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Abstract
This paper reviews diagnosis methods that com-
bine dynamic systems structural analysis and ma-
chine learning. A corpus of related articles
has been constituted using a thorough research
methodology. Three main families of recent re-
search papers have been identified: residual se-
lection methods, residual generation techniques
and methods using the structural analysis output
to train a machine learning model. A detailed ex-
planation of how each article tackles the diagnosis
problem is given. The way these methods make
up for structural analysis and machine learning
drawbacks by combining them is analyzed.

1 Introduction
Diagnosis methods are often categorized as either model-
based or data-driven.

Data-based diagnosis methods, often based on machine
learning, stand on algorithms able to learn a diagnosis model
without formalized knowledge about the system. They are
trained on data recorded from the system — usually with
sensors. One of the popular data-driven diagnosis methods
is to train a neural network on sensor data paired to the cor-
responding faults. However, data-driven methods require
large amounts of data.

Model-Based Diagnosis (MBD) uses a model of the sys-
tem elaborated on prior knowledge of the system to esti-
mate how that system should behave. The estimated behav-
ior is then compared with the actual behavior of the system.
Nowadays, MBD methods are difficult to use due to the in-
creasing complexity of modern systems. Gathering system
knowledge is hard because of this complexity, which leads
to some part of these systems being close to impossible to
express mathematically. Among MBD techniques, this arti-
cle focuses on dynamic systems structural analysis (referred
to as structural analysis for short in the rest of the paper) [1],
which is a tool that allows to compute residual generators
(often referred to as just "residuals" with some misnomer)
from an abstraction of the model of the system. Residu-
als are relations linking observable system variables that re-
main true in nominal conditions. Residuals are designed in
such a way that they allow detecting and isolating faults that
are diagnosable. Structural analysis specifically computes
residuals from analytical redundancy relations identified in
sub-parts of the system structural model. It is presented in
Section 3. Structural analysis possesses the advantageous

particularity that full knowledge of the system is not re-
quired to perform diagnosis. This best fits systems which
model is not fully known.

Combining data-based and structural analysis approaches
is then natural to try to make up for each method’s weak-
nesses. Lately, there has been a surge in synergistic methods
combining both model knowledge and the ability to learn
from system data.

To the best of our knowledge, there is no survey specifi-
cally exploring the combination of dynamic systems struc-
tural analysis and machine learning to perform diagnosis,
which is the aim of this paper. The goal is to provide a pre-
cise understanding of the novel methods in this very specific
field. This paper does not address the combination of ML
with the full range of model-based diagnostic (MBD) meth-
ods. Indeed, there are many approaches that combine ML
and MBD, and this would mean a much broader survey.

This paper is organized as follows: Section 2 is about
building the corpus of topic-related articles, Section 3 tack-
les the definition of structural analysis and data-driven meth-
ods, while Section 4 describes the methods combining struc-
tural analysis and learning from data. Then, Section 5 con-
cludes the paper.

2 Research Methodology
Collecting articles unheard of to broaden the view on a topic
is fundamental to aim for the best understanding possible
of said topic. This understanding is then key in writing
a good and exhaustive review. In order to have an objec-
tive corpus of topic-related scientific articles, a three-step
systematic search approach was used to complement a pre-
made corpus. This research methodology is inspired by the
methodology used in [2; 3].

The first step consists in building a corpus of articles that
contains all topic-related articles. For that purpose, a log-
ical search phrase that encapsulates exhaustively all topic-
related keywords was defined (see Figure 1).

Figure 1: logical search phrase. ’/’ stands for OR.

Several keywords were obviously given by the survey
topic: structural analysis, diagnosis, data-driven for exam-
ple. Others were taken from articles dealing with the topic



Figure 2: First Analysis of the Corpus

at hand: e.g. neural network. Then, this phrase was used
to search library databases to constitute a first corpus of sci-
entific articles. The libraries searched were: IEEExplore,
ACM, Wiley, Sage, Elsevier (Scopus), PubMed, Web of Sci-
ence, HAL and Google scholar. The possibility to search
in Springer, Crossref and arXiv was explored, but their ad-
vanced search option did not allow for a logical phrase to be
interpreted. It is notable that, by trying some searches man-
ually on these last websites, all found articles were already
in the corpus built from the other websites. For searches
in Google Scholar, Scopus, PubMed and Web of Science,
a software named Publish or Perish [4] was used. It allows
searching logical phrases in the databases and returns results
ranked by relevance. It advantageously links institutional
accounts to search on private databases such as Scopus or
Web of Science. A bibtex file can be generated from the
results.

