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We present a Bayesian method to reconstruct event-by-event multiplicity fluctuations and rapidity
correlations in p+Pb collisions at zero impact parameter from minimum-bias data, without assuming
any model of the collision dynamics. We test it on Monte Carlo simulations with the Angantyr model,
then apply it to ATLAS data on the distribution of charged multiplicity and transverse energy in
p+Pb collisions at

√
sNN = 5.02 TeV. Fluctuations in b = 0 collisions are quantum fluctuations which

originate mostly from the proton wave function, and therefore have the potential to constrain the
subnucleonic structure of the proton. The Angantyr model is found to overestimate fluctuations. In
addition, we find that as the rapidity increases (towards the Pb-going side), not only the multiplicity
density increases, but also its relative event-by-event fluctuation. This counter-intuitive phenomenon
is also observed in simulations with Angantyr, and with the QCD dipole model, where its origin can
be traced back to the branching process through which gluons are produced.

I. INTRODUCTION

It came as a surprise, a decade ago, that central proton-
nucleus collisions at the Large Hadron Collider (LHC)
create a fluid, despite the tiny size of the collision vol-
ume [1–6]. The formation of a fluid implies in particular
some equilibration process, which is known to erase the
local memory of initial conditions. One might therefore
think that little can be learned from experimental data
about the early stages of a proton-nucleus collision. Some
memory of the initial conditions does, however, remain
through global quantities, which are conserved through-
out the history of the fluid. In particular, the rapidity [7]
and the entropy of the fluid are conserved to a good ap-
proximation. Now, the entropy is proportional to the
number of elementary constituents of the fluid, whether
they are partons [8] or hadrons [9]. Therefore, the final
hadron multiplicity reflects the initial gluon multiplicity
at the same rapidity.

We study event-by-event fluctuations of the multiplic-
ity and long-range rapidity correlations. There are two
sources of fluctuations. The first is the variation of im-
pact parameter, b, across the sample of events. Our goal
is to isolate the remaining fluctuations, which are quan-
tum fluctuations. The observables we consider are typi-
cally the multiplicities in two separate rapidity intervals.
We reconstruct their variances and mutual correlation in
collisions at b = 0 from minimum-bias data by simple
Bayesian inference, without assuming any model of the
collision dynamics.

Event-by-event fluctuations in b = 0 collisions origi-
nate from the wave functions of the colliding proton and
nucleus, and from the collision process itself. For such
an asymmetric system as a p+Pb collision, it seems nat-
ural that the fluctuations are likely to originate mostly
from the smaller of the two projectiles, i.e., the proton.
While there is a vast literature on fluctuations in the pro-

ton wave function on the theory side [10–16], observables
to constrain them are still scarce [14], and we will show
that proton-nucleus collisions bring new, non-trivial con-
straints.

Our approach differs radically from traditional corre-
lation and fluctuation analyses, which are not done at
fixed b. In order to reduce the dependence on b, one
usually forms combinations of multiplicities [17], such as
ratios [18–20] or linear combinations whose average value
is zero, that go under the name of νdyn [21–23]. These
procedures entail a huge loss of information. From two
observables, one typically extracts only one fluctuation
measure, out of three that are relevant (the fluctuation
of each observable, and their mutual correlation).

The Bayesian reconstruction of impact parameter was
introduced [24] in the context of ultrarelativistic nucleus-
nucleus collisions, and it has also been implemented in
collisions at lower energies [25–27]. It has then been ex-
tended to proton-nucleus collisions [28] and to correlation
studies in nucleus-nucleus collisions [29]. Here we study
correlations in proton-nucleus collisions, by extending the
work of Ref. [29] to these collisions, along the lines of
Ref. [28].

The key ingredient of the reconstruction is to
parametrize the fluctuations at fixed impact parameter
in a way that is both simple and general. We refer to
this as to the fluctuation kernel. A Gaussian kernel is
good enough for nucleus-nucleus collisions [24, 29], but it
must be replaced with a gamma kernel for proton-nucleus
collisions [28]. In Sec. II, we introduce a simple general-
ization of the gamma kernel to several variables. The
accuracy of this parametrization is evaluated through
simulations with the Angantyr model [30]. In Sec. III,
we present the Bayesian method to reconstruct fluctu-
ations and correlations in proton-nucleus collisions at
b = 0 from minimum-bias data. The method is validated
using simulations with Angantyr, then applied to AT-
LAS data [31], in which the two observables in each col-
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lision are the charged multiplicity in the central tracker,
and the transverse energy in the forward calorimeter.1

Results on multiplicity fluctuations and correlations at
b = 0 are presented in Sec. IV. We compare ATLAS data
with quantitative predictions from the Angantyr model.
In order to link observations with the underlying QCD
dynamics, we also show results from a simplified model
that can be derived from high-energy QCD, and from the
fluctuating-string model. We discuss how our results re-
late to previous analyses of long-range correlations. We
argue that our picture provides a natural explanation for
the observed centrality dependence of the multiplicity in
p+Pb collisions.

II. FLUCTUATION KERNEL

A. One variable

Fluctuations in a large system are Gaussian by virtue
of the central limit theorem, so that the Gaussian is a
natural choice for parametrizing the fluctuations of a ran-
dom variable. The gamma distribution provides however
a better parametrization for random variables that are
positive, such as the multiplicity or transverse energy in
a detector. Like the Gaussian, the gamma distribution
is fully determined by its mean and standard deviation,
but unlike the Gaussian, it has positive support (see Ap-
pendix A). Both distributions coincide when the standard
deviation is much smaller than the mean. This is typi-
cally the case for large systems, so that the central limit
is automatically verified also with a gamma distribution.

Alternative distributions with positive support have
been used in the context of high-energy physics, most no-
tably, the negative binomial distribution (NBD) [32, 33].
The gamma distribution can be viewed as a continuous
version of the NBD, as explained in detail in Ref. [28].
It is therefore more flexible than the NBD in the sense
that it also applies to continuous variables, such as the
transverse energy.

In order to illustrate the usefulness of the gamma dis-
tribution, we have generated 6 × 106 central (b = 0)
p+Pb collisions at

√
sNN = 5.02 TeV using the Angan-

tyr model [30].2 Angantyr is the heavy-ion version of
Pythia 8 [34, 35], which is a state-of-the-art microscopic
description of hadronic collisions. For each collision

1 As we will argue in Sec. IV A, the fluctuations of the transverse
energy are likely to reflect those of the multiplicity in the corre-
sponding pseudorapidity window.

