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From Safety Assessment Models to Operational Diagnosis Models

The operation of industrial systems can involve complex procedures that must be applied within narrow time constraints -in particular when dealing with faults. The use of formal models can help the design of these procedures and their validation, thus to assist operators. We propose to introduce a new type of Operations Dedicated Model (ODM) in the system design process, and suggest a formalism from the Behaviour Tree family. We assume that Safety Analysis (SA) models describe dysfunctional aspects of the system, notably via Fault Tree Analysis (FTA), and propose a methodology for creating the ODM from a Fault Tree, so as to account for all possible fault events considered by FTA. We demonstrate this methodology on an Unmanned Aerial Vehicle (UAV) example, and discuss how this model improves the system's operations.

Introduction

When operating complex systems with low tolerance for faults, such as satellites or Unmanned Aerial Vehicles (UAVs), Fault Detection and Diagnosis (FDD) activities must take place within a short time-frame. It is therefore imperative that the information used by the operators to perform diagnosis and troubleshooting activities is well organized. Additionally, the tools used for system monitoring should take advantage of any knowledge concerning the entire system's structure and behaviour.

System monitoring tools can be divided into two categories. On the one hand, some tools completely automate diagnosis for some parts of the system, such as a component, or a function. These tools can be implemented using a wide range of diagnosis techniques [START_REF] Gao | A survey of fault diagnosis and fault-tolerant techniques-part i: Fault diagnosis with model-based and signal-based approaches[END_REF][START_REF] Cordier | Conflicts versus analytical redundancy relations: a comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspectives[END_REF][START_REF] De | Fundamentals of model-based diagnosis[END_REF][START_REF] Lei | Applications of machine learning to machine fault diagnosis: A review and roadmap[END_REF]. On the other hand, some tools aim at assisting operators in their troubleshooting tasks, by aggregating health indicators, or providing quick access to relevant documentation. Both types of tools, even those built on so-called data-based approaches, can only be effective when used for specific tasks, and when the proper input information in available -that being model(s) or data. In both cases, specifying these diagnostic tools require dedicated views of the system. These views shall incorporate the appropriate system information with the defined level of detail, while keeping monitoring and diagnosis as the main focus. An overly detailed, or unstructured, view of the system would make the operation model too heavy and long to exploit; if the view is too coarse or stays only at high level, the model might lack crucial information for diagnosis.

Within the model-based trend for system development, the authors question the current techniques used in diagnosis during operations. We believe that the use of models shall become imperative for system monitoring, allowing, on the one hand, to improve operational diagnosis, and on the other, to align diagnosis activities with formal data continuity practices put forward by space companies and agencies worldwide [START_REF] Van Der Werff | Sentinel-2a msi and landsat 8 oli provide data continuity for geological remote sensing[END_REF][START_REF] Irons | The next landsat satellite: The landsat data continuity mission[END_REF]; notably Model-Based Systems Engineering (MBSE) and Model-Based Safety Assessment (MBSA). The former contains a system's functional description -how the system is expected to behave under nominal conditions, and the latter dysfunctional -how the system is expected to behave in case of fault occurrence(s). Hence they can both produce significant knowledge to aid operators in their FDD tasks. Within these lines, we propose a model-based approach which uses the information included in SE/MBSE and SA/MBSA artifact instances (i.e. data models, requirements documents, software or system specifications, architecture descriptions, program modules, test cases, quality requirements) [START_REF] Broy | A logical approach to systems engineering artifacts: semantic relationships and dependencies beyond traceability-from requirements to functional and architectural views[END_REF], to co-design a monitoring model.

In this paper, we address the problem of collecting available information from MBSE and MBSA and/or Reliability, Availability Maintainability and Safety (RAMS) activities -the latter regarding potential failures, and produce an Operations-Dedicated Model (ODM), which gathers the knowledge required for diagnostics during system operation. As shown in Figure 1, we propose that ODMs are constructed concurrently with SE and SA models and/or documents, during the system design phase. Throughout a classic system development cycle, system architects start designing a system (collection of components in a defined architecture), with the purpose that the system's main function is accomplished. In the meantime, and based on each released MBSE model version, the safety analysts perform studies to ensure that the system conforms with safety constraints and regulations. According to our proposal, ODMs are produced throughout the system architecture development cycle, so that, at each design iteration, new information is integrated in the ODMs, while, at the same time, feedback is provided back to the system architects and safety experts. Hence the system's architecture -including fault mitigation techniques, is eventually improved. ODMs shall be created by a dedicated team of operators and/or operations experts.

