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ABSTRACT: cis-1,2-Dialkenylcyclopropanes incorporating a vinyl azide, generated by Knoevenagel condensations between the 

corresponding cyclopropanecarbaldehydes and -azido ketones, undergo cascade Cope and Winstein [3,3]-sigmatropic rearrange-

ments, under mild conditions. The sequence allows access to diversely substituted 1,4-cycloheptadienes armed with a secondary 

allylic azide with up to three stereocenters. 

Azides have found countless applications in organic chemistry 

encompassing their use as amines precursors to the develop-

ment of bioorthogonal ligation reactions.1,2 Recent years have 

seen a renewed interest in the chemistry of aliphatic azides with 

a particular focus on allylic and vinylic azides.3–5 The reactivity 

of allylic azides is dominated by their ability to undergo a facile 

allylic transposition, known as the Winstein rearrangement 

(Scheme 1A).3 Steric and electronic factors influencing the po-

sition of the equilibrium between interconverting allylic azides 

have been investigated3,6 and the Winstein rearrangement has 

been coupled with other transformations that can exclusively or 

preferentially (kinetic dynamic transformations) occur on one 

regio- or stereoisomer.3,7,8 The synthesis of allyl azides is usu-

ally accomplished by substitution reactions involving allylic 

halides or alcohol derivatives, or by ring-opening of vinyl 

oxiranes or bromonium ions, with a nucleophilic azide source,3 

sometimes in the presence of a transition metal catalyst 

(Scheme 1B, path a).3,9 Allylic C–H bond azidation (Scheme 

1B, path b),10 allene hydroazidation (Scheme 1B, path c)11 or 

1,3-dienes azido-functionalizations (Scheme 1B, path d)12 have 

also emerged as alternative strategies. Because of their versatile 

reactivity, vinyl azides have been identified as an “emerging 

class” of hetero-substituted alkenes.4 Whilst denitrogenative 

transformations are the most documented, these latter substrates 

can serve as precursors of functionalized aliphatic azides.5 

However, to our knowledge, the synthesis of allyl azides from 

vinyl azides A seems to be restricted to a copper-catalyzed for-

mal (3+2) cycloaddition with vinyl diazoacetates which is fol-

lowed by a Winstein rearrangement of the initially formed al-

lylic azides B, the driving force of which is the formation of the 

more stable tetrasubstituted cyclopentenoates C (Scheme 1C).13 

Interestingly, sigmatropic rearrangements constitute a class of 

reactions in which vinyl azides have not been involved so far, 

despite their potential interest to access other classes of unsatu-

rated aliphatic azides. Perhaps the required conditions and rea-

gents may have deterred chemists from considering these latter 

hazardous, reactive and thermally labile substrates, which can 

generate 2H-azirines and/or vinyl nitrenes upon heating.14 

Scheme 1. Allylic azides: Synthesis, Winstein Rearrange-

ment and Vinyl Azides as Potential Precursors. 

 

Herein, we report the Cope rearrangement of cis-dialkenyl cy-

clopropanes D incorporating a vinyl azide,15 as a route to cyclo-

heptadienes E possessing a tertiary allylic azide and their sub-

sequent isomerization into azido-cycloheptadienes F by a Win-

stein rearrangement (Scheme 1D). 

The preparation of cis-(2-alkenylcyclopropyl)alkenyl azides D 

required for this study was envisioned by a Knoevenagel con-

densation between the corresponding cyclopropanecarbalde-

hydes and -azido carbonyl compounds.16,17 Aldehyde 1a was 
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involved in a Knoevenagel condensation with -azido aceto-

phenone 2 in the presence of piperidinium acetate (MeOH, rt, 

16 h).16 Under these conditions, the 1,4-cycloheptadiene 3a, 

possessing a secondary azide, was identified as the new product 

and was isolated in high yield (92%). Hence, the cis-1,2-dial-

kenylcyclopropane 4a, arising from the Knoevenagel conden-

sation underwent an efficient Cope rearrangement and the re-

sulting 1,4-cycloheptadiene 5a, incorporating a tertiary allylic 

azide, further evolved by a Winstein rearrangement which is 

completely shifted toward the more stable secondary allylic az-

ide 3a, possessing an ,-unsaturated ketone (Scheme 2). 