2 Note that the laboratory frame does not coincide with the
center-of-mass frame of nucleon-nucleon collisions, because of
the common magnetic field and different charge to mass ra-
tios. In the laboratory frame, the energy of the proton is
Ep = 1

2

√
(A/Z)sNN and the energy per nucleon of the Pb nu-

cleus is EPb = 1
2

√
(Z/A)sNN, with Z = 82 and A = 208.

event,3 we compute two observables analogous to those
measured by the ATLAS collaboration [31]: the charged
multiplicity Nch in the pseudorapidity interval |η| < 2.5,
and the transverse energy (of charged and neutral par-
ticles) EPb

T in the pseudorapity interval 3.2 < η < 4.9,
where positive values of η correspond to the Pb-going
side.4 The distributions of these two observables are dis-
played in Fig. 1. Each distribution is fitted with a gamma
distribution. The fits are of good quality, except for the
lowest values of Nch and EPb

T . One usually eliminates
these low values anyway when fitting experimental data
(see Ref. [29] and Sec. III C below), so that we exclude
them from the fit.

B. Quantifying the difference between fit and data

Throughout this paper, we carry out standard χ2 fits
to Monte Carlo simulations or experimental data. How-
ever, we eventually want to quantify systematic devia-
tions between fit and data (or simulations), and the χ2

is not appropriate since one divides the deviation by the
statistical error. An alternative measure of the difference
between the probability distribution Pdata given by the
data (or the simulations), and the fit to this distribution
Pfit, is the Kullback-Leibler divergence [38]

DKL ≡
∑
i

Pdata(i) ln

(
Pdata(i)

Pfit(i)

)
, (1)

where the sum runs over all bins. Both probability dis-
tributions must be normalized:∑

i

Pdata(i) =
∑
i

Pfit(i) = 1. (2)

The Kullback-Leibler divergence has a simple interpre-
tation when the relative difference between Pdata(i) and
Pfit(i) is small for all i. Then, one can write Pfit(i) =
Pdata(i)(1 + ε(i)), where |ε(i)| � 1 is the relative differ-
ence between fit and data. Inserting into Eq. (1) and
expanding to lowest non-trival order in ε(i), one obtains:

DKL '
1

2

∑
i

Pdata(i)ε(i)2 =
1

2
〈ε2〉, (3)

where angular brackets denote the average over bins.
Throughout this article, we use the following quantity
as a measure of the accuracy of the fit, and refer to it
loosely as to the “rms error” because it corresponds to
the rms value of ε when the error is small (note that even

3 The calculations were based on the example main113.cc, which
is part of the official PYTHIA release, and the exact same pa-
rameters were used.

4 We follow the convention of the ALICE Collaboration [36], which
is opposite to that of ATLAS [37].
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FIG. 1. (Color online) Probability distribution of the charged multiplicity Nch at central rapidity (left) and transverse energy
EPb

T at forward rapidity (right) in p+Pb collisions at
√
sNN = 5.02 TeV and b = 0. Symbols: Angantyr simulation [30]. Lines:

two-parameters fits using gamma distributions (solid lines) or Gaussians (dotted lines). The shaded bands correspond to the
range of values Nch and EPb

T that are excluded from the fit.

when the error is small, it is in fact the rms relative error,
that is, the rms error on a logarithmic plot):

(2DKL)1/2, (4)

where DKL is evaluated using Eq. (1). We always choose
bins which are wide enough that the statistical fluctua-
tions in each bin contribute little to this rms error.

The rms errors of the fits presented in Fig. 1 are 3.1%
and 4.4% for the distributions of Nch and EPb

T , respec-
tively. If we replace the gamma distribution with a Gaus-
sian, these errors become 52.2% and 36.5%, so that the
gamma distribution increases the precision of the fits by
an order of magnitude, at no additional cost in terms of
fit parameters.

The tail of the ET distribution is above the fit. This
discrepancy can be put down to hard scatterings, which
create particles with high ET , and whose probability de-
creases like a power law at large ET [39], slower than the
gamma distribution which is exponential. On the other
hand, the tail of the Nch distribution is below the fit, and
it is tempting to postulate that this is again due to hard
processes, which produce a large ET , but few particles.

C. Extension to several variables

This joint distribution of Nch and EPb
T is displayed in

Fig. 2 (left) for our Angantyr simulation of central p+Pb
collisions. These two observables are strongly correlated,
even though the impact parameter is fixed. We explain
how to construct a simple parametrization of this corre-
lated distribution.

While the Gaussian distribution can be readily gener-
alized to an arbitrary number of correlated variables [29],

there is no standard generalization of the gamma distri-
bution to several variables. We construct a correlated
gamma distribution in the following way. For a given
variable N whose distribution Pγ(N) is a gamma distri-
bution, we map it onto a variable N ′ whose distribution
PG(N ′) is a Gaussian with the same mean and variance.
This mapping is defined by matching the two cumulative
distributions (see Appendix A for details):∫ N

0

Pγ(x)dx =

∫ N ′

−∞
PG(x)dx. (5)

Once the mean and variance are specified, this equation
defines N ′ as a function of N . Note that the lower bound
of the integral is 0 for the variable N , which has positive
support, and −∞ for the Gaussian variable N ′, whose
support is the real axis. Differentiating Eq. (5), one ob-
tains

Pγ(N)dN = PG(N ′)dN ′, (6)

which expresses the equality of elementary probabilities.
In order to construct a correlated version of the gamma

distribution, we start with a correlated Gaussian distri-
bution for p variables, PG(N ′1, · · · , N ′p) [29]:

PG(N ′1, ..., N
′
p) =

exp
(
− 1

2 (N ′i − N̄ ′i)Σ
−1
ij (N ′j − N̄ ′j)

)
((2π)p|Σ|)1/2

,

(7)
where, in the exponential, we use the Einstein summation
convention over the repeated indices i and j. In this
equation, N̄ ′i is the mean value of N ′i , and Σij is the
symmetric covariance matrix. Σ−1 denotes the inverse
matrix and |Σ| the determinant.
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FIG. 2. (Color online) Left: two-dimensional representation of the Angantyr simulation shown in Fig. 1. The correlated gamma
fit is indicated by the cross, which is the mean value, and by the black line around it, which encompasses the 90% confidence
area. We define this area by mapping the 90% confidence ellipse of the Gaussian distribution (7) to the gamma variables
according to Eq. (5) (see Appendix B for details). Right: the fitted correlated gamma distribution. As in Fig. 1, the shaded
area, corresponding to the lowest values of Nch and EPb

T , is excluded from the fit. Since the fitting function is smooth, it does
not present the statistical fluctuations that appear as scattered points on the left plot. The color is set to white for bins in
which the mean number of events is smaller than 1. The same convention holds for similar plots below.

The marginal distributions of a multivariate Gaussian
distribution are themselves Gaussian, so that each of the
variables N ′1, · · · , N ′p follows a Gaussian distribution:

PG(N ′i) =
1

(2πΣii)1/2
exp

(
− 1

2Σii
(N ′i − N̄ ′i)2

)
. (8)

We then map each variable N ′i onto a variable Ni accord-
ing to Eq. (5).