The second step aims at trimming this corpus by re-
moving duplicates and documents that are not articles (e.g.
presentations, abstracts). The remaining articles are then
swiftly read to get rid of those that are not really topic-
related. Restricting the search to fault diagnosis instead of
diagnosis was considered, but experience showed it missed
some key articles. Indeed, these articles only spoke of di-
agnosis because it was obvious, in the context, that they re-
ferred to fault diagnosis. For this step, the bibtex display
software JabRef was used.

The third step is going in-depth into the remaining articles
to make sure they deal precisely with the survey’s topic. Ta-
ble 1 summarizes the number of articles in the set at each
step of the process.

At the end of the process, eight articles have been kept.
One is in Spanish — it was selected by the systematic search
because the title and abstract are in English. The fact that
there are only eight articles left shows how niche the topic is.
Indeed, the focus is on methods that specifically combine di-
agnosis using structural analysis and data-driven techniques.
The last step, from 62 to 8 articles, consisted in removing all
the articles presenting an approach mixing model-based and
data-driven diagnosis where the model-based method used
was not based on structural analysis.

A first analysis of the articles shows that they are all very

After searching in article databases: raw list 898
After removing duplicates (up to four duplicates
of a same article) 652

After removing unwanted article types 611
After removing unrelated articles: keeping only
model-based and data-driven diagnosis 62

After restricting to only structural analysis and
data-driven diagnosis 8

Table 1: Number of articles at each step of the collecting
process.

recent (oldest is from 2017). They can be classified into
three families (see Figure 2). The authors are from three
different universities, from China, Spain and Sweden.

This survey is an attempt to provide a systematic and
structured overview of extensive research on diagnosis
methods mixing both structural analysis and learning from
data using any data-driven method.

3 Background
3.1 General Concepts
Let us define Z, X , and F as the set of known (or mea-
sured) system variables, the set of unknown (or unmea-
sured) system variables, and the set of faults that may
impact the system, respectively. Their cardinality is de-
fined as nz , nx, and nf , and z, x, and f are the corre-
sponding variables. The system model Σ(z, x, f) — or Σ
for short — is a set of differential or algebraic equations
ek(x, z, f), k ∈ [1, ne] with ne the number of equations.
Such models can be obtained from physical principles or
derived from data using model identification techniques.
Identification can be carried out by classical methods [5;
6], but it can also be achieved by methods from artificial
intelligence. The model generally represents nominal be-
havior, thus the violation of one constraint indicates that the
system is faulty and points at the responsible component.

Once the model is obtained, the embedded redundancy is
studied. The ability to diagnose the system indeed relies on
the level of redundancy brought by redundant hardware or



by the sensors. This allows to build residual generators.

Definition 1 (Residual Generator for Σ). A residual gener-
ator for Σ is a relation arr(z′, ż′, z̈′, ...) = r — with z′ a
sub-vector of z and r a scalar named residual — such that
for all z consistent with Σ(z, x, f) it holds that in steady
state r = 0.

A relation arr(z′, ż′, z̈′, ...) = r as defined in Definition
1 is called an Analytical Redundancy Relation (ARR). With
this definition, an ARR is sensitive to faults in the system.
Indeed, deviating from a nominal case will lead to r ̸= 0.
However, not all f ∈ F necessarily appear in the expression
of an ARR. The fault support of an ARR is defined as the set
of faults that appear in this ARR. Thus, when the residual is
non-zero, it means that at least one of the faults of the fault
support has occurred.

3.2 Diagnosis Based on Structural Analysis
Structural analysis is a general framework that can be used
to analyze large-scale, complex and dynamic systems de-
scribed by numerous equations, both linear and non-linear.
It abstracts equations by only keeping their links with vari-
ables. Therefore, it ignores the details of parameter values
to base the analysis on the structure of the system by means
of efficient graph-based tools [7] and thus a major advantage
of structural analysis is that it can be used for systems under
uncertainty for which the analytical model is not precisely
known [7; 8].