Essentially, our approach focuses on fault management by the operators, although it does not make any distinction between automated and manual diagnosis tasks. We assume that Fault Trees (FTs) have been produced for various types of feared events, and describe a methodology for building ODMs from this type of information. These ODMs can later be exploited to produce a tool that will support operators in their monitoring tasks: interpreting housekeeping data, troubleshooting problems, and performing system maintenance. It can also be used to specify the interfaces and performance requirements of automated diagnosis modules dedicated to a specific component or function.

For the construction of ODMs, we explore BTs as the selected formalism, and describe a semi-automated creation of this model from a FT. This approach guarantees that all faults addressed during SA activities are taken into account for the creation of the ODMs. Our semi-automated approach takes advantage of the structured format of FTs, to quickly create a first draft of a BT model. It then allows system designers with operational experience to elicit this model and incorporate operational information, so as to make it more relevant and efficient.

This paper is structured as follows. First, related work is surveyed, in particular the various model-based techniques used in industrial system design. Secondly, the requirements of our ODM are specified, and an appropriate variant of BT formalism is proposed. Lastly, the proposed methodology is illustrated on a relevant use case of a UAV system.

Related work

In the past decades, the thriving of information technology favoured the development of formal methods [START_REF] Dr | Formal Methods for System/Software Engineering: NASA & Army Experiences[END_REF][START_REF] Seidner | Formal Methods for Systems Engineering Behavior Models[END_REF] in SE and SA, including system-specific, standardised modeling languages, along with their accompanying methods and tools, which, in their turn, enabled MBSE to become common practise in the industry, as well as in academia. The implementation of model-checking techniques to systems and assurance are associated to specific benefits [START_REF] Evans | Enabling assurance in the mbse environment[END_REF], including improved management of complex development, reduced risk in the development process, improved cost management, as well as improved design decisions.

Although with the application of MBSE operation analyses are performed (among others, i.e. mission and functional analyses), the models produced focus on the system design, and not their operation. This means that SE models are useful for designing a system able to achieve the operational objectives, however are not adapted to be used during operations, for monitoring and diagnosis. SE models help designers define system architecture, but not their operators. This is the gap our ODM is going to fill.

Meanwhile, system SA techniques are also used extensively during the design of safety-critical systems, and are traditionally based on both informal and formal design models, as well as various other documents, e.g. requirements documents [START_REF] Joshi | A proposal for model-based safety analysis[END_REF]. A variety of methods can be used, such as Failure Modes and Criticality Effects Analysis (FMECA), Fault Tree Analysis (FTA) [START_REF] Lisagor | Failure logic modelling: a pragmatic approach[END_REF], Failure Logic Modelling (FLM) [START_REF] Lisagor | The illusion of method: Challenges of model-based safety assessment[END_REF][START_REF] Papadopoulos | Engineering failure analysis and design optimisation with hip-hops[END_REF], Failure Propagation Modelling (FPM) [START_REF]Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment[END_REF], or MBSA [START_REF]Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment[END_REF][START_REF] Lisagor | Model-based safety assessment: Review of the discipline and its challenges[END_REF]. In our current approach we focus on FTA, since it is a common methodology used in many industrial applications, such as aeronautics, UAV, and aerospace systems.

More specifically, FTA is a systematic and deductive method which uses a diagrammatic analytical technique for defining a single undesirable event (fault, or failure event)) and determining all possible reasons that could cause that event to occur. The undesired event constitutes the top event -or Feared Event (FE), of a Fault Tree (FT) diagram, and represents a complete failure of a product or process. Feared Events are characterised by their importance of impact to the system itself and its environment (e.g. nature, operators, passengers) and are more commonly divided into three categories: catastrophic, hazardous, or major. The FT segments leading to a Feared Event define all of the things that could go wrong (faults) to cause that particular FE. FT segments more standardly use OR and AND gates to represent the fault propagation logic. FTA performs a top-down (deductive) analysis, expressed by the FT, which proceeds through successively more detailed (i.e. lower) levels of the system design, until the probability of occurrence of the Feared Event can be predicted in the context of its environment and operation [START_REF] Kritzinger | Fault tree analysis[END_REF][START_REF] Bai | Subsea risk and reliability[END_REF].