The correlated gamma distribution Pγ(N1, ..., Np) is
finally defined by matching the elementary probabilities,
through a straightforward generalization of Eq. (6):

PG(N ′1, ..., N
′
p)dN

′
1...dN

′
p = Pγ(N1, ..., Np)dN1...dNp.

(9)
Using Eq. (6) for each of the variables, we finally obtain:

Pγ(N1, ..., Np) ≡
PG(N ′1, ..., N

′
p)

PG(N ′1)...PG(N ′p)
Pγ(N1)...Pγ(Np).

(10)
Note that the mean and variance of Ni coincide with
those of N ′i by construction. On the other hand, the
covariance Σij in Eq. (7) does not coincide with the co-
variance of the correlated gamma distribution, which is
somewhat smaller.

The correlated gamma distribution can be defined for
an arbitrary number p of random variables, but in the
remainder of this paper, we only implement the simplest
case p = 2, where N1 ≡ Nch and N2 ≡ EPb

T . There are
five parameters: the means and variances of each vari-
able, and their mutual correlation, which is encoded in
the off-diagonal element Σ12 in Eq. (7). The fit to An-
gantyr results with a correlated gamma distribution is
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FIG. 3. (Color online) Distribution of Nch and ET for 3×105

Pb+Pb collisions at
√
sNN = 5.02 TeV and b = 0 simulated

with Angantyr. Here, ET denotes the sums of transverse en-
ergies deposited in 3.2 < η < 4.9 and −4.9 < η < −3.2,
corresponding to the forward and backward calorimeters of
ATLAS [40]. As in Fig. 2, the black line represents the 90%
confidence area of the correlated gamma fit (not shown).

displayed in the right panel of Fig. 2. It is obtained by
carrying out a five-parameter fit to the distribution on
the left. However, four out of these five parameters are
already known from the marginal distributions in Fig. 1,
so that the only extra fit parameter is Σ12. One sees by
eye that the correlated gamma distribution captures the
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main features of the simulation. A closer examination re-
veals that the fit is not perfect. As already seen in Fig. 1,
the fit has a longer tail in the Nch direction, and a shorter
tail in the ET direction. The rms error is 12.3%. It is
significantly larger than for the projections, but much
smaller than the rms error of a two-dimensional Gaus-
sian fit (not shown) which is 46.0%. Thus, the quality of
the fit is improved by a factor ∼ 4 by replacing the cor-
related Gaussian distribution with a correlated gamma
distribution, at no extra cost.

For the sake of comparison, we have also carried out a
simulation of Pb+Pb collisions at b = 0. The joint dis-
tribution of Nch and ET for this simulation is displayed
in Fig. 3. The system size is much larger, as can be
seen by comparing the values of Nch and ET with those
in Fig. 2. Correspondingly, the relative fluctuations are
smaller and more Gaussian [29]. We have carried out
fits (not shown) with a correlated Gaussian and with a
correlated gamma distribution. The rms errors are 6.3%
and 5.9%. The small difference between these two errors
means that for this system, the correlated gamma dis-
tribution is a marginal improvement over the Gaussian
distribution. This is not surprising since both distribu-
tions coincide for a large system. The error with the
correlated gamma distribution is smaller by a factor ∼ 2
than for the p+Pb collisions, which is also not surprising
as fluctuations in larger systems are more generic.

Thus the correlated gamma distribution provides a de-
cent parametrization of fluctuations at b = 0, both for
proton-nucleus and nucleus-nucleus collisions. We have
not run simulations for other values of b,5 but we expect
that the correlated gamma parametrization still works,
nevertheless getting worse as b increases, similar to what
is observed for Gaussian parametrizations in Pb+Pb col-
lisions [29].

III. BAYESIAN RECONSTRUCTION OF b = 0
COLLISIONS

We now describe how correlations and fluctuations at
b = 0 can be inferred from minimum-bias data. First, we
explain why we choose the impact parameter as a central-
ity criterion, rather than, say, the number of participant
nucleons, which may be thought a more relevant measure
of the collision activity [41]. The reason is that:

• Any observable defined from an ensemble average
at fixed b (for instance, the average value, or the
variance, of the multiplicity in a given rapidity in-
terval) is a smooth function of b2 due to b → −b
symmetry.

5 The currently available version of Angantyr does not allow one
to run at fixed positive impact parameter.

• The cumulative distribution of b, which we denote
by cb [24], is itself proportional to b2 near b = 0:

cb =
πb2

σinel
, (11)

where σinel denotes the total inelastic cross section
of the collision.6

Therefore, any ensemble-averaged observable is a smooth
function of cb and has no singularity at cb = 0. This sim-
ple and robust property, which is the only input of our re-
construction, is not satisfied with alternative definitions
of the centrality.

A. Method

We assume that for a fixed value of b or, equivalently,
cb, the probability distribution of the observables Ni of
interest (in our case, Nch and EPb

T ) is a correlated gamma
distribution as constructed in Sec. II C, which we denote
by Pγ(N1, N2|cb). This correlated gamma distribution
has five parameters, which are the five parameters of the
Gaussian distribution (7), and which we denote collec-
tively by Πj(cb), j = 1, ..., 5. We assume that each of
these parameters is a smooth function of cb, without any
singularity at cb = 0. We parametrize these functions in
a way that is as general as possible. The parametriza-
tion we choose is the exponential of a polynomial [29],
which guarantees that Πj(cb) > 0. The degree of the
polynomial must be large enough in order to obtain a
satisfactory fit to the data. Here, a polynomial of degree
2 was found to be sufficient:

Πj(cb) = Πj(0) exp
(
−a1,jcb − a2,jc

2
b

)
. (12)

The probability distribution of N1 and N2 in minimum-
bias collisions is then obtained by integrating over cb:

P (N1, N2) =

∫ 1

0

Pγ(N1, N2|cb)dcb. (13)

We fit the left-hand side, as obtained from simulation or
experimental data, with the right-hand side. According
to Eq. (12), there are 3 fit parameters for each of the
parameters of the gamma distribution, so that there is a
total of 15 fit parameters. The only constraint that we
impose on the fit parameters is that the mean values of
N1 and N2 decrease with increasing impact parameter.

B. Validation using Angantyr simulations

We now assess the accuracy of the Bayesian recon-
struction by applying it to 2× 107 minimum-bias p+Pb

6 In this paper, we focus on results for b = 0, which are indepen-
dent of the value of σinel.
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FIG. 4. (Color online) Joint probability distribution of Nch and EPb
T in minimum-bias p+Pb collisions at

√
sNN = 5.02 TeV.