The structural model Σ(z, x, f) of a system represents
this system with its components and the constraints related
to these components. It can be obtained by abstracting the
functional relations of Σ(z, x, f).

The structural model can be represented by a matrix qual-
ified as the incidence matrix, which rows are associated to
equations and columns to variables. Its elements take the
value "1" when the variable is involved in the equation and
"0" otherwise.

Equivalently, the structural model can be represented by a
bipartite graph G(Σ∪X ∪Z,A), where A is a set of edges
linking equations of Σ and variables of X and Z. In the
context of diagnosis, this graph can be reduced to G(Σ ∪
X,A), where A ⊆ A and A is a set of edges such that
a(i, j) ∈ A if and only if variable xi is involved in equation
ej . Hence, each edge links a variable with an equation it
belongs to.

Diagnosis via Structural Redundancy
When used for Fault Detection and Isolation (FDI) pur-
poses, structural analysis aims at finding subsets of system
equations with redundancy. These can be turned into diag-
nosis tests, i.e. ARRs or parity relations, which are designed
off-line [9]. Diagnosis tests are then checked against obser-
vations on-line.

Redundancy in a system of the form Σ(z, x, f) can be
brought to light by the well-known Dulmage-Mendelsohn
(DM) canonical decomposition [9; 10; 11]. It partitions the
system into three subsystems:

• Σ+ has more equations than unknown variables and
is named the structurally overdetermined (SO) subsys-
tem,

• Σ0 is the structurally just determined subsystem,

• Σ− has more unknown variables than equations and is
named the structurally underdetermined subsystem.

If a set of equations Σ is such that Σ = Σ+ and no proper
subset of Σ is overdetermined, this set Σ is qualified as mini-
mally structurally overdetermined (MSO) [12]. This means
that an MSO set has exactly one more equation than un-
known variables, which is a particular case of SO subsys-
tems. Nevertheless, only MSO sets impacted by faults are
interesting for diagnosis. This is why the concept of fault
support was defined further up.

A Fault-Driven Minimal Structurally Overdetermined
(FMSO) set is an MSO set which fault support is not empty
[13].

Definition 2 (Structural Redundancy). The structural re-
dundancy ρ

Σ′ of a set of equations Σ′ ⊆ Σ is defined as the
difference between the number of equations and the number
of unknown variables.

If a set of equations is structurally redundant (ρΣ′ > 0),
it means that residuals can be generated using the equations
in this set. Once the subsets of equations with redundancy
are found using structural analysis, several methods exist to
find the analytical expression of the residual generator [14;
15; 16].

An FMSO set φ identifies a just overdetermined subset
of |φ| equations of the model, among which one is redun-
dant. This means that all the unknown variables can be de-
termined using |φ| − 1 equations, and that an ARR can be
generated by substituting in the |φ|th equation. This resid-
ual generator can then be used to diagnose faults in its fault
support.

Structural Analysis Drawbacks
Diagnosis from structural analysis alone requires deep
knowledge of the system. Indeed, the residual generator ex-
pression must be known to perform diagnosis and this ex-
pression is derived from system equations. Nowadays, the
trend is towards increasingly complex systems. This means
much harder system equations and thus it is more complex
to apply structural analysis to diagnose a system. Also, com-
putational complexity scales with system complexity.

3.3 Data-driven methods
Data-driven methods cover a wide variety of methods rang-
ing from basic machine learning algorithms such as deci-
sion tree classifiers to deep multi-layer neural networks such
as graph convolutional networks. These methods can have
multiple aims such as generation, classification, regression
or even encoding. The data-driven methods combined with
structural analysis are mainly classification methods.

Those methods can be defined as following [17]: let us
consider a classifier Φ from the input space X into the set
of class labels C:

Φ: X → C (1)

The shape and form of Φ, X and C vary depending on the
context and they are specified when required to better un-
derstand the method used. The goal of the classifier Φ is
to take an unknown x ∈ X and to predict the right corre-
sponding class c ∈ C it belongs to. Training Φ corresponds
to optimizing its parameters in order to obtain a black box
function that predicts correctly — most of the time — the
class for the individual of X .

The principle of regression is trying to optimize the pa-
rameters of a function with a specific shape to match the
input data to the output data. Classification and regression
problems are very similar in the sense that both methods



find a Φ that matches inputs with its corresponding outputs.
Regression’s goal is to find a function that fits correspond-
ing input and output data. A famous data-driven regression
method is Linear Regression [18].

