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Explaining autoencoders with local impact scores

Clément Picard, Hoel Le Capitaine

Nantes Université, LS2N, France

Abstract. The growth of deep learning methods underlines our need
for explicability, to clarify and control the choices made by artificial
intelligence programs. This paper summarizes our proposal to explain
the representations created by autoencoders. The pattern recognized by
each neuron of the network is defined in a few words by combining the
weighted definitions of the neurons from the previous layer. This process
explains the network as a network of patterns and allows to understand
both the organization and the output of the autoencoder. Thanks to its
design made for neural networks, the method can also be generalized to
many problems such as binary classification, multi-class classification or
regression.

Keywords: XAI, Explainability, Neural network, Autoencoder, Repre-
sentation learning.

1 Introduction

As deep learning grows, its methods are being applied to an increasing variety
of tasks. However, the validation of these approaches often comes up against
the "black-box" behavior of their models, unable to justify their decisions [22].
The explainability of deep learning models and/or of their results is therefore
a key element in the development of this field [21]. As outlined by Adadi et al,
explainable AI (XAI) "tends to refer to the movement, initiatives, and efforts
made in response to AI transparency and trust concerns, more than to a formal
technical concept" [1]. Thus, XAI aims to produce more explainable models,
while maintaining a high level of learning performance [12].

We suppose that the reader is familiar with neural networks approaches, and
thus, we briefly introduce the necessary concepts. The interested reader can refer
to [13] for more details. A neural network consists of a set of layers of neurons
connected one after the other. Each neuron receives as input the activation of
the neurons from the previous layer, and returns as output an activation value
that corresponds to a non-linear function of the sum of its inputs multiplied by
weights. Training a neural network from a given example is done by determining
the difference between the network’s processed output and the target output. The
network then adjusts its weighted associations using this error value, usually with
backpropagation. The output of the network is materialized by the activation
of the neuron(s) of the last layer, and is therefore abstract [21]. It is in this
abstraction that lies the difficulty to interpret it.



2 Related work

General methods have already been proposed to explain the results of a model,
independently of the model used: LIME [23], FairML [2], Sensitivity analysis
[7], Auditing [3], Counterfactuals [26]... These approaches usually work in two
ways. Some make a direct link between input data and output data, highlighting
relevant inputs to the network’s decision. Others focus on selecting representative
examples of specific patterns recognized by the network.

More recently, given the wide adoption of neural networks and its black-box
problem, a number of methods designed for neural networks have been proposed,
e.g. Layer-wise relevance propagation [6] and DeepLIFT [25]. These strategies
take into account the architecture of the neural network, explain how it works,
and use this explanation to clarify the results obtained.

As shown in the Figure 1, these methods generally quantify the impact of
each neuron from the previous layer on the activation of the neurons of the
next layer, by looking back in the network. The equation used to calculate the
impacts is called the propagation of the relevance score, both for the deep Taylor
decomposition [20] and for the method called excitation backprop [27]. This
equation is defined as follows:

Rj←k =
ajw

+
jk∑

i aiw
+
ik

Rk (1)

with aj the activation of one neuron j, and wjk the weight associated to
neuron j in the calculation of neuron k activation (the + denotes the fact that,
in this equation, only positive weights are considered). i denotes each neuron of
the previous layer. Finally, Rk defines the relevance score contained into neuron
k. This calculation allows to measure the normalized impact of a neuron j of the
previous layer on the activation of a neuron k of the next layer.

input output

Rj Rk

Fig. 1. Schema illustrating the method of Layer-wise Relevance Propagation [21].

Going back to the input layer, we can measure the impact of each input
element on the output, as shown in Figure 2.
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Fig. 2. Left: Relevant words on the theme of space [5]. Positive relevance is mapped
to red, negative to blue. Right: Relevant pixels in the recognition of each number [21]

The work of Bau and his colleagues [8] takes this reasoning a step further, by
placing a concept (i.e. a word) on the pattern recognized by each hidden unit in
a convolutional neural network (CNN). For instance, a neuron (i.e. hidden unit)
could recognize the color pink, trees, cats, etc. This process is automatically per-
formed by gathering hidden units’ responses to known concepts and quantifying
the alignment between hidden units and concepts, and then by selecting the top
ranked label(s) (cf Figure 3). The network structure can then be interpreted as
a set of recognized patterns.