Left panel: Angantyr simulations. Lines encompass the 90% confidence area of b = 0 collisions, either calculated directly
(dotted line, corresponding to the solid line of Fig. 2), or reconstructed (solid lines, where each line corresponds to a different
initialization of the fit parameters, corresponding to the range of parameters in Table I). The right panel displays the fit
obtained using Eq. (13) with one specific initialization, and the corresponding 90% confidence area of b = 0 collisions.

collisions at
√
sNN = 5.02 TeV simulated with Angan-

tyr. Each quantity reconstructed at b = 0 can be com-
pared with that calculated directly by simulating events
at b = 0, so that we can assess quantitatively the accu-
racy of the reconstruction.

The distribution of Nch and EPb
T in minimum-bias col-

lisions is displayed in the left panel of Fig. 4. At first
sight, it looks similar to the distribution in collisions at
b = 0, shown in Fig. 2. Therefore, it is not surprising
that some information about b = 0 collisions can be re-
constructed from minimum-bias events.

reconstruction direct calculation max. error

N̄ch 178.0− 183.1 177.0 3.4%

σNch 70.1− 76.1 76.8 9.5%

ĒPb
T 43.9− 45.8 GeV 45.4 GeV 3.3%

σET 23.5− 25.8 GeV 23.2 GeV 11.2%

Pearson r 0.844− 0.865 0.846 2.2%

TABLE I. Comparison between values reconstructed from
simulations of minimum-bias collisions (Fig. 4), or calcu-
lated directly by simulating p+Pb collisions at b = 0 (see
Fig. 2), for several observables: average values and standard
deviations of Nch and EPb

T , Pearson correlation coefficient
r ≡ Σ12/(σET σNch). For reconstructed values, we obtain a
range depending on the initialization of the fit parameters.
The last column is the maximum error on each observable.

We carry out a 15-parameter fit of this minimum-bias
distribution, as explained in Sec. III A. The number of
fit parameters is too large for their values to be precisely
constrained by simulated data. In practice, the set of
fit parameters returned by the fitting algorithm depends

somewhat on the initial guess, which means that the algo-
rithm does not find the absolute minimum of the χ2. We
have not attempted to solve this numerical issue since
the fits, despite not being identical, are all of equiva-
lent quality, and the quality is excellent. Specifically, the
rms error of the fit lies between 4.2% and 7.3%, signifi-
cantly smaller than when fitting b = 0 simulations alone
in Fig. 2. The 10 additional parameters introduced to
model the b dependence partially compensate for the im-
perfection of the correlated gamma distribution.

We are eventually interested in b = 0 collisions, which
are described by only 5 out of the 15 fit parameters (Πj(0)
in Eq. (12)). Table I lists the ranges of values for these
parameters for the various initial guesses, as well as the
reference value obtained by simulating events at b = 0.
The maximum error in the right column is defined as
the largest relative difference between the reconstructed
value and the reference value. The average values of Nch
and EPb

T at b = 0 are reconstructed with ∼ 3% accuracy,
and their standard deviations with ∼ 10% accuracy.7 It
is quite remarkable that these quantities can be recon-
structed so well with such minimal input.

7 The error on the reconstruction of the mean value was larger by
a factor ∼ 3 in Ref. [28]. The reason is twofold. First, it was
assumed in Ref. [28] that the ratio of variance to mean was inde-
pendent of centrality. Here, we relax this assumption, following
Ref. [29]. The variances and the covariance then decrease with
b faster than the mean, which is probably not physical [29] but
results in a much improved reconstruction of b = 0 quantities,
which is our goal. Second, the reconstruction of mean values
and variances is more precise if one fits the joint distribution of
(Nch, E

Pb
T ) than if one fits the marginal distributions.
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FIG. 5. (Color online) Joint probability distribution of Nch and EPb
T in minimum-bias p+Pb collisions at

√
sNN = 5.02 TeV.

Left: ATLAS data [31]. Two lines are drawn, which almost coincide, and correspond to the 90% area of b = 0 collisions given
by the Bayesian reconstruction for two different initializations of the fit, as in Fig. 4. Right: fit using Eq. (13) for one specific
initialization. We have applied the cuts Nch ≥ 6 and EPb

T > 10 GeV, and the excluded range is shown as a shaded area. In the
right panel, the cut between the colored region and the white region has been placed arbitrarily (due to the various triggers
used by ATLAS, the rule of one event per bin used in previous plots was ambiguous).

C. Application to ATLAS data

The left panel of Fig. 5 displays the distribution of Nch
and EPb

T measured by ATLAS in minimum-bias p+Pb
collisions at

√
sNN = 5.02 TeV [31]. The central detector

of ATLAS only detects a fraction of the charged parti-
cles in the interval |η| < 2.5, which explains why values
of Nch are much lower than in the Angantyr simulation
in Fig. 4. The fit using Eq. (13) is displayed in the right
panel. Compared to Angantyr simulations, the sensitiv-
ity of final results to initial guesses is much reduced. We
attribute this to the fact that fluctuations are smaller in
ATLAS data than in Angantyr simulations, a point to
which we come back in Sec. IV. Reconstructed mean val-
ues at b = 0 are N̄ch = 94, ĒPb

T = 60 GeV. Standard
deviations are σNch

= 32 and σET
= 24 GeV, and the

Pearson correlation coefficient between Nch and EPb
T is

r = 0.65. The rms error of the fit is 4.5%. Based on the
validation in Sec. III B, we expect that the accuracy of
the reconstruction is of order 3% for mean values, and
10% for standard deviations.

We finally explain why we only reconstruct observables
at zero impact parameter, not their full impact param-
eter dependence. First, it is impossible to reconstruct
the impact parameter dependence of the covariance ma-
trix from minimum-bias data alone. The reason is that
for b > 0, a simultaneous increase in Nch and ET can be
produced either by an decrease of b, or by a fluctuation at
fixed b, and both effects cannot be disentangled. In the
case of nucleus-nucleus collisions, a detailed study [29]
has shown that the impact parameter dependence can
be reconstructed only for the mean values, and for a

specific projection of the covariance matrix representing
the width of the distribution of (Nch, ET ). We have not
attempted to extend this study to proton-nucleus colli-
sions,8 but we expect that conclusions would be quali-
tatively similar. This suggests that the parameters a1,j

and a2,j in Eq. (12) are of little significance if j labels
an element of the covariance matrix, but may contain
relevant information for the mean values N̄ch and ĒT .
We obtain a1 ' 1.6 and a2 ' 0.7 for N̄ch, a1 ' 1.0 and
a2 ' 1.8 for ĒT . To leading order, the dependence on
impact parameter is determined by a1. We find that a1

is smaller for ET , in the Pb-going rapidity region, than
for Nch, around central large rapidity. This suggests that
the dependence on impact parameter becomes weaker as
one gets closer to the rapidity of the Pb nucleus.