Data-Driven Methods Drawbacks
When performing diagnosis using data-driven methods,
Φ, X and C can take many forms. X can, for instance, be
a set of time-series, images, graphs, whereas C can be a
multi-class, multi-label space. Φ can also take many forms
as presented in Section 3.3. This all adds to the complexity
of using data-driven methods since it means requiring dif-
ferent pre-processing and training techniques depending on
the case.

Also, diagnosis from data alone requires a gigantic
amount of data and often leads to biased diagnosis. What
information is learned from the data depends on the quality
of the database. Indeed, when a machine learning algorithm
learns from data, it can only learn the information contained
in this data. There is currently no surefire way to measure
the degree of bias in the data. There are some methods to re-
move some biases, for instance balancing classes, random-
izing the order of the training samples, etc. but to be abso-
lutely unbiased would require perfect knowledge of the way
data influences training. This often leads to a well-known
machine learning problem called over-fitting that consists in
having a Φ that is optimal for training data but that does
not perform well for unknown data [19]. This explains why
there are works directed towards methods complementing
data-driven approaches.

4 Combining Machine Learning and
Structural Analysis Approaches

This section discusses how structural analysis and machine
learning are combined and why this specific combination
avoids most drawbacks of a lone use of said methods.

It is interesting to note that combining structural analy-
sis and machine learning for diagnosis is mainly addressed
in three laboratories, each having their own way of tackling
the problem but with very intertwined topics. Residual se-
lection methods [20; 21] are studied in section 4.1, residual
generation methods [22; 23; 24] in section 4.2 and a method
used to improve structural analysis results by using a graph
convolutional network [25; 26; 27] in section 4.3.

4.1 Residual Selection
Residual selection is an important topic in the field of diag-
nosis. For instance, if there is an algorithm able to generate
a set of candidate residuals, being able to choose, among
the candidates, the subset that performs best from the di-
agnosability point of view, is interesting. Another example
of residual selection, in the context of structural analysis,
is when choosing which equation of the MSO set is the best
support for the ARR in terms of diagnosis performance. The
support equation is the equation in which unknown vari-
ables are substituted so that only known variables remain.

The work presented in [20] tackles this particular case.
Residual candidates are computed using different support
equations in each MSO. The goal is to find what support
equation has the best diagnosis performances. It is assumed
that the model of the system is not fully known and that
data extracted from the system through sensors is subject
to noise. The proposed data-driven method selects the best

performing subset of residuals among those generated by
structural analysis. The performance criteria are better fault
detection and isolation. The generation of candidate residu-
als is automated using a script that exhaustively computes all
possible ARRs. The method flow is described in Figure 3.

Figure 3: Diagram of method presented in [20]

The Structural Analysis step consists in establishing the
structural model and identifying the MSO sets. Next step
is Generating the set of all Residual Candidates. Then, a
Feature Selection algorithm is used to select the most infor-
mative residuals among the residual candidates. A feature
selection algorithm — usually used in machine learning —
describes which feature brings more performance to reach
the correct output. A more obvious choice would probably
be to go for a multi-class data-driven classifier. However,
the author of [20] states that this method is too dependent
on the training data and may lead to overfitting. Meanwhile,
a feature selection algorithm limits the risk of overfitting and
reduces the computational time. The feature selection prob-
lem is defined here differently for each fault: the aim is to
find a subset of residuals that performs detection and isola-
tion for simple faults, and this is done for all faults. This
makes it a binary fault classification problem.

Feature selection is performed as follows: the problem is
brought to a convex problem by introducing a logistic re-
gression model. This model is built using the logistic func-
tion [28]. The regression is performed on an expression of
the form:

λ+ β⊤r(t) (2)

where r(t) is a vector with a subset of residual candidates
evaluated at time t, β and λ are so that λ + β⊤r(t) > 0
means that r(t) belongs to class 0 and λ + β⊤r(t) < 0
means that r(t) belongs to class 1. λ can be interpreted as a
threshold for class values. To link this to Equation (1), the
regressor is Φ, C is {0, 1} and X is the set of all possible
subsets of the set of residual candidates. The purpose of
convex relaxation is to have a problem where finding a local
minimum ensures that it is also a global one. Without going
into too much detail, this also allows to prove that a solution
r(t) of the convex problem has isolation properties [20].