Fig. 3. Patterns identified by some units of a CNN (top left) and human annotated
labels (top right) [8]

However, such experiments have only been observed on pictures. An image
has the advantage of being directly interpretable by one of the human senses,
which is not the case for most feature sets given as input to a neural network,
and in particular tabular datasets.

3



Also, all the previous approaches (including Bau’s work [8]) focus on the
explainability of neural networks dealing with non-tabular data: images, texts,
etc. In this kind of networks, the definition of the input features is unstable over
the examples. For instance, a first picture may show a dog’s head on the bottom
left, and a second a dog’s head on the top right. While in both cases a dog’s
head is present, the pixels in the bottom left corner will define a dog’s head only
for the first example. Therefore, we cannot give the same meaning to each pixel
over the entire dataset, but we can do so with each cell of a tabular dataset.

To address these limitations, we will provide in this paper a new approach
to explain networks dealing with tabular data. We will focus specifically on
autoencoders. This neural network architecture offers the advantage of doing
unsupervised learning, as opposed to other neural approaches. In this case, it is
essential to understand how the network works to understand its output.

An autoencoder (AE) is a specific neural network architecture (cf Figure 4).
Its aim is to obtain an output as similar as possible to the input. However, its
architecture forces the AE to summarize the input information into a limited
number of central variables. Then, the network is forced to decode this repre-
sentation to create an output as close as possible to the input.

x1

x2

x3

h1

h2

x̂1

x̂2

x̂3

Fig. 4. Structure of an autoencoder: x̂ is an approximation of x through a learned
representation h.

To explain the middle layer encoding, many research works have tried to
define each central neuron with the concept that it recognizes [9]. Thus, a model
trained on faces could recognize the size of the nose, the length of the hair, the
color of the eyes, etc. Some AEs have been developed recently to achieve this
task known as feature disentanglement: Total Correlation VAE [10], Wassertein
AE [24], InfoGAN [11]. Other approaches, e.g. [15], try to explain the output
rather than intermediate layers explaining the output.

However, two problems arise from these proposals.
First, none of them seems to rely on the structure of the AE. The methods

make a direct link between inputs and outputs by empirically placing a concept
on the pattern recognized by each central neuron.

Second, as we can see in a more general way for neural networks, the current
research works mainly deal with non-tabular data, which is directly interpretable
by humans (e.g. images, text). Yet, in many cases, the input is just tabular data,
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a collection of variables that humans do not know how to organize as a whole.
It is important to provide explainability for these situations.

This paper features two main contributions:

– A method to define the pattern recognized by each neuron of the latent
representations generated with autoencoders, but also to define the pattern
of each neuron of the network.

– This method will be generalized to several kinds of problems (binary clas-
sification, multi-class classification, regression) to bring clear and compact
explanations of the results.

3 Propositions

3.1 Overview

Our proposal is based on 2 ideas of the literature. These proposals were used
on non-tabular data (pictures, text, etc.), and we adapt and combine them on
tabular data:

1. Compute the impact of the neurons from the previous layer on the neurons
of the next layer.

2. With these impact scores, define layer after layer the pattern recognized by
each neuron. Doing so, explain the network as a set of patterns combined
together to allow the recognition of more and more complex patterns.

In practice, we first compute the impacts of the input features on the first layer.
Using these impacts, we define in a few words the concepts recognized by each
neuron of the first layer. This technique is repeated, progressing by one layer at
a time, until the central layer of the AE is reached and defined.

3.2 General impact scores

We calculate general impacts received by each neuron. These impacts must be
understood as the mean impact of the neurons from the previous layer on the
activation of the concerned neuron, and this over the whole dataset used to train
the network. The goal of this step is to understand the pattern recognized by
the neuron.