IV. RESULTS AND MODEL COMPARISONS

A. Relative fluctuations in central p+Pb collisions

The observable which we use to characterize fluctua-
tions and correlations is the relative covariance matrix
σij , also referred to as the robust covariance [21]. If N1

and N2 denote multiplicities in two separate rapidity in-
tervals, it is defined by

σij =
〈NiNj〉 − 〈Ni〉〈Nj〉 − 〈Ni〉δij

〈Ni〉〈Nj〉
, (14)

8 One reason is that the Angantyr model which we use for the
validation cannot be run at fixed b for b > 0.
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FIG. 6. (Color online) Schematic representation of a p+Pb
collision at b = 0, where the proton size can be small (a) or
large (b) depending on the event. Depending on the proton
size, the number of wounded nucleons in the nucleus varies,
as indicated by the relative volume of the interaction regions,
colored in red.

where i, j = 1, 2, and angular brackets denote an ensem-
ble average, in our case an average over b = 0 collisions.
The last term in the numerator subtracts self-correlations
from the variance [21], and isolates the dynamical fluctu-
ations. After this subtraction is carried out, the relative
variance depends little on the size of the rapidity bin (see
Fig. 7 for an illustration). It is also independent of the
detector efficiency, which is a constant factor canceling
between the numerator and the denominator [21]. There-
fore, it makes sense to compare ATLAS data directly with
Angantyr simulations, even if the ATLAS detector only
detects a fraction of the charged particles.

Eq. (14) can be readily generalized to observables other
than multiplicities, such as the transverse energy ET in
a calorimeter, which is obtained by summing the contri-
butions of all particles falling in the acceptance window:
ET =

∑
iET,i, where ET,i is the transverse energy of

particle i. The only modification lies in the self correla-
tion, i.e., the last term of the numerator of Eq. (14), for
which one must substitute [29, 42]:

〈Ni〉 →

〈∑
i

(ET,i)
2

〉
. (15)

A calorimeter measures the energy without resolving the
contributions of individual particles, therefore the right-
hand side cannot be measured. It can however be esti-
mated. In the case of ATLAS p+Pb data, we take it from
the Angantyr calculation. It is a small relative correction
(of order 6%) to the variance of EPb

T .
The relative covariance for collisions at b = 0, recon-

structed from ATLAS p+Pb data, is:

σATLAS =

(
0.101 0.084

0.084 0.147

)
(16)

where the first variable is Nch and the second is EPb
T .

We evaluate the maximum error on these figures to be

∼ 25% by carrying out the same analysis as in Sec. III B.
This experimental result can be compared with that of
Angantyr simulations of b = 0 collisions:

σAngantyr =

(
0.182 0.187

0.187 0.244

)
. (17)

Angantyr overpredicts the relative (co)variances. In or-
der to interpret this finding, let us list the physical mech-
anisms contributing to fluctuations in event generators.
The number of nucleons hit by the incoming protons
plays an essential role. In a Glauber calculation with
a fixed nucleon-nucleon cross section [41], the nuclear
volume traversed by the proton does not fluctuate, but
the number of nucleons in this volume does, correspond-
ing to a quantum fluctuation associated with the nuclear
wave function. If the cross section fluctuates event to
event, the collision volume itself fluctuates, which en-
tails much larger fluctuations in the number of wounded
nucleons [12], as illustrated in Fig. 6. In the Angantyr
model, these cross-section fluctuations are present, and
correspond to fluctuations in the proton size. Our study
therefore suggests that these proton-size fluctuations are
too large in Angantyr.9 This shows that proton-nucleus
data constrain the theoretical description of subnucleonic
fluctuations. It would be interesting to test other models
of proton-nucleus collisions, such as the EPOS model [43],
or the hydrodynamic model with initial conditions from
the 3D Glauber model [44, 45], in this context.

One also observes that the relative variance is larger
for ET than for Nch, that is, σ22 > σ11, both for data
and Angantyr simulations. This could be due to the fact
that an energy (ET ) fluctuates more than a multiplicity
(Nch). In order to rule out this possibility, we have car-
ried out Angantyr simulations at b = 0 and calculated ET
and Nch in the same pseudorapidity window. We have
found that their relative variances are almost identical.
They differ only by 0.5% in the window |η| < 2.5, and
by 3% in the window 3.2 < η < 4.9. We conclude that
in a given pseudorapidity window, the relative variance
of ET and the relative variance of Nch are equivalent
observables. This should eventually be checked experi-
mentally, by comparing the relative fluctuations of Nch
and

∑
pT in the same detector, as suggested in [29].

The conclusion is that even though ATLAS does not
measure the charged multiplicity in the window 3.2 <
η < 4.9, but only the transverse energy, the relative vari-
ance of the multiplicity would be almost identical, if mea-
sured. The observation that σ22 > σ11 therefore implies
that the relative multiplicity fluctuations are larger at
forward rapidity, on the Pb-going side, than in the cen-
tral rapidity region. Now, the average multiplicity per

9 Note that contrary to a naive Glauber calculation, not all
wounded nucleons are equivalent in Angantyr. The scatterings
are softer in events where the proton is fatter [15], because the
average number of Multi-Parton Interactions depends on the
nucleon-nucleon impact parameter.
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unit rapidity dN/dy is also larger on the Pb-going side
in p+Pb collisions [36]. One might naively think that
the larger the multiplicity, the smaller its relative fluctu-
ations. This reasoning works for statistical fluctuations,
but we observe here the opposite trend for dynamical
fluctuations.10
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FIG. 7. (Color online) Rapidity dependence of the average
multiplicity per unit rapidity (top) and of the relative vari-
ance (bottom) in the QCD dipole model, for three different
values of the saturation scale rs. The relative variance is de-
fined as the variance divided by the square of the mean, and
corresponds to the diagonal elements of the relative covari-
ance matrix (14). It has been evaluated with two different
bin sizes: 0.05 (empty markers) and 0.1 (filled markers). Re-
sults are independent of the bin size, as anticipated [21] when
no short-range correlations are present. The rapidity variable
Y is defined by Eq. (20).

10 A similar phenomenon was seen in b = 0 Pb+Pb collisions [29],
where both the mean and the relative variance of the multiplicity
are maximum at mid-rapidity.
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FIG. 8. (Color online) Rapidity correlations in the QCD
dipole model. The quantity plotted it the Pearson correla-
tion coefficient (21) as a function of Y1 and Y2. It is plotted
in the form of a matrix, so that the vertical axis is descending
instead of ascending. The saturation radius is rs = 0.5 r0.

B. Multiplicity fluctuations in the QCD dipole
model

In order to figure out how the observed phenomena
relate with the underlying fundamental QCD dynamics,
we now investigate a simple model of gluon production
in the scattering of a hadron off a large nucleus, that
can be derived from QCD in an asymptotic limit appro-
priate to very high energies [46–48]. The hadron in its
ground state is modeled as a quark-antiquark color sin-
glet of fixed size r0, referred to as a color dipole. As
for the nucleus, it is solely characterized by a single size
rs, called the saturation radius, related to the saturation
momentum by Qs ∼ 1/rs. Physically, rs corresponds
to the size of color-singlet domains inside the nucleus in
its rest frame. The value of rs is fixed throughout the
calculation. Therefore, the dipole traverses a slab of nu-
clear matter of fixed length, similar to a proton-nucleus
collisions at b = 0.