After Convex Relaxation comes a candidate set identifi-
cation step using Regularization Paths. The idea is to find
sets that are a solution to the convex problem. In [29], an al-
gorithm is proposed that efficiently finds the regularization
path of the β vector for linear models. Regularization paths
are a technique that gives all possible residual sets a solution
to the convex problem.

Once this list assembled, the last step is to choose among
those sets which one has the best performances. This is done
by Cross Validation. For each candidate set, a new logistic



regression model (see Equation (2)) is trained. Then, the
mis-classification rate of each regression model is computed
for both training sets and validation sets to be able to select
the best candidate residual set.

Once the set is selected, diagnosis can be performed using
this set.

Another context where residual selection is useful is
when a set of residual generators are at disposal but there
are so many of them that only a subset would be enough to
reach the same detection and isolation performances.

To answer this case, [21] proposes a systematic method to
select, from a set of candidate residuals, a subset with good
diagnosis performances. The method proposed is very ver-
satile. Indeed, any model-based method using residuals can
be used and any data-driven algorithm on which feature se-
lection can be performed can be used. The proposed method
flow is described in Figure 4.

Figure 4: Diagram of method presented in [21]

Just as in [20], the first steps of the method are the Gener-
ation of Residual Candidates using Structural Analysis. In
this case, however, only one residual is generated by MSO
set. The aim is not to select the best one among those that
can be computed in each MSO sets but rather to select a sub-
set of the generated residuals that has the same — or nearly
the same — performances as the whole set. Actually, the
proposed method strikes the right balance between perfor-
mance and number of residuals. The main reason for ac-
cepting to reduce the performance by reducing the number
of residuals is the computational time constraint.

After the generation of candidate residuals comes a data-
driven classification algorithm. In this case, a Random For-
est algorithm [30] is used to predict the fault class according
to residual values using all the residual candidates. With ref-
erence to Equation (1), Φ is the random forest, X is the set
of residual values and C is the set of fault classes. The ran-
dom forest method takes into account the capacity of each
residual to isolate faults. The real aim of this algorithm is
not to predict classes but to provide a way to select the fea-
tures of the algorithm that are the residual candidates.

Indeed, once the random forest is trained, a Feature Se-
lection algorithm with the ability to rank features from most
relevant to less relevant is used. The metric is called vari-
able importance. The feature selection algorithm used is the
permuted VIMP [31]. The principle is to measure how the
random forest performances would decrease if a particular
residual was removed from the inputs. This allows to rank
residual candidates by importance.

The last phase is Residual Selection where, according to
the ranking previously established, a subset of residuals is
selected to perform diagnosis. The choice of the number

of residuals can be made depending on each specific prob-
lem or system constraints. The selected residuals can then
be used with, for example, a consistency-based algorithm to
perform diagnosis. The input data when training the ran-
dom forest varies depending on the method used to perform
diagnosis in the end. For instance, since consistency-based
diagnosis uses binary residuals, the random forest algorithm
takes binary residuals as input.

4.2 Residual Generation
This part discusses methods that use only partial knowledge
about the system to be able to perform fault detection and
isolation through structural analysis by using residual gen-
erator built not from the system model but learned using data
collected during system operation.

Authors in [22; 23; 24] propose to replace the residual
generators obtained through structural analysis based diag-
nosis with data-driven methods. References [22] and [23]
replace the residual generators with Recurrent Neural Net-
works (RNN) although they are designed differently in each
article, while [24] uses regression models such as Robust
System Identification (RSI).

Articles [22] and [23] are written by the same author,
Daniel Jung. They are one year apart from each other and
use the same method of designing an RNN trainable with
system data using the structural model of the system in or-
der to compensate the lack of mathematical knowledge from
said system.

An RNN is a type of neural network that is used to model
dynamic temporal systems. While artificial neural networks
have a fixed number of layers and neurons, an RNN loops
on itself by having some neurons outputs used as inputs to
other neurons at concurring times. RNNs belong to the class
of infinite impulse response networks, since they cannot be
unfolded in a straight feed-forward network. Thus, discrete-
time non-linear state-space models can be modeled using
RNN.

To link this to Equation (1), Φ is the RNN, X is the set of
known input variables included in the MSO associated with
this RNN and r ∈ C is the value of the residual.