Our impact calculation is based on the equation 1. However, this equation
was made for non-tabular data, which means that each neuron didn’t define the
same concept over all a dataset. In our case, we take advantage of the consistency
of variables by using covariance. Doing so, we measure the link between each
neuron of consecutive layers for the whole dataset, and not only at the level of
an example:

Ij←k =
cov(aj , ak)wjk∑
i |cov(ai, ak)wik|

Ik (2)
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Here, Ik defines the total amount of impact contained into neuron k, and
other annotations are identical to equation 1. It is worth noting that we chose the
covariance over the correlation as covariance preserves the impacts of standard
deviations whereas correlation normalizes it.

3.3 Patterns definition

The central idea of our work is, for each neuron, to combine the definitions of
the most impactful inputs into a new definition, which would define the pat-
tern/concept recognized by the concerned neuron. The definition of the neuron
is, in the current state of the method, created manually by the user by combining
the impacts automatically calculated by the program.

To understand the definition of a concept, let’s consider the example of a neu-
ral network that estimates house prices. Table 1 (left) hypothetically describes
the impacts acting on a neuron. Here, we could define our neuron as "size of the
living areas". The activation of the neuron will be high if the size of the kitchen,
the living room and the veranda are high, and conversely if they are low.

In some cases, as for table 1 (right), it is complicated to find a definition that
gathers all the main impacts. In this example, we can define our neuron as "the
size of the garage and the bathroom". This neuron will be strongly activated if
the size of the garage and/or the bathroom is high, and vice versa. We have to
keep in mind that the neural network does not necessarily detect patterns that
make sense for the human cognition.

Neuron definition Impact

Size of the kitchen 0.41
Size of the living room 0.25
Size of the veranda 0.14
Size of the toilet 0.09

... ...

Neuron definition Impact

Size of the garage 0.55
Size of the bathroom 0.29

Size of the office 0.12
Size of the toilet 0.07

... ...

Table 1. Housing price example - impacts on a neuron

3.4 Specific impact scores

To explain the activation of a neuron for a specific example, the specific impacts
of that example are calculated. Let’s take a look at table 1 to illustrate this need.
Sometimes the neuron is activated because the kitchen is very large, while the
living room and the veranda are of normal size. In other cases, the neuron can
be activated while the kitchen is normal size, but this time the living room and
the veranda are above average size. Thus, in both cases, the pattern "size of the
living areas" is well recognized, but a more specific explanation allows to shed
light on the reasons for this activation. Also, in some rarer cases, the neuron is
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activated while the kitchen, the living room and the veranda are of average size,
but the toilet is exceptionally large. These specific impacts can also help us to
understand outliers.

To compute the specific impacts, we first calculate, for the specific example,
how much the activation of a previous neuron differs from its mean activation
(computed over all the dataset):

δ(aj,z) = aj,z − aj , where aj = 1/n

n∑
k=1

(aj,k)

with j the index of the neuron, aj the mean activation of the neuron over all
the dataset, z the index of our given example, aj,z the activation of the neuron
on our example.

Then, our goal is to measure how much this deviation impacts the activation
of the neuron k of the next layer. By transposing equation 2 to this application,
each specific impact S is calculated as follows:

Sj,z =
δ(aj,z)wjk∑
i |δ(ai,z)wik|

with k the index of the neuron of next layer, wjk the weight linking neuron
j and neuron k, and

∑
i δ(ai,z)wik the sum of deviations on the whole layer.

3.5 Network requirements

The next points are not mandatory to use the method on an AE, for example
if one wants to keep a high complexity of the network. However, meeting these
requirements will lead to a highly explainable result.

Network architecture The architecture of the neural network must follow
some rules to efficiently define the pattern recognized by each neuron.

Pruning: Our human cognition does not allow to group a large amount of
parameters into a single pattern. So, to be able to define the pattern of a neuron,
we limit the number of links between each layer. This is called pruning [16]. Each
neuron is connected to a number n of neurons of the previous layer. It constrains
the neuron to determine a pattern from this limited set of inputs.