This model is too simple to be quantitatively compared
with proton-nucleus data, but we can at least investigate
whether the same qualitative trends are present. We can
evaluate the observables studied above, namely: the ra-
pidity dependence of the mean multiplicity and of the
variance, and the rapidity correlation.

Let us briefly describe the model. We first need to
compute the quantum fluctuations in the wave functions
of the colliding objects. The density fluctuations in the
nucleus are neglected. The trick of the dipole model is
to start from the rest frame of the nucleus. When the
process is viewed in this frame, all the fluctuations can
be ascribed to the hadron. The gluons that are emitted
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in the collision are already present in the wave function
of the hadron. The ones that eventually go to the final
state are liberated thanks to the energy transfer induced
by the interaction.

We now explain how the gluon content of the simpli-
fied hadron is determined. This content depends on the
rapidity at which one observes it. The larger the rapidity,
the more gluons one sees.11 In the framework of the QCD
color dipole model [49], the increase of the number of glu-
ons as a function of rapidity is modeled as a Markovian
process. Starting with a quark-antiquark pair at rest, of
size vector ~r0 in the plane transverse to the collision axis,
and increasing its rapidity by the infinitesimal quantity
dy, an additional gluon may be found at the transverse
position ~r1 (up to d2~r1) with respect to the antiquark
with the probability

αsNc
π

dy
r2
0

r2
1(~r0 − ~r1)2

d2~r1

2π
, (18)

where αs � 1 is the strong coupling constant, and Nc is
the number of colors. Note that each gluon is assigned
a transverse position through this equation. This gluon
emission can be viewed as the branching of one dipole
into two dipoles of respective size vectors ~r1 and ~r0 − ~r1,
the endpoints of which coincide with the antiquark and
the gluon, and with the quark and the gluon, respec-
tively.12 Upon a further increase of the rapidity, each of
these two dipoles may split independently into two other
dipoles, with the same probability function (18), up to
the substitution of the size vectors. This further branch-
ing corresponds to a second gluon emission, off the quark,
the antiquark, or off the first gluon. Thus the evolution
of the gluon content as a function of rapidity is generated
by a Markov chain whose kernel is given by Eq. (18).

The expression of this kernel follows from a perturba-
tive QCD calculation (see e.g. [50] for a review). The fact
that hadrons have a finite transverse size is an essential
property for our study, but this property is essentially
nonperturbative and must be added by hand. We ac-
count for it by supplementing the branching probability
with the multiplicative cutoff function

e−r
2
1/(2R

2
IR) × e−(~r0−~r1)2/(2R2

IR), (19)

designed to strongly suppress branchings into dipoles of
sizes larger than RIR [48], where RIR is an infrared cutoff
of the order of 1 fm.

The gluonic content is evaluated up to the rapidity of
the nucleus, where the scattering occurs. These gluons
are virtual, in the sense that they are quantum fluctua-
tions with a finite lifetime. In order for a gluon to become

11 We neglect the production of quark-antiquark pairs which be-
comes negligible as rapidity increases.

12 The identification of the quark-antiquark-gluon system with a
pair of dipoles actually holds true in the large-Nc limit.

real, it needs to be put on-shell through a transfer of en-
ergy in the scattering process. Inspired by the McLerran-
Venugopalan semi-classical approximation [51], we as-
sume that the dipoles which scatter are those of size r
larger than rs. The gluons which go to the final state are
those which coincide with the endpoints of these dipoles,
as well as the gluons which belong to the set of their an-
cestor dipoles. The rapidity of a gluon is defined as the
rapidity at which is was produced.

This whole picture can be justified from first prin-
ciples in the so-called “double-logarithmic approxima-
tion” if the parameters are strongly ordered according
to rs � r0 � RIR. In practice, we apply it by choosing
parameters relevant for current experiments, where there
is no such strong ordering. The infrared cutoff RIR is cho-
sen slightly larger than the initial dipole size r0, namely
1.5 r0. The saturation radius of the nucleus rs should be
of the order of A−1/6r0 [51], where r0 is a typical hadronic
size and A = 208 is the atomic number of the nucleus.
We implement three different values: rs = 0.4 r0, 0.5 r0

and 0.6 r0.
The numerical implementation of the model is de-

scribed in Ref. [52]. The rapidity variable Y in our
calculation is related to the physical rapidity by

Y =
αsNc
π

(y − yh), (20)

where yh is the rapidity of the hadron. The gluon content
is evaluated for y > yh, corresponding to positive Y . The
multiplicative factor in Eq. (20) is motivated by Eq. (18),
which implies that the results are independent of αs when
plotted as a function of Y . The maximum value of Y
in our simulation, corresponding to the rapidity of the
nucleus, is Y = 2. This matches the rapidity range of
the LHC, which is ∼ 17, if αs ∼ 0.12. The reason why
we pick such a small value for the strong coupling is that
the leading-order dipole rapidity evolution, as encoded
in the kernel (18), is known to be too fast: setting a
value of the coupling smaller than what would be realistic
effectively slows down the latter, and makes the gluon
number density closer to that expected in the data.

The probability distribution of the number of gluons
is shown in Appendix C for two different rapidity win-
dows. It is qualitatively similar to the distribution of
multiplicity in Angantyr simulations and in experiment.

Figure 7 presents the average gluon density dNg/dY
and its relative variance as a function of the rapidity vari-
able Y . As in Sec. IV A, the relative variance is defined
as the variance divided by the square of the mean. Both
the mean multiplicity and the relative variance increase
as a function of rapidity, similar to the observation in
p+Pb collisions. The increase of the relative variance as
a function of rapidity can be put down to the branch-
ing process (18). The number of branchings necessary
to produce a gluon typically increases as a function of
its rapidity. Each process is random, and increasing the
number of processes also increases the randomness, hence
the increase in the relative variance. This increase is
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more pronounced for larger values of rs, corresponding
to smaller values of the saturation momentum Qs.

Note that the absolute value of the relative variance
in Fig. 7 is much larger than in data and in Angantyr
simulations of p+Pb collisions (compare with Eqs. (16)
and (17)). This discrepancy can be ascribed to the fact
that a proton does not reduce to a quark-antiquark pair.
Including more components typically reduces the rela-
tive variance. For a proton consisting of N independent
dipoles of identical sizes, for instance, the relative vari-
ance would be smaller by a factor N .

Finally, Fig. 8 depicts the rapidity correlation. We plot
the Pearson correlation coefficient, defined as

r(Y1, Y2) ≡ σ(Y1, Y2)

(σ(Y1, Y1)σ(Y2, Y2))
1/2

, (21)

where σ(Y1, Y2) is the relative covariance matrix. It grad-
ually deviates from unity as the difference between the
two rapidities increases. This phenomenon is responsi-
ble for the rapidity decorrelation, which has been much
studied first in the context of anisotropic flow [53] and
more recently for multiplicity fluctuations [54, 55]. In the
dipole model, the correlation remains very strong even at
large relative rapidities.

C. Multiplicity fluctuations in the fluctuating
string model

For the sake of comparison, we briefly discuss a dif-
ferent model, the fluctuating-string model, which has
been successful in describing data on longitudinal cor-
relations [54, 56, 57] but, unlike the color dipole model,
fails to predict the increase of the relative variance with
rapidity, at least in its simplest version.

In string models, hadrons are produced by the frag-
mentation of strings. In the simplest version of the
fluctuating-string model, each string produces a uniform
rapidity density, over some interval in rapidity. But the
end points of the interval are allowed to fluctuate event
by event, which gives rise to multiplicity fluctuations.
In the simplest version of the model, only one end of
the string fluctuates (Fig. 1 of Ref. [56]), that on the
proton side, and the location of the end point is dis-
tributed uniformly in rapidity. The mean multiplicity
and the covariance matrix can be calculated analytically
(Appendix B1 of Ref. [57]). We denote by yp the rapidity
of the proton and by yPb that of the nucleus. For a sin-
gle string, the multiplicity density increases linearly with
rapidity [58, 59] for yp < y < yPb:

dN

dy
∝ y − yp, (22)

and the relative covariance matrix is given by

σ(y1, y2) =
yPb − y2

y2 − yp
, (23)

where the rapidities have been ordered according to y1 ≤
y2. The relative variance corresponds to the limiting case
y1 = y2 = y:

σ(y, y) =
yPb − y
y − yp

. (24)

It decreases as a function of y. This example illustrates
that the increase seen in ATLAS data, which is repro-
duced both by Angantyr and by the color dipole model,
is not a trivial phenomenon. For N independent strings,
the relative variance is smaller by a factor N . We have
not investigated whether more sophisticated versions of
the fluctuating string model, including double-end fluc-
tuations and fluctuations in the string tension [57, 60],
may fix this wrong rapidity dependence.

We also derive for completeness the Pearson correla-
tion coefficient describing the rapidity decorrelation. In-
serting Eq. (23) into (21), one obtains:

r(y1, y2) =

√
(y1 − yp)(yPb − y2)

(y2 − yp)(yPb − y1)
, (25)

where we again order rapidities according to y1 ≤ y2.
The Pearson correlation coefficient is typically smaller
than in the color dipole model (Fig. 8), corresponding to
a stronger rapidity decorrelation.

D. Discussion of related analyses

We finally discuss how our findings relate to previous
analyses: The analysis of long-range multiplicity correla-
tions carried out by ATLAS in Ref. [61], and the central-
ity dependence of the rapidity spectrum dN/dy in p+Pb
collisions [36, 37].

The ATLAS collaboration has measured the rela-
tive covariance matrix of the multiplicity distribution
σ(η1, η2), defined as in Eq. (14), in narrow bins of η,
in the range −2.5 < η < 2.5. The solid symbols (labeled
|η−| < 0.1) in the middle panel of Fig.11 of Ref. [61]
represent the variation of 1 + σ(η, η) as a function of
η+ = 2η in p+Pb collisions at 5.02 TeV. As η increases,
the relative variance σ(η, η) first decreases, down to a
minimum value compatible with 0 at η = 0, then in-
creases up to a maximum value of ∼ 0.009 at η = 2.5.
At first sight, these results seem incompatible with our
claim that the relative variance increases monotonically
as a function of η. In addition, the order of magnitude
of σ(η, η) is smaller by an order of magnitude than our
values in Eq. (16).

The only major difference lies in the definition of the
sample of events over which the variance is evaluated.
In this paper, the event sample consists of all collisions
at b = 0. In Ref. [61], it consists of events with a fixed
total multiplicity (more precisely, events where the mul-
tiplicity in |η| < 2.5 lies within a narrow bin). If one
fixes the integral of dN/dy, the only remaining source



12

of multiplicity fluctuations is a fluctuation in the shape
of dN/dy [62]. The largest source of such fluctuation
is the forward-backward asymmetry[63], which naturally
generates a variance proportional to |η|2 (referred to as
“butterfly” fluctuations in Ref. [59]).

We finally discuss the centrality dependence of
dN/dy [36, 37]. One observes experimentally that as
the collision becomes more central, the asymmetry be-
tween the p-going side and the Pb-going side becomes
more and more pronounced, down to small centrality
percentiles [37]. We argue that this is a natural con-
sequence of the fact that the relative variance increases
towards the Pb-going side, as shown in Sec. IV A, and
that the multiplicity is strongly correlated across the ra-
pidity range, as exemplified by the large value of σ12. In
experiment, centrality is defined according to multiplic-
ity in some rapidity window. More central is defined as
higher multiplicity. With this definition, the variation
of impact parameter is essentially irrelevant for the 10%
most central collisions, and one may consider for simplic-
ity that they are all at b = 0.

In the limit where the rapidity correlation is maximal,
corresponding to a Pearson correlation coefficient (21)
equal to unity, the deviation of dN/dy from its mean
value is proportional to the square root of the variance
for all y:

dN

dy
=

〈
dN

dy

〉(
1 +X

√
σ(y, y)

)
, (26)

where X is a random number with zero mean and unit
variance which characterizes the amplitude of the mul-
tiplicity fluctuation. More central events correspond to
events with higher X. Since both 〈dN/dy〉 and σ(y, y)
increase with y, the asymmetry between the p-going side
y < 0 and the Pb-going side y > 0 becomes more and
more pronounced as X increases. This qualitatively ex-
plains the trend observed experimentally, that the asym-
metry increases down to arbitrarily small centrality per-
centiles. We intend to carry out a more quantitative
study in a forthcoming publication.

V. CONCLUSION

We have introduced a method to reconstruct the av-
erages, standard deviations and covariances of multiplic-
ities in p+Pb collisions at b = 0, using as input data
for minimum-bias collisions. This method is particularly
robust in the sense that it does not rely on any specific
model of the collision. We manage to reconstruct aver-
age values with ∼ 3% accuracy, and standard deviations
with ∼ 10% accuracy. The method has been applied to
ATLAS data at 5.02 TeV.