Figure 5 shows an example of an RNN structure to sim-
ulate a residual generator. u is the vector of input variables
that intervene in the MSO set, y is the temporal prediction of
the residual value. The x are the outputs of each consecutive
layer that is fed to the next to retain temporal information.
The temporal structure is noticeable since the prediction of
time-step t+ 1 is a combination of the output of time-step t
and the input value of time-step t.

Figures 6 and 7 describe the method flow of [22] and [23]
respectively. The two first steps are the same: they build the
Structural Model of the system and then Identify the MSO
Sets. After that, both articles diverge in their approach.

In [22], Jung uses the MSO sets to write the expression
of the ARR by identifying which variables intervene in each
ARR and the fault support of those ARRs. An RNN is asso-
ciated to each residual. An RNN is Designed using as input
the variables that intervene in the corresponding ARR and
trained using data from the nominal mode of the system.
The internal structure of the RNN is chosen arbitrarily fol-
lowing general guidelines for neural network design. After
training the RNNs, predictions are run on nominal data to
estimate threshold output values in which 99% of the data
falls. When testing the RNN with unknown data, an out-
put value beyond those thresholds means a faulty situation.



Figure 5: Example of RNN from [22]

Figure 6: Diagram of method presented in [22]

This accomplishes Fault Detection. Fault Identification is
performed by analyzing the intersection of the model sup-
port of the different activated residuals.

In this case, training does not require data from faulty sit-
uation, which is very convenient since faults tend to happen
less often, making it harder to have a large enough represen-
tative dataset of faulty scenarios.

Figure 7: Diagram of method presented in [23]

Meanwhile, after identifying the MSO sets, in [23], Jung
performs what is called Matching. The matching consists
in assigning each unknown variable in each MSO set to an
equation of the MSO set. The equation is the one that would
allow, with complete knowledge of the system, to substitute

this variable with other variables. This allows to identify
a remaining redundant equation, theoretically without un-
known variables. Next step is designing the Computational
Graph of each MSO. This is the main difference with the
previous article. A computational graph is a directed graph
where nodes either denote a variable or a function and edges
show how the output of each node are fed as input to other
node. Here, the computational graph shows in which order
variables are substituted to reach the ARR — meaning the
order in which the matching is done. Figure 8 shows an ex-
ample of such a computational graph. y is sensor data, u is
known input, they are both known variables. e3 is used to
get an expression of x2, then e5 is used to compute ẋ2, e1
to compute ẋ1, e4 to compute x1. Combined together, they
can be used in e2 leading to the residual r2.

Figure 8: Example of a Computational Graph from [23]

Computational graphs are then used for Structuring the
RNNs that play the role of residual generators. Those graphs
are written in state-space form and the unknown variables
included in the equations are computed by backtracking
through the computational graph. Once discretized, this for-
mulation can be used as the structure of the RNN model
similarly to how it is done in [22]. Here the RNN is called
grey-box since the inputs and outputs of the RNN are con-
crete variables of the system. An RNN is usually a black
box but this one is partially interpretable through the analy-
sis of input and output values.

After obtaining the RNN, the last step is to train it and use
it to Diagnose the System in the very same way it is done in
[22].

Figure 9: Diagram of method presented in [24]

The work presented in [24] performs structural analysis
without concrete mathematical equations of the system. It
exploits system knowledge to build the Structural Model,
Identifies the MSO sets and then a residual expression of the
form

R(z1, ..., zn) (3)

with (z1, ..., zn) being the variables in the MSO set. Which
variables are included in each MSO is given by the structural
model. R is the residual generator of the MSO set. This is
done for each MSO set. [24] then uses Robust System Iden-
tification as a Regression Method together with labeled data
from sensors to evaluate the residual expressions R with ac-
tual values. Here the regressor is Φ from Equation (1), the
data is X and its labels are the classes C. This method tries



to fit Φ(X) as good as possible to the labels C so that the
resulting residual expression has the best possible accuracy
when predicting which faulty scenario is occurring accord-
ing to input data.

Once a residual expression R is determined for each
MSO, they are used to Compute Residual Values. These
values are converted into Booleans by thresholding. Then,
by looking at the fault signature matrix, the fault occurring
in the system is determined. Figure 9 sums up those steps in
a diagram.