Number of layers: A balance must be found between:
- A neural network deep enough to be able to cross patterns and obtain complex
results.
- A neural network sufficiently shallow to be conceptualized as a network of
patterns by the human cognition.
Considering this, we limit the encoder part of the AE to 3 layers: 1 for inputs, 1
hidden layer, and 1 for the central layer. Later, when generalizing to other types
of architectures, the network is made of 4 layers: 1 for inputs, 2 hidden layers,
and 1 for outputs.
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Network selection To define interesting and diversified patterns, we want
the network to restrict its use of the same input neurons. Let’s take again the
example of estimating the price of a house. For a first network, the neuron defined
as "size of the land" has a big impact (more than 0.1) on 6 neurons of the next
layer. For a second network, this same variable impacts only 2 neurons of the
following layer. We realize that, for the first network, the definitions are likely
to be more redundant than those of the second network, because they will often
focus on the size of the terrain. Therefore, we want to limit the use of the same
neurons in the definitions to obtain a more diversified vocabulary.

To this end, we build several networks. A score is calculated for each of
them, and the network with the lowest result is chosen. To compute the score of
a network, we count for each neuron the number of times that its impact on a
neuron of the next layer is greater than 0.1. Then, we select in these numbers of
appearances those that are greater than or equal to 3, and we sum them squared.
The result of this sum is our score. By lowering this score, the number of too
frequent appearances of the same variables in our definitions is reduced. In some
cases, some variables will keep a high number of appearances, which is expected
when these variables explain a large part of the result we are looking for.

Note: we do not use entropy as we only care about avoiding neurons being too
frequently present in the explanations, but we do not want to force the network
to use neurons that would not be useful in the calculation of the result. This is
important especially for generalizing the method to classification and regression.

This method can be used to accomplish various tasks. It first offers the possi-
bility to observe the general functioning of a network, to understand the patterns
recognized within the different layers. It also allows to explain the result obtained
for a specific example. The code of our work can be found at: link.

4 Results and Discussion

4.1 Autoencoder explanation

To study the explainability of AEs, we used the dataset created by the research
team of Robert Joel Lewis [19]. This dataset deals with films and indicates for
each production the number and ratio of spoken words that belong to several
categories. For example, it includes for each movie the number of words referring
to work, money, sadness, friendship, etc. We selected 25 of these categories and
created for each movie a representation made of 13 features.

Performance with pruning The balance between performance and explain-
ability is one of the main concerns of XAI. Often, the highest performing methods
are the least explainable, and the most explainable are the least accurate [14].

Figure 5 depicts this dilemma between performance and explainability, ac-
cording to the pruning performed. For each neuron of the model, the more the 3
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most impactful neurons of the previous layer contain a high quantity of impact,
the more it will be likely to give a relevant definition to the pattern recognized.

Looking at figure 5, the loss is higher for the most limiting prunings. But on
the other hand, the more limiting the pruning is, the higher the impact contained
in the 3 most impactful neurons. In our case, we choose to continue with a
pruning restricting to 5 back connections per neuron, which allows on average
to obtain an summed impact of about 0.95 in the 3 most impactful neurons.
However, we could also choose to work with a larger number of connections to
increase the performance of the network, but we have to keep in mind that this
increase would lead to less pattern-matching definitions.

Fig. 5. Learning curves for various pruning limitations (left) and sum of the impacts
contained in the 3 most impactful neurons (right). The number of weights must be
understood as the number of connections between a neuron and the previous layer.

Definition process The definition process goes layer by layer. We first com-
pute the impacts of the input data on the first layer, and use these impacts to
create a definition of the neurons. The same process is repeated for the next
layers. As a reminder, in the current state of the method, definitions are created
manually by the user by combining the impacts calculated by the program.

For example, in our case, we obtain for the first layer some definitions like
"No achievement or reward", "Affiliation, positive emotions, men", "Death and
anger, no positive emotions", "No negative emotions or risk", "Anger/swear/bad
health", "No leisure or positive emotions, but power". These definitions are
meaningful in terms of movies, we can easily envision the types of films that
do or do not fit. However, some definitions may be less explicit to our cog-
nition. For instance, "Affiliation with risk but no reward" may fit the movies
that approach a social relationship in a risky context, but without a link with
reward/benefit/prize.