Scheme 2. Cascade Knoevenagel condensation–Cope and 

Winstein sigmatropic rearrangements from aldehyde 1a. 

 

The scope of the cascade Knoevenagel condensation-Cope and 

Winstein sigmatropic rearrangements was then explored with 

diversely substituted cis-(2-alkenylcyclopropane)-carbalde-

hydes 1b-1l and -azido acetophenone 2 (Table 1). The reaction 

accommodates a substituent at the  position of the alkene on 

the cyclopropyl aldehyde 1b, as illustrated with the formation 

of cycloheptadiene 3b (76%) (Table 1, entry 1). Aldehyde 1c 

possessing an ,-disubstituted olefin was a viable partner in 

the Knovenagel condensation with 2 but the Cope/Winstein cas-

cade rearrangements leading to cycloheptadiene 3c (66%) in-

corporating an enol phosphate only occurred after heating the 

crude vinyl azide intermediate (EtOH, reflux, 16 h) (Table 1, 

entry 2). The reactivity of aldehydes 1d–1g possessing an 

,-disubstituted olefin was next explored. Aldehydes 1d and 

1e, substituted by a phenyl or a (tert-butyldiphenylsilyloxy)me-

thyl group on the alkene (E/Z > 96:4), respectively led to the 

azido-cycloheptadienes 3d (73%) and 3e (78%) as single de-

tectable diastereomers (dr > 96:4, by 1H NMR spectroscopy) 

(Table 1, entries 3 and 4). Interestingly, in the case of aldehydes 

1f and 1g in which the ,-disubstituted alkene was not fully 

controlled (E/Z = 92:8), cycloheptadienes 3f (72%) and 3g 

(87%) were respectively obtained as single diastereomers (Ta-

ble 1, entries 5 and 6). As confirmed later in the case of substrate 

1i (vide infra), both geometric isomers of 1f and 1g probably 

underwent the Knoevenagel condensation with 2 but only the 

(E) isomers subsequently evolve by a Cope rearrangement. 

2-Vinylcyclopropanecarbaldehydes possessing a 1,2,3-trisub-

stitued three-membered ring could also be considered as sub-

strates but the Cope rearrangement proceeds only when the ad-

ditional substituent (R4) is trans to the alkenyl chains.18  

 

 

 

 

Table 1. Cascade Knoevenagel condensation–Cope and 

Winstein sigmatropic rearrangements from cyclopropane-

carbaldehydes 1b-1l and -azido ketone 2. 

 

entry substrate product yield 

1 

 

 

76% 

1b 3b 

2a 
 

 

66% 

1c 3c 

 

 

  

1d-1g 3d-3g (dr > 96:4) 

3b 1d, R3 = Ph (E/Z = 96:4)    3d, R3 = Ph  73% 

4 1e, R3 = CH2OTBDPS (E/Z = 96:4)    3e, R3 = CH2OTBDPS 78% 

5 1f, R3 = n-Pent (E/Z = 92:8)    3f, R3 = n-Pent  72% 

6 1g, R3 = (CH2)2CO2Et (E/Z = 92:8)    3g, R3 = (CH2)2CO2Et  87% 

7c 

 

 

66% 

1h 3h (dr > 96:4) 

8d 

 
 

 

68% 

1i, R3 = Ph (E/Z = 65:35) 3i (dr > 96:4) 

9e 

 

  

 

1j 3j (0%) 6 (54%)  

 

 

 

 

1k-1l 3k-3l 

10 1k, R3 = H 3k, R3 = H 90% 

11 1l, R3 = Ph (E/Z > 96:4)  3l, R3 = Ph 90% 

a The crude product was further heated in refluxing EtOH for 16 h. b Ex-

periments conducted at a scale ≥ 1 mmol. c The crude product was further 

heated in CDCl3 at 40 °C for 24 h. d The crude product was further heated 
in refluxing CH2Cl2 for 24 h. e Reaction run in EtOH (rt, 16 h then 70 °C, 

24 h).  