Reference [24] has a specific emphasis on the prognosis
aspects of the method. While this survey is not about prog-
nosis, it is worth mentioning that the interval model method
is used for the purpose of estimating residual thresholds in
the case of prognosis.

For all of these residual generation diagnostic methods, it
is never necessary to determine the exact expression of the
ARR. This means that a complete mathematical knowledge
of the system is not a prerequisite to use any of these meth-
ods.

4.3 Graph Convolutional Network to Improve
Structural Analysis Outcome

The method developed in [25] and [26] both written by Zhi-
wen Chen consists in performing a full structural analysis
to exploit its results through a Graph Convolutional neu-
ral Network (GCN). It supposes that the results of structural
analysis alone are far from perfect and tries to improve it.
The method performs fault diagnosis for single-fault sce-
narios only. The method flow is described in Figure 10.

Figure 10: Diagram of method presented in [25] and [26]

Chen first establishes the Structural Model of the studied
system. Then, all steps of Structural Analysis are performed
using full knowledge of the system. This means identifying
the MSO sets, matching unknown variables and computing
the expression of the ARR of each MSO set and then cal-
culating the residual value of each MSO set. A threshold is
chosen for each residual and triggered residuals are deter-
mined. By considering the intersection of the fault supports
of triggered residual, the health state of the system is de-
termined: whether it is nominal or faulty and which fault
occurred. This is done for each individual — data point —
of the dataset.

To each individual is associated a fault vector fi of length
|C| with C being the set of fault classes (see Equation (1)),
including the nominal case. fi is the null vector except for
a 1 at the ith position.

The fault vectors are then used to build an Association
Graph. The association graph is an undirected graph. Its
nodes represent individuals and the value associated to each

node is the fault vector of said individual. Individuals that
share the same fault vector are linked together by edges.
With this definition, the association graph is composed of
|C| separate fully connected sub-graphs.

The dataset and the association graph are then fed to a
GCN. A GCN is a neural network that can exploit the struc-
ture of a graph fed as input. In its first layers, it uses infor-
mation from neighbor nodes to improve the representation
of a node. In [25] and [26], the GCN is based on the spec-
tral domain [32]. In the works of [25] the GCN is made of
two graph spectral layers, two convolutional layers and two
fully connected layers, in this order. The last layer is a fault
vector once again. Figure 11 shows this GCN. The input
arrows represent the association graph and the dataset while
the output is the fault vector.

Figure 11: Graph Convolutional Network used in [25] and
[26]

Whereas both the association graph and the dataset are
input of the GCN, they do not have the same influence. This
influence is balanced by a parameter θ following this sim-
plified expression:

x = g + θa (4)

With x being the total influence of what is fed to the graph,
g being the influence of the graph and a the influence of the
dataset. The value of θ directly impacts what input weights
more. To bring back Equation (1), Φ corresponds to the
GCN and X is the combination of both the association graph
and the dataset weighted by the coefficient θ. x would then
be the influence of X . In [25] this θ is chosen arbitrarily.

The main contribution of [26] compared to [25] is the op-
timization of parameter θ using a particle swarm optimiza-
tion algorithm [33]. At the start of the algorithm, many pos-
sible values of θ are randomly chosen in the solution space.
They are the particles. At each iteration, each particle moves
towards a local extremum but also moves towards the most
extreme local extremum found by the swarm. The authors of
[26] use this algorithm to find the best possible θ and thus
the best Balance Between the Influence of the Association
Graph and the Influence of the Dataset on the GCN.

After refining the inputs, the GCN needs to be trained.
The main benefit of the method happens when training the
network. Indeed, only a small part of the dataset needs to
be labeled for training. However, the whole dataset is used
to build the association graph since it does not need label-
ing. This allows to extract knowledge by association with
unlabeled data when training. Actually, when training the
GCN, the whole dataset is passed as input and the loss is the
difference between the predicted labels and the true labels
of the labeled part only. The rest of the dataset is ignored
for the loss calculations.



Online, when the GCN has to predict the class of an unla-
beled individual, it first runs it through the structural analy-
sis method to be able to place it inside the association graph.
Then it places it as input of the pre-trained GCN. The GCN
Outputs a Fault Vector that describes the system faulty con-
dition.