After having carried out this stage of definition, we end up with 13 descrip-
tions, which describe the neurons of the central layer. The next part focuses on
two meaningful examples to make these results and their applications explicit.
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Central representations: examples The first example is the film The Game
of Their Lives (2005). The movie is based on the true story of the U.S. soccer
team which, against all odds, beat England during the 1950 FIFA World Cup.

We represent this film in the table 2, making the link between the definitions
created through our method and the standardized activations observed on the
central layer. The table shows that several values deviate from the mean. We
first observe neurons 1 and 5, where low values are explained by the abundance
of leisure and positive emotions in the movie. Neuron 4 is pulled up, once again
thanks to the importance given to leisure and positive emotions, but also thanks
to the fact that many men are represented, with the notion of affiliation. Neuron
6 has a value well below the average, this result is due to the great importance of
achievement and reward in this movie, with the opposition between two teams.
Finally, neuron 11 is strongly activated mainly because affiliation and risk are
promoted.

Index Neuron definition Activ.

1 No leisure/positive emotions, but power/sex/work -2.58
2 Bad health and work -0.54
3 No men and movie focused on present or future -0.2
4 Leisure, positive emotions, men, affiliation, with possibly anger/swear/bad health 4.31
5 Power, no leisure/positive emotions/affiliation, also no anger/swear/bad health -2.48
6 No achievement or reward -4.62
7 Death/anger/power, no positive emotions or leisure -1.02
8 Bad health/death/anger/work -0.68
9 Friends, affiliation, positive emotions, men 0.63
10 Friends, affiliation, positive emotions, men, without negative emotions or risk 0.5
11 Affiliation with risk and negative emotions 2.12
12 No women or family/affiliation, no negative emotions/sadness -0.1
13 Friends, affiliation, positive emotions, men, with a bit of religion 0.7

Table 2. The Game of Their Lives - Encoded representation

A second example is the movie Go, Go, Second Time Virgin (Yuke Yuke
Nidome No Shojo, 1969). This very dark film tells the story of Poppo, a teenage
girl, who was raped by four boys. Tsukio, a teenage boy, has been watching the
rape passively. Over the course of a day and a night, Poppo and Tsukio begin a
relationship, telling each other of their troubled past and philosophizing about
their fate. When the gang returns and again rapes Poppo, Tsukio kills each of
them and their three girlfriends. The story ends with Poppo and Tsukio both
jumping off the apartment roof to their deaths.

We show this movie in the table 3, again standardizing each of the central
activations. First, neuron 3 indicates a rather high value compared to its average.
This is mainly due to the fact that the movie deals very little with men, focusing
on the two children. Then, neuron 5 is very negative because the topics of anger,
swears and bad health are strongly present in the film. The same applies to
neuron 8, adding the subject of death. Neuron 6 is activated because of the
absence of achievement or reward. Neuron 7 is very strongly activated because
death, anger and the absence of positive emotions are predominant. Neuron 10 is
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weakly activated due to the absence of friendship, affiliation, positive emotions,
men, and the presence of negative emotions and risk. Neuron 12 is negative
mainly because the film contains a lot of negative emotions and sadness. Finally,
neuron 13 is very negative because friendship and affiliation are not developed,
as well as positive emotions, men and religion.

Index Neuron definition Activ.