In the case of aldehyde 1h substituted by a phenyl group, the 

Knoevenagel condensation with 2 leading to azide 4h was com-

plete after the usual reaction time (16 h) but cycloheptadiene 3h 

was only a minor product (20%) at this stage. Heating was re-

quired to trigger the Cope rearrangement, which was immedi-

ately followed by the Winstein transposition leading to cyclo-

heptadiene 3h as a single diastereomer (66%), as evidenced by 

monitoring using 1H NMR spectroscopy (CDCl3, 40 °C, 24 h) 



 

(Table 1, entry 7). The reactivity of aldehyde 1i (E/Z = 65:35) 

paralleled that of 1f, 1g and 1h since both geometric isomers 

underwent the Knoevenagel condensation with 2 but subse-

quent heating (CH2Cl2, reflux, 24 h) triggered the cascade 

Cope-Winstein rearrangements of the (E) geometric isomer ex-

clusively which afforded cycloheptadiene 3i (68%, based on 

(E)-1i) (Table 1, entry 8), whereas the vinyl azide generated 

from (Z)-1i did not react further. The presence of an ester in 

substrate 1j retarded the Cope rearrangement so the crude prod-

uct arising from the Knoevenagel condensation was heated in 

refluxing EtOH. However, under these conditions, the azido-

cycloheptadiene 3j generated by the cascade sigmatropic rear-

rangements underwent elimination of HN3 to produce the con-

jugated cycloheptatriene 6 (Table 1, entry 9). By contrast with 

1h and 1j, a silyloxymethyl substituent on the cyclopropane 

ring in substrates 1k and 1l did not have any adverse effect on 

the rate of the Cope rearrangement which proceeded at rt and 

after Winstein rearrangement, the desired tri- and tetrasubsti-

tuted cycloheptadienes, 3k and 3l respectively, were isolated in 

90% yield (Table 1, entries 10 and 11).  

The relative stereochemistry of the azido-cycloheptadiene 3l 

was established by X-ray diffraction analysis19 and that of the 

other products 3d–3k was assigned by analogy. The stereo-

chemical outcome can be understood considering that the 

Knoevenagel condensation between aldehydes and -azido ke-

tones is known to afford -azido trisubstituted enones D of (Z) 

configuration16 and that the Cope rearrangement of divinylcy-

clopropanes occurs through a boat transition state TS1.15 Addi-

tionally, the subsequent rapid Winstein rearrangement of the in-

itially formed tertiary allylic cycloheptadienyl azides E, which 

have never been detected as intermediate products, would pro-

ceed in a suprafacial manner and with complete chirality con-

version.3 It is worth noting that despite the presence of a trisub-

stituted alkene, the low steric demand of the azido group ena-

bles dialkenylcyclopropanes D to undergo the Cope rearrange-

ment under mild conditions (at rt, in most cases, or 40-80 °C) 

which do not jeopardize the thermally labile vinyl azide moiety. 

Limitation of the scope to substrates D devoid of substituent on 

the three-membered ring cis to the alkenyl groups (R4’ = H) or 

to (E)-,-disubstituted alkenes (R3’ = H) can also be under-

stood from the transition state model TS1. Indeed, for substrates 

D in which R3’ or R4’ would differ from hydrogen atoms, the 

transition state of the Cope rearrangement would be signifi-

cantly destabilized by steric interactions (A1,3 strain or eclipsing 

interaction between the R3’ and N3 substituents)15,20 and hence 

the reaction would require higher temperatures, incompatible 

with the vinyl azide (Scheme 3).18 

Scheme 3. Transition state of the Cope rearrangement of 

cis-dialkenyl cyclopropanes D. 

 

The scope of the Knoevenagel condensation–Cope/Winstein re-

arrangements cascade was further explored with different -az-

ido ketones (Table 2).  

Table 2. Cascade Knoevenagel condensation–Cope and 

Winstein sigmatropic rearrangements from cyclopropane-

carbaldehydes 1d-1l and -azido ketones 7-11. 

 
entry aldehyde azido ketone product yield 

  

 
 

 

1 1d         7, R = OMe             12, R = OMe 72% 

2 1d         8, R = Cl             13, R = Cl 87% 

3 1d 

 
 

96% 

9 14 

4 1d  

 

89% 

10 15 

5 1d  

 

 

11 

  

 

16 60% 
  

17 59% 

6 1l 

 
 

96% 

  8 18  
 

The reaction of aldehyde 1d with -azido p-methoxy- and 

p-chloroacetophenone, 7 and 8, as well as with o-fluoro-aceto-

phenone 9, under usual conditions (piperidinium acetate, 

MeOH, rt, 16 h) delivered the azido-cycloheptadienes 12 

(72%), 13 (87%) and 14 (96%), respectively (Table 2, entries 

1-3). Besides acetophenones, -azido chalcone 10 and -az-

ido’-(benzoyloxy)acetone 11 could be successfully used as 

partners with aldehyde 1d and delivered the corresponding cy-

cloheptadienes 15 (89%) and 16 (60%) (Table 2, entries 4 

and 5). It is worth pointing out that -azido ketone 11 can act 

as a surrogate for -azido acetaldehyde in the Knoevenagel 

condensation since chemoselective reduction of the ketone and 

the ester in compound 16 with DIBAL-H, followed by oxidative 

cleavage of the resulting 1,2-diol with NaIO4, delivered the 

,-unsaturated aldehyde 17 (59%) (Table 2, entry 5). The re-

action between 1l and -azido ketone 8 also afforded the 

tetrasubstituted azido-cycloheptadiene 18 in excellent yield 

(96%) (Table 2, entry 6). 

Seven-membered carbocycles are less represented than cyclic 

systems of smaller size in bioactive compounds but are cur-

rently eliciting a growing interest in medicinal chemistry.21 

Hence, with several azido-cycloheptadienes of type F in hands, 



 

some post-functionalization reactions were carried out to high-

light the synthetic interest of these latter functionalized seven-

membered carbocycles (Scheme 4).  

Scheme 4. Post-functionalization reactions. 

 

The electron-rich olefin in compound 3l could be chemoselec-

tively dihydroxylated under standard conditions to afford the 

corresponding 1,2-diol 19 (96%) with high diastereoselectivity 

(dr > 90:10), presumably arising from a steric control (dihy-

droxylation occurring trans to both adjacent allylic substitu-

ents) (Scheme 4, eq. 1). Transformations involving the azido 

group were next investigated. The azido-cycloheptadiene 3d 

was involved in a copper-catalyzed (3+2)-cycloaddition with 

propargyl alcohol to deliver the corresponding 1,4-triazole 20 

(85%) (Scheme 4, eq. 2). Reduction of the azido group in com-

pounds 3d, 3g and 3k was efficiently accomplished using SnCl2 

(MeOH, rt)22 and the crude amine hydrochlorides were con-

verted to N-Boc carbamates 21 (93%), 22 (83%) and 23 (49%), 

respectively (Scheme 4, eq. 3). The presence of an enone moi-

ety in these latter products led us to explore the feasibility of the 

conjugate addition of organocuprates. The N-Boc carbamate 21 

underwent 1,4-addition of Me2CuLi in the presence of 

Me3SiCl.23 After subsequent protodesilylation of the silyl enol 

ether with n-Bu4NF, the tetrasusbtitued cycloheptene 24 was 

obtained as a single diastereomer (79%) and the relative stere-

ochemistry of this latter crystalline compound was unambigu-

ously established by X-ray diffraction analysis. Since the 

NHBoc group did not exert a directing effect in previously re-

ported examples of cuprates addition to -amino ,-unsatu-

rated compounds,23 the stereochemical outcome may be due to 

a faster silylation of the d-* cuprate-enone complex when the 

copper is trans to the bulky phenyl group of 21.24 This could 

explain the trans relationship between the phenyl and the me-

thyl groups after reductive elimination of the copper(III) -ad-

duct, whilst protodesilylation of the silyl enol ether would result 

in proton transfer on the face opposite to the phenyl group 

(Scheme 4, eq. 4). 

 

In conclusion, we have shown that 1,2-dialkenyl cyclopropanes, 

generated by a Knoevenagel condensation between 

cis-(2-alkenyl)cyclopropanecarbaldehydes and -azido ke-

tones, readily undergo cascade Cope and Winstein rearrange-

ments leading to azido-cycloheptadienes incorporating up to 

three stereocenters. Hence, an access to allylic azides, comple-

mentary to the existing strategies, has been devised and the 

products are seven-membered carbocycles with new substitu-

tion patterns, armed with an azido group potentially useful for 

further derivatization. These results highlight the synthetic in-

terest of vinyl azides in sigmatropic rearrangement as a route to 

different classes of aliphatic azides.  
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