Despite having currently no available translation in En-
glish, the work proposed in [27] is worth mentioning in this
section since it deals with improving the structural analysis
results. Just as in [25], a full Structural Analysis is per-
formed with full knowledge of the system. The results are
then input into an Artificial Neural Network. The main dif-
ference with [25] is the type of neural network used. The
authors of [27] use a fully connected neural network. The
framework of the method is summarized in Figure 12.

Figure 12: Diagram of method presented in [27]

To reference Equation (1) once again, the dense neural
network Φ takes as input the residual values X and outputs
the fault class in C. It is trained using residual values ob-
tained through structural analysis and corresponding class
labels given by the system actual faults during data collec-
tion. The neural network takes as input the actual values of
residuals, not thresholded values. The neural network does
more than just replace the fault matrix, it extracts informa-
tion from the actual residual values to help prediction of the
fault class.

Once trained, the neural network can be used to Predict
Fault classes from unknown residual values gathered on the
system using structural analysis.

The main drawback of methods presented in this section
is that they do not solve the main issue of structural analysis,
which is requiring full knowledge of the system.

5 Conclusions
In this paper, we attempt to provide a thorough review of
the investigated diagnosis techniques that combine struc-
tural analysis as a tool and machine learning. An article
research methodology using keyword search in various ar-
ticle databases was used. The 898 collected articles were
then reduced to eight that are precisely on the topic at hand.
In particular, three main sub-topics were identified: residual
selection, residual generation and the use of graph convolu-
tional networks to improve the outcome from the structural
analysis method.

• Residual selection: those articles use a machine learn-
ing algorithm to determine the best subset of residuals
for fault detection and isolation among a set of residual
candidates.

• Residual generation: those articles replace the step
in structural analysis where knowledge of the system

is used to identify mathematical residual expressions
with machine learning algorithms that learn these ex-
pressions from operating system data.

• Graph convolutional networks to improve the outcome
of structural analysis: those articles present a method
that performs a full structural analysis in order to di-
agnose a system, takes the results and feeds them to a
graph convolutional network along with data from op-
erating system conditions to output better diagnostics
results.

It is interesting to note that some of these methods are not
necessarily exclusive and could be used in conjunction to
remediate some drawbacks they present.

In the presented papers, machine learning is mostly used
around residuals. It might be interesting to explore how ma-
chine learning could be used to generate the structural model
of a system of which we do not have complete knowledge.
Also, many works such as [34] explore residual evaluation
with machine learning. This could perhaps be combined
with structural analysis.

On a side note, the methods presented in this article of-
ten require less training data than fully data-driven methods,
but require some knowledge on the system. This is very in-
teresting because it is often easier to get some knowledge
of the system (especially from experts) and some data than
full knowledge or a lot of data — or data in many differ-
ent operating conditions of the system. This suggests that
these methods might be suitable for deployment in indus-
trial cases.

Acknowledgments
We gratefully acknowledge Atos for providing funds to
make this research possible. This project is related to ANITI
within the French “Investing for the Future – PIA3” program
under the Grant agreement n°ANR-19-PI3A-0004.

References
[1] Marcel Staroswiecki. Structural analysis for fault de-

tection and isolation and for fault tolerant control.
Fault Diagnosis and Fault Tolerant Control, 2002.

[2] Abdullah and Mohammed Naved Khan. Determin-
ing mobile payment adoption: A systematic literature
search and bibliometric analysis. Cogent Business &
Management, 8(1):1893245, 2021.

[3] Guo Haixiang, Yijing Li, Jennifer Shang,
Gu Mingyun, Huang Yuanyue, and Bing Gong.
Learning from class-imbalanced data: Review of
methods and applications. Expert Systems with
Applications, 73, 12 2016.

[4] A. Harzing. Publish or perish. Pediatrics, 89(2):356–
356, 2007.

[5] H. Akaike. A new look at the statistical model iden-
tification. IEEE Transactions on Automatic Control,
19(6):716–723, 1974.

[6] G. Perez-Zuniga, E. Chanthery, L. Travé-Massuyès,
and J. Sotomayor. Near-optimal decentralized diag-
nosis via structural analysis. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, page 13p.,
March 2022.



[7] J. Cassar and M. Staroswiecki. A structural approach
for the design of failure detection and identification
systems. In IFAC Conference on Control of Industrial
Systems, vol. 30(6), pp. 841-846, 1997.
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