Isolating b = 0 collisions is a crucial improvement for
the study of fluctuations. In minimum-bias data, the
dominant source of fluctuations is the decrease of the
length of nuclear matter traversed by the proton as b
increases. By selecting b = 0 collisions, we eliminate

this trivial source of fluctuations, and we isolate quantum
fluctuations. Quantum fluctuations are present in both
proton and nuclear wave functions, and also in the colli-
sion process. These various sources cannot be separated,
but it seems natural that the fluctuations are larger in
the smaller system, namely, the proton. This implies that
proton-nucleus collisions have the ability to constrain the
description of the proton substructure. We have illus-
trated this by comparing ATLAS data with calculations
with the Angantyr model, which turns out to overesti-
mate multiplicity fluctuations. We have also shown that
the relative multiplicity fluctuation increases as a func-
tion of rapidity. This is a non-trivial effect: The fluc-
tuating string model, in its simplest version, predicts a
decrease instead. We have argued on the basis of the
QCD dipole model that this increase, which originates
from the soft gluon cascade, is sensitive to the saturation
scale.
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Appendix A: Mapping Gaussian to gamma

The one-dimensional Gaussian distribution is

PG(N ′) =
1

σ
√

2π
exp

(
− (N ′ − N̄ ′)2

2σ2

)
. (A1)

Its cumulative distribution is

FG(N ′) ≡
∫ N ′

−∞
PG(x)dx

=
1

2

[
1 + erf

(
N ′ − N̄ ′

σ
√

2

)]
. (A2)

The gamma distribution is

Pγ(N) =
1

Γ(k)θk
Nk−1e−N/θ, (A3)

with N > 0. Its mean and standard deviation are

N̄ = θk
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σ = θ
√
k (A4)

These two equations define, for each gamma distribution,
the Gaussian distribution (A1) with the same mean and
variance. The cumulative distribution is:

Fγ(N) ≡
∫ N

0

Pγ(x)dx

=
1

Γ(k)
γ

(
k,
N

θ

)
, (A5)

where γ(s, x) denotes the lower incomplete gamma func-
tion. Eq. (5) can be rewritten as:

Fγ(N) = FG(N ′). (A6)

The mapping between N and N ′ is obtained by solving
numerically this equation, with the explicit expressions
(A2) and (A5). It is the bottleneck of our reconstruction
procedure, which is much slower than that of Ref. [29]
for this reason.
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FIG. 9. (Color online) Distribution of the number of glu-
ons in two different rapidity intervals. Symbols: Monte Carlo
simulation with the QCD dipole model. Lines: gamma distri-
butions with the same mean and variance as the simulation.

Appendix B: 90% confidence ellipse

Here we recall the definition of the 90% confidence el-
lipse for a generic two-dimensional Gaussian distribution.
We start with a symmetric two-dimensional Gaussian dis-
tribution centered at the origin, with unit width, for two
variables t1 and t2:

p(t1, t2) =
1

2π
exp

(
− t

2
1 + t22

2

)
=

1

2π
exp

(
−r

2

2

)
,

(B1)
where r2 = t21 + t22. The probability f that r < r0 is
obtained by integrating over the disk of radius r0:

f =

∫
r<r0

p(t1, t2)dt1dt2 = 1− exp

(
−r

2
0

2

)
. (B2)

The 90% confidence circle is the circle which contains
90% of the probability, that is, the circle for which f =
0.9. Its radius r0 is obtained by inverting Eq. (B2):

r0 =
√
−2 ln(1− f). (B3)

This can be generalized to an arbitrary Gaussian distri-
bution by carrying out the following change of variables:

t21 + t22 →
∑
j,k

(xj − x̄j)Σ−1
jk (xk − x̄k), (B4)

where the new variables are (x1, x2). The above equation
can be rewritten in matrix form as

tTT = (tX − tX̄)Σ−1(X − X̄) (B5)

where T and X are column vectors, and tT and tX their
transpose (line vectors). We then solve this equation to
express X as a function of T :

X = X̄ + Σ1/2T, (B6)

where Σ1/2 is the square root of the positive semi-definite
matrix Σ whose eigenvalues are all positive:

Σ1/2 =
1√

TrΣ + 2
√
|Σ|

(
Σ + I

√
|Σ|
)
, (B7)

where TrΣ denotes the trace, |Σ| the determinant, and I
the 2 × 2 identity matrix. Through Eq. (B6), the confi-
dence circle of radius r0 is mapped into an ellipse centered
at X̄. This is the ellipse depicted in Fig.1 of Ref. [29]
(with f = 0.99). In the case of the correlated gamma dis-
tribution, one must at the end carry the transformation
from the Gaussian variables to the gamma variables, as
explained in Sec. A. Due to the nonlinearity of this trans-
formation, the 90% confidence curve depicted in Fig. 2
(see also Figs. 4 and 5) is no longer an ellipse, but it still
contains 90% of the probability by construction.

Appendix C: Gluon number fluctuations in the QCD
dipole model

We present numerical results on the distribution of
gluon numbers in the Monte Carlo implementation of the
QCD dipole model presented in Sec. IV B, in order to il-
lustrate their similarity with distributions of multiplicity
and transverse energy shown in the main body of the pa-
per. We generate 106 events with the saturation radius
rs set to 0.5 r0. For each event, we compute the gluon
number in two different rapidity intervals, whose dispo-
sition and size are similar to the pseudorapidity intervals
in which ATLAS measures the charged multiplicity Nch
and the forward transverse energy EPb

T . The distribu-
tions of these two numbers are displayed in Fig. 9. The
number of gluons is smaller in the interval at the larger
rapidity, despite the fact that dN/dY increases with Y
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FIG. 10. (Color online) Left: joint distribution of the number of gluons in the two rapidity intervals. Right: correlated gamma
distribution with the same means, variances and covariance.

(Fig. 7), because the interval is narrower. The distri-
butions are very close to gamma distributions, shown as
lines in Fig. 9. The rms errors, defined by Eq. (4) are
16.0% for the rapidity interval 0.8 < Y < 1.4, and 7.5%
for the interval 1.5 < Y < 1.7.

The joint distribution is displayed in the left panel of
Fig. 10. The right panel displays the correlated gamma

distribution with the same mean and covariance matrix.
Both distributions look very similar by eye. The rms er-
ror as defined from the Kullback-Leibler divergence is in
fact rather large, 43.5%. But it is largely dominated by
the first few bins, where the fit overestimates the simu-
lation by a large factor. If we had excluded the first few
bins, as in fits to Nch and EPb

T distributions shown in
this paper, the rms error would be much smaller.
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JHEP 10, 134 (2018) [arXiv:1806.10820 [hep-ph]].

[31] G. Aad et al. [ATLAS], Phys. Rev. C 90, no.4, 044906
(2014) [arXiv:1409.1792 [hep-ex]].

[32] A. Giovannini and L. Van Hove, Z. Phys. C 30, 391
(1986)

[33] P. Bozek and W. Broniowski, Phys. Rev. C 88, no.1,
014903 (2013) [arXiv:1304.3044 [nucl-th]].
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