1 No leisure/positive emotions, but power/sex/work -0.52
2 Bad health and work 0.64
3 No men and movie focused on present or future 1.19
4 Leisure, positive emotions, men, affiliation, with possibly anger/swear/bad health -0.2
5 Power, no leisure/positive emotions/affiliation, also no anger/swear/bad health -2.64
6 No achievement or reward 1.28
7 Death/anger/power, no positive emotions or leisure 7.75
8 Bad health/death/anger/work 2.52
9 Friends, affiliation, positive emotions, men -0.26
10 Friends, affiliation, positive emotions, men, without negative emotions or risk -3.57
11 Affiliation with risk and negative emotions -0.33
12 No women or family/affiliation, no negative emotions/sadness -1.93
13 Friends, affiliation, positive emotions, men, with a bit of religion -4.6

Table 3. Go, Go, Second Time Virgin (Yuke yuke nidome no shojo) - Encoded repre-
sentation

Specific impacts: example We now focus on explaining the activation of a
specific neuron. Looking again at table 2, we observe that the activation of neuron
10 ("Friends, affiliation, positive emotions, men, without negative emotions or
risk") is positive, but not that high for a movie focused on a male football
team that wins a match. We would like to understand this activation. To do
so, we compute the specific impacts of the neurons of the previous layer on the
activation of neuron 10 (table 4).

In this table, we can observe the definition of each neuron of the previous
layer, their general impacts on the neuron 10 (central layer), and their specific
impacts for the movie "The Game of Their Lives". For instance, the neuron
2 is activated when the movie refers to friendship. Its general impact on the
central neuron 10 is equal to 0.59, which is very high. It means that, in the data,
when the references to friendship are above the average, then neuron 2 strongly
positively impacts the activation of the central neuron 10. In parallel, it also
means that when friendship is below the average, neuron 2 strongly negatively
impacts the activation of the central neuron 10. On the side of specific impact,
we can see that this neuron has a value of 0.15 for the movie The Game of Their
Lives, which means that neuron 2 was activated above average and positively
impacted the activation of the central neuron 10.

So, to finally explain why the activation of central neuron 10 is only of 0.5,
we observe that neuron 15 has a strong negative specific impact. This is due
to the fact that the movie contains a lot of negative emotions and risk, which
leads neuron 15 to an activation well below its mean. However, central neuron
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Index Neuron definition General impact Specific impact

1 No achievement or reward 0 0
2 Friends ++ 0.59 0.15
3 Friends ++ 0 0
4 Affiliation with risk but no reward 0 0
5 Not sad, + money 0.05 0.05
6 Male ++ 0 0
7 Death and anger, no positive emotions 0 0
8 Leisure but no affiliation, no focus past 0 0
9 Bad health, a bit of work 0 0
10 Focus on past 0 0
11 No women or family, no negative emotions 0 0
12 Not sad, bit of religion 0 0
13 Focus on past, no risk 0 0
14 Men without anxiety 0 0
15 No negative emotions or risk 0.17 -0.37
16 Anger/swear/bad health, affiliation 0 0
17 Sex and work, no focus on future 0 0
18 No leisure or positive emotions, but power -0.04 0.21
19 Affiliation, positive emotions, men 0.14 0.22

Table 4. The Game of Their Lives - Specific impacts on the neuron 10: "Friends,
affiliation, positive emotions, men, without negative emotions or risk"

10 has still a positive activation of 0.5 because all the other specific impacts
are positive, and this is explained by the fact that the movie treats a lot about
friendship, happiness, leisure, positive emotions, affiliation, and men.

4.2 Generalization to other problems

To generalize our approach, we apply it to 3 different types of problems: binary
classification, multi-class classification and regression. For comparison purposes,
these same problems are also solved using decision trees.

Binary classification For this type of problem, we use a Kaggle dataset on
the survivors of the Titanic disaster [18]. The objective is to predict whether a
passenger survived the sinking or not.

We create a neural network made of 4 layers: a first one for the input data,
then 2 hidden layers and a last one for the output. After defining each pattern
recognized by the neurons of the network, we finally obtain the following output
definition: "woman, a bit elevated fare, good class, generally young". This pat-
tern is easily understandable by the human cognition and makes a lot of sense
in terms of classification. The closer the passenger’s profile is to this description,
the higher the probability of survival, and vice versa.

In parallel, when using a decision tree that achieves a similar level of per-
formance, the node rules first take into account the sex of the person, then the
class and fare, and finally the age. Similarly to the neural network, the features
used to predict a survivