcome of the “Val-
idate pilot inputs” behaviour.

Note that at step 6, our methodology led us to discover
that some cases were not covered by the system specifi-
cation. Namely, in case of a failure in the fault detection
mechanisms, it was not specified whether we can detect it,
and what the corrective action should be. This demonstrates
that the use of an ODM can help improve the design of the
whole system.

4 Model exploitation
In the sections above we discussed the steps towards the
construction of an ODM. The purpose of this model is to
account for systems’ operations as early as possible during
the system design.

There are several ways to exploit the ODM in order to
improve the final system. First, the ODM can be used to
feed a visual BT monitoring tool. This is useful for systems
such as satellites that can be operated from various ground
stations. The status of each behaviour in the BT indicates
in which operational mode the system is –and why, and
which operations are currently ongoing. Secondly, verifica-
tion and validation techniques –including model checking,
can be applied to the ODM, as well as cross-validation with
other MBSE and MBSA models.

5 Conclusion
In this paper we address the need to account for operations
during a system’s design. We propose an approach based on
an Operations-Dedicated Model (ODM), and suggest Be-
haviour Trees (BTs) to express this model. We presented
formal semantics for the BT nodes, including nodes which
are not present in classical BT libraries. We also introduce a
novel methodology to create this ODM from a Fault Tree
(FT), obtained through standard Safety Assessment (SA)
techniques.

To that end, we demonstrate our approach on a UAV use
case, focusing on faults in the power supply subsystem. We
demonstrate that our methodology is applicable and that it
leads to a BT which represents the system’s operation in a
way that it accounts for all fault events mentioned in the FT.
We noted that the failure of fault detection mechanisms can
be more difficult to integrate in operations, than the failure
of the functions themselves.

Our belief that the ODM can actually improve the design
of an industrial system remains to be demonstrated, for ex-
ample through interviews with system operators.

6 Acknowledgements
The authors would like to thank all individuals, companies
and research institutes involved in the S2C project of IRT
Saint Exupéry and in particular, Airbus Defence and Space
for proposing and funding this research topic. This work is
supported by the French Research Agency (ANR).

The authors also warmly thank Kevin Delmas (ONERA,
DTIS) for providing a perfectly sized and realistic fault tree
extracted from a UAV infrastructure inspection project.

References
[1] Zhiwei Gao, Carlo Cecati, and Steven X Ding.

A survey of fault diagnosis and fault-tolerant tech-
niques—part i: Fault diagnosis with model-based and
signal-based approaches. IEEE transactions on indus-
trial electronics, 62(6):3757–3767, 2015.

[2] M-O Cordier, Philippe Dague, François Lévy, Jacky
Montmain, Marcel Staroswiecki, and Louise Travé-
Massuyès. Conflicts versus analytical redundancy re-
lations: a comparative analysis of the model based di-
agnosis approach from the artificial intelligence and
automatic control perspectives. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics),
34(5):2163–2177, 2004.

[3] Johan de Kleer and James Kurien. Fundamentals of
model-based diagnosis. IFAC Proceedings Volumes,
36(5):25–36, 2003. 5th IFAC Symposium on Fault De-
tection, Supervision and Safety of Technical Processes
2003, Washington DC, 9-11 June 1997.

[4] Yaguo Lei, Bin Yang, Xinwei Jiang, Feng Jia, Naipeng
Li, and Asoke K. Nandi. Applications of machine
learning to machine fault diagnosis: A review and
roadmap. Mechanical Systems and Signal Processing,
138:106587, 2020.

[5] Harald Van der Werff and Freek Van der Meer.
Sentinel-2a msi and landsat 8 oli provide data conti-
nuity for geological remote sensing. Remote Sensing,
8(11), 2016.

[6] James R. Irons, John L. Dwyer, and Julia A. Barsi.
The next landsat satellite: The landsat data continuity
mission. Remote Sensing of Environment, 122:11–21,
2012. Landsat Legacy Special Issue.

[7] Manfred Broy. A logical approach to systems en-
gineering artifacts: semantic relationships and de-
pendencies beyond traceability—from requirements to
functional and architectural views. Software & Sys-
tems Modeling, 17(2):365–393, may 2018.

[8] Dr Mike Hinchey, Caroline Wang, and Josh Mc-
Neil. Formal Methods for System/Software Engineer-
ing: NASA & Army Experiences. Formal Methods,
page 22, 2011.

[9] C. Seidner and O.H. Roux. Formal Methods for Sys-
tems Engineering Behavior Models. IEEE Transac-
tions on Industrial Informatics, 4(4):280–291, novem-
ber 2008.

[10] John W. Evans, Steven L. Cornford, David Kotsifakis,
Tim Crumbley, and Martin S. Feather. Enabling assur-
ance in the mbse environment. In 2020 Annual Relia-
bility and Maintainability Symposium (RAMS), pages
1–7, 2020.

[11] A. Joshi, S.P. Miller, M. Whalen, and M.P.E. Heim-
dahl. A proposal for model-based safety analysis. In
24th Digital Avionics Systems Conference, volume 2,
pages 13 pp. Vol. 2–, 2005.

[12] Oleg Lisagor. Failure logic modelling: a pragmatic
approach. PhD thesis, University of York, 2010.

[13] Oleg Lisagor, Linling Sun, and Tim Kelly. The illusion
of method: Challenges of model-based safety assess-
ment. In 28th international system safety conference
(ISSC), 2010.

[14] Yiannis Papadopoulos, Martin Walker, David Parker,
Erich Rüde, Rainer Hamann, Andreas Uhlig, Uwe
Grätz, and Rune Lien. Engineering failure analysis
and design optimisation with hip-hops. Engineering
Failure Analysis, 18(2):590–608, 2011.

[15] S-18 Aircraft, Sys Dev, and Safety Assessment Com-
mittee. Guidelines and methods for conducting the
safety assessment process on civil airborne systems
and equipment, page 331. SAE International, 1996.

[16] Oleg Lisagor, Tim Kelly, and Ru Niu. Model-based
safety assessment: Review of the discipline and its
challenges. In The Proceedings of 2011 9th Interna-
tional Conference on Reliability, Maintainability and
Safety, pages 625–632, 2011.

[17] Duane Kritzinger. Fault tree analysis. In Duane
Kritzinger, editor, Aircraft System Safety, chapter 4,
pages 59–99. Woodhead Publishing, 2017.

[18] Yong Bai and Qiang Bai. Subsea risk and reliability. In
Yong Bai and Qiang Bai, editors, Subsea Engineering
Handbook (Second Edition), chapter 10, pages 239–
261. Gulf Professional Publishing, Boston, second edi-
tion edition, 2019.

[19] Frank Wabnitz and Houston Netherland. Use of relia-
bility engineering tools to enhance subsea system reli-
ability. In Offshore Technology Conference. OnePetro,
2001.

[20] Yannick Pencolé, Elodie Chanthery, and Thierry
Peynot. Definition of model-based diagnosis problems
with altarica. In 27th International Workshop on Prin-
ciples of Diagnosis (DX-2016), page 8p, 2016.

[21] Fabien Kuntz, Stéphanie Gaudan, Christian San-
nino, Éric Laurent, Alain Griffault, and Gérald Point.
Model-based diagnosis for avionics systems using
minimal cuts. In DX 2011, pages 138–145, 2011.

[22] Michele Colledanchise and Petter Ögren. How Behav-
ior Trees modularize robustness and safety in hybrid
systems. In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1482–1488,
September 2014. ISSN: 2153-0866.

[23] Michele Colledanchise, Alejandro Marzinotto, Di-
mos V. Dimarogonas, and Petter Oegren. The Advan-
tages of Using Behavior Trees in Mult-Robot Systems.
In Proceedings of ISR 2016: 47st International Sym-
posium on Robotics, pages 1–8, June 2016.

[24] Andreas Klöckner. Interfacing Behavior Trees with the
World Using Description Logic. In AIAA Guidance,
Navigation, and Control (GNC) Conference, Guid-
ance, Navigation, and Control and Co-located Confer-
ences. American Institute of Aeronautics and Astro-
nautics, August 2013.

[25] Francesco Rovida, Bjarne Grossmann, and Volker
Krüger. Extended behavior trees for quick definition of
flexible robotic tasks. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 6793–6800, September 2017. ISSN: 2153-0866.

[26] Michele Colledanchise, Ramviyas Parasuraman, and
Petter Ögren. Learning of Behavior Trees for Au-
tonomous Agents. IEEE Transactions on Games,
11(2):183–189, June 2019. Conference Name: IEEE
Transactions on Games.

[27] Michele Colledanchise and Petter Ögren. How Be-
havior Trees Modularize Hybrid Control Systems and
Generalize Sequential Behavior Compositions, the
Subsumption Architecture, and Decision Trees. IEEE
Transactions on Robotics, 33(2):372–389, April 2017.
Conference Name: IEEE Transactions on Robotics.