The produced FT can eventually provide the list of minimal cut sets leading to a specific FE i.e. the FT's top event.

A minimal cut set is a group of sets consisting of the smallest combinations of basic events which result in the occurrence of the top event. They represent all the ways that the basic events can cause the top (feared) event. A basic event is a basic initiating fault requiring no further development [START_REF] Bai | Subsea risk and reliability[END_REF]. In this paper we refer as "fault events" any event mentioned in a FT, including the top event, the basic event and intermediate events.

FTA can be applied to evaluate system reliability, to identify potential design defects and safety hazards, to simplify maintenance and troubleshooting, to identify root causes during a root cause failure analysis, to logically eliminate causes for an observed failure, etc. It can also be used to evaluate potential corrective actions or the impact of design changes [START_REF] Wabnitz | Use of reliability engineering tools to enhance subsea system reliability[END_REF]. It cannot, however, be used (solely) for operational diagnosis purposes. This is because FTA -and the rest SA methods, can point to several fault candidates in the case of single feared events, but it does not account for multiple feared events occurring simultaneously. Moreover, it only performs analyses based on the feared events identified by the safety analysts. In reality, many unexpected events can occur during system operation, which were not originally identified throughout FTA.

There have been a few attempts to use SA information as input to Model-Based Diagnosis (MDD); some work deals with safety models [START_REF] Pencolé | Definition of model-based diagnosis problems with altarica[END_REF][START_REF] Kuntz | Model-based diagnosis for avionics systems using minimal cuts[END_REF]. In our experience, the purpose of SA models does not align with supporting the operators, and as a consequence, SA models are not directly usable as a source for diagnosis activities -whether automated or performed by a human operators. In our selected use case, where we demonstrate the application of our proposed method using a UAV FT as an input, we demonstrate SA models' inadequacy to meet operational diagnosis objectives -in contrast to ODMs.

ODM approach and methodology

Our approach consists in building an ODM that describes the system's operational procedures, with particular emphasis on fault diagnosis activities. In this section, we elaborate on the purpose of this model, its requirements, propose a variant of Behaviour Tree languages to express it, and present a methodology to create it from a Fault Tree.

Requirements

ODMs shall contain both functional and dysfunctional system information, necessary for operational diagnostics. In specific, the ODM formalism shall be able to:

• combine structural (component breakdown and functional description) and behavioural (functional implementation) system information; • combine nominal and non-nominal (dysfunctional) system information; • integrate information using different types of data as input; • model operational activities;

• represent system monitoring information -account for feared events, faults, and mitigation means such as troubleshooting and repair. Additional requirements which fall out of the scope of this paper, but are considered for future work include:

• support of functional & dysfunctional system analyses, for the amelioration of system design; • integration within a diagnostic tool and implementation of a dedicated User Interface (UI). This ODM shall serve a double purpose. On the one hand, it shall include relevant system monitoring information in order to perform automatic diagnosis and hint to a single failure candidate. On the other, it must be easily readable and usable by operators, in order to aid them in their troubleshooting tasks. We believe that BT semantics can fulfill both these causes; we have therefore chosen to construct ODMs using BTs.

Behaviour Trees (BTs)

BTs offer a way to model discrete event systems. A BT represents a set of concurrent processes, in which one process (the tree) orchestrates the execution of a set of other processes, which are represented by the tree leaves.

BTs have shown a lot of potential in the last decade [START_REF] Colledanchise | How Behavior Trees modularize robustness and safety in hybrid systems[END_REF][START_REF] Colledanchise | The Advantages of Using Behavior Trees in Mult-Robot Systems[END_REF], mainly with their application to robotics and Artificial Intelligence (AI) [START_REF] Klöckner | Interfacing Behavior Trees with the World Using Description Logic[END_REF][START_REF] Rovida | Extended behavior trees for quick definition of flexible robotic tasks[END_REF][START_REF] Colledanchise | Learning of Behavior Trees for Autonomous Agents[END_REF]. Initially developed within the gaming community to replace Finite State Machines (FSM) with more user friendly models [START_REF] Colledanchise | How Behavior Trees Modularize Hybrid Control Systems and Generalize Sequential Behavior Compositions, the Subsumption Architecture, and Decision Trees[END_REF], their use could Figure 2 illustrates a BT, in which the root behaviour is named "Operate system and mitigate fault". Its children are named "Operate system (nominal mode)" and "Operate system (degraded mode)"; the former has children behaviours, while the latter is a leaf behaviour. Each behaviour is composed of its children. Definition 2 (Behaviour status). The set of possible statuses for behaviours is the finite set S = {IDLE, RUNNING, SUCCESS, FAILED}.

At each instant in the execution of a BT, the state of the BT is a function state : B → S, which associates a status to each behaviour in the tree.

A behaviour whose status is not RUNNING can be started by its parent, and its status then becomes RUNNING. A running behaviour can be interrupted by its parent; its status then becomes IDLE. A running behaviour can also autonomously change its status to SUCCESS or FAILED.

Leaf behaviours are used to represent the actual activities implemented by the system, under the form of concurrent processes. Their execution is orchestrated by their parent behaviours, which are usually picked among a set of predefined composite behaviours.

We use four predefined types of composite behaviours: SEQUENCE, FALLBACK, PARALLELALL and PARALLE-LANY.

Definition 3 (Sequence behaviour). When a Sequence behaviour starts, it starts its first child. When the currently running child succeeds, the Sequence behaviour starts its next child, or succeeds if it is the last child. If any child behaviour fails, the Sequence behaviour fails at the same instant. In this paper Sequence behaviours are drawn with gray signal shapes . Definition 4 (Fallback behaviour). When a Fallback behaviour starts, it starts its first child. When the currently running child fails, the Fallback behaviour starts its next child, or fails if it is the last child. If any child behaviour succeeds, the Fallback behaviour succeeds at the same instant. In this paper Fallback behaviours are drawn with gray octagon shapes .

Sequence and Fallback behaviours have at most one running child at each instant. ). An Inverter behaviour has exactly one child. It starts its child when it starts, and is running when its child is running; succeeds when its child fails, and fails when its child succeeds. We represent Inverters by triangle arrow decorations . In addition to composite behaviours, we introduce standard behaviours related to fault diagnosis. Definition 8 (Fault detection behaviour). A Detect behaviour is an atomic behaviour dedicated to detecting a fault. In this behaviour, success means that it has detected the fault. Otherwise, it stays in the running mode and never fails. Fault detection behaviours are represented by diamonds .

In Figure 2, the semantics of the BT are as follows. The top-most behaviour is a fallback, i.e. it tries to run its first child, and in case of failure, falls back to its next child. In this instance, the first behaviour executed is "Operate system (nominal mode)". The nominal mode is implemented by a ParallelAll behaviour, that runs the inverted "Detect fault" and "Control system" behaviours in parallel. When a fault is detected, the "Detect fault" succeeds, so its inverter fails, and thus the whole nominal mode behaviour fails, which interrupts the "Control system" behaviour. Similarly, if the "Control system" fails for some internal reason, the nominal mode fails and interrupts the "Detect fault" behaviour as a result. When the nominal mode fails, the root fallback behaviour starts the "Operate system (degraded mode)" behaviour.

Finally, our methodology uses a type of behaviours that can be either atomic or composite, but their semantic is defined with respect to a specific fault event. Definition 9 (Fault event avoidance behaviour). A Fault event avoidance behaviour is a behaviour that should fail when the fault event occurs, and never succeed. It can be atomic or composite. In this paper, all behaviours whose names start with "Avoid" are Fault event avoidance behaviours.

Fault event avoidance behaviours are always associated with a fault event from a FT. These fault events represent the failure of a function or of a failure detection mechanism. Thus they do not always make sense from an operational point of view. Fault event avoidance behaviours are merely an artifact used as a temporary translation between the FT and the ODM. Moreover, in a composite fault avoidance behaviour, its children must be compatible with the fault avoidance specification, otherwise the BT is invalid, and its semantic hence undefined.

In this paper, for illustrative purposes, we assume that all fault events can be detected or mitigated, hence included in the ODM as their corresponding operational activities. However, in general FTs may contain fault events that cannot be detected nor mitigated, and therefore cannot be translated into any behaviour. In this sense, FTs can contain information irrelevant to operations. This is why we propose to construct ODMs from BTs in several steps, since (i) an FT cannot consist an ODM as is, and (ii) new information must to be elicited -in combination with FT data, so as to create a coherent and useful ODM.

Methodology

Our methodology for obtaining a BT -which constitutes our ODM, is composed of two steps:

1. Translate each FT into a BT. This step is automated; the purpose is to provide a first draft which accounts for all the faults that can affect the system.

2. Elicit the BTs to create a single BT, in which each behaviour represents an actual activity in operations. This step i.e. merging BTs into a single BT manually to then improve it based on one's knowledge and experience, is performed manually by a person with modelling skills, but more importantly, with operational experience e.g. operator/operations expert.

During the first step, the FT is transformed into a BT as follows.

Definition 10 (Fault tree transform FT2BT ). The transform of a FT into a BT is implemented by the function FT2BT defined on FT nodes as follows:

• If F T N is a basic event named "Fault event X", then FT2BT (FTN ) is an atomic fault avoidance behaviour named "Avoid fault event X".

• If F T N is an AND gate labelled "Fault event X" with children nodes F T N 1 , F T N 2 , . . . , then FT2BT (FTN ) is a ParallelAny behaviour named "Avoid fault event X", with children behaviours FT2BT (FT 1 ), FT2BT (FT 2 ), . . . .

• If F T N is an OR gate labelled "Fault event X" with children nodes F T 1 , F T 2 , . . . , then FT2BT (FTN ) is a ParallelAll behaviour named "Avoid fault event X", with children behaviours FT2BT (FT 1 ), FT2BT (FT 2 ), . . . .

The second step of our methodology is performed manually, whilst following several general guidelines. In many instances, a behaviour named "Avoid something negative" does not represent a real activity in the system. The purpose of this step is to replace these unrealistic behaviours with other behaviours which account for:

• Fault tolerance and robust control.

• Fault mitigation activities.

• The fact that some activities occur in a predetermined sequence.

• The fact that some faults may have different observable effects depending on the system configuration, or its operational phase.

One important aspect of this step is that every transformation is documented and justified. This guarantees that every fault event considered in the FT is either directly accounted for in the BT, or handled by one or several precisely identified behaviours.

Example

We illustrate our approach with a FT produced for a UAV mission. It addresses the FE of crash landing due to a fault occurred within the Power Supply (PS) subsystem.

The UAV has several procedures for mitigating faults. First, it can perform a contingency landing, which is a controlled landing at a predefined location. Secondly, it can use the Flight Termination System (FTS), which deploys a parachute that slows down the UAV, so that it crashes with a ground speed as limited as possible.

There exist various faults that can lead to a crash landing. They are all modelled in this paper as a degradation of the PS, with varying severity. Plenty detection capabilities are associated to these faults, both on-board and at the control station, from where the pilot operates the UAV.

The UAV implements a fault escalation strategy: a lowcriticality fault occurring but staying undetected or unmitigated, transforms into a higher-criticality event. The highest-criticality event is the FE itself, i.e. the crash landing. The FT we take as input for our ODM creation methodology is depicted in Figure 3. It has 6 basic events:

• Critical PS failure: a fault occurs in the PS in a way that completely shuts down its function.

• Major PS failure: a fault occurs in the PS in a way that significantly alters its function.

• Contingency landing failure: something goes wrong during the contingency landing procedure, e.g. an additional degradation of the PS, or an actuator failure, etc. This makes it impossible to carry out the procedure.

• UAV detection failure: the automatic fault detection mechanism on-board the UAV does not detect that the PS is faulty.

• Communication failure: the information that would let the pilot know that the PS is faulty is not communicated from the UAV to the pilot.

• Pilot monitoring failure: the pilot fails to realise something is wrong with the PS, even though they have all necessary information in order to detect the fault.

The other nodes in the FT represent how the individual faults can be combined to escalate into the FE. The first draft of the ODM, shown in Figure 4, is obtained by applying the transformation FT2BT to the FT depicted in Figure 3. One can observe that the result is a straightforward reformulation of the FT into a hierarchical fault management behaviour.

We depict in Figure 5 what the ODM would look like if the operator applied the following elicitation steps to the first BT: it with the fault mitigation pattern depicted in Figure 2. The topmost behaviour is called "Operate UAV with Critical PS faults"; the nominal mode is called "Operate UAV without Critical PS faults"; the degraded mode is "Activate FTS".

2. Behaviour "Avoid Critical PS failure" is replaced with the fault detection behaviour from the critical fault mitigation pattern, called "Detect critical PS faults".

3. Behaviour "Avoid Unhandled Major PS failure" takes place of the control behaviour is the critical fault mitigation pattern.

4. In addition, behaviour "Avoid Unhandled Major PS failure" also involves a mitigation measure (contingency landing). So we also replace it with the mitigation pattern of Figure 2. The topmost behaviour is called "Operate UAV with major PS faults", the nominal mode is named "Operate UAV without major PS faults", and the degraded mode is called "Perform Contingency landing". The command behaviour is named "Control UAV".

5. Behaviour "Avoid Mitigation measure failure" is part of the major fault mitigation pattern, and is deleted.

6. Behaviour "Avoid Detection failure" is the most delicate one: fault detection mechanisms may fail themselves, but the question is whether there exists a monitoring activity for these mechanisms. In this instance, we decide that if we lose communication, detect that the UAV cannot detect major PS faults anymore, or suspect the pilot in incapacitated, we try a contingency landing. So "Avoid Detection failure" is transformed into a "Detect faults in detection system" that is a sibling (and thus has the same effect) as "Detect major PS failure".

7. Behaviour "Avoid UAV detection failure" is transformed into a fault detection behaviour, and renamed as "Detect faults in UAV detection".

8. Behaviour "Avoid Pilot detection failure" is transformed into a fault detection behaviour, and renamed "Detect faults in pilot detection", and is left as a Paral-lelAll behaviour. 9. Communications failures cannot be prevented nor mitigated, we can only detect them. So behaviour "Avoid Communication failure" becomes a detection behaviour "Detect communication fault".

10. Behaviour "Avoid Pilot monitoring failure" consists in validating the orders sent from the pilot. It is transformed into an atomic behaviour named "Validate pilot inputs". Note that if the pilot sends absurd orders, the "Validate pilot inputs" fails. However, since its parent is a fault detection behaviour, fault occurrences should be a success. Thus, we invert the outcome of the "Validate pilot inputs" behaviour.

Note that at step 6, our methodology led us to discover that some cases were not covered by the system specification. Namely, in case of a failure in the fault detection mechanisms, it was not specified whether we can detect it, and what the corrective action should be. This demonstrates that the use of an ODM can help improve the design of the whole system.

Model exploitation

In the sections above we discussed the steps towards the construction of an ODM. The purpose of this model is to account for systems' operations as early as possible during the system design.

There are several ways to exploit the ODM in order to improve the final system. First, the ODM can be used to feed a visual BT monitoring tool. This is useful for systems such as satellites that can be operated from various ground stations. The status of each behaviour in the BT indicates in which operational mode the system is -and why, and which operations are currently ongoing. Secondly, verification and validation techniques -including model checking, can be applied to the ODM, as well as cross-validation with other MBSE and MBSA models.

Conclusion

In this paper we address the need to account for operations during a system's design. We propose an approach based on an Operations-Dedicated Model (ODM), and suggest Behaviour Trees (BTs) to express this model. We presented formal semantics for the BT nodes, including nodes which are not present in classical BT libraries. We also introduce a novel methodology to create this ODM from a Fault Tree (FT), obtained through standard Safety Assessment (SA) techniques.

To that end, we demonstrate our approach on a UAV use case, focusing on faults in the power supply subsystem. We demonstrate that our methodology is applicable and that it leads to a BT which represents the system's operation in a way that it accounts for all fault events mentioned in the FT. We noted that the failure of fault detection mechanisms can be more difficult to integrate in operations, than the failure of the functions themselves.

Our belief that the ODM can actually improve the design of an industrial system remains to be demonstrated, for example through interviews with system operators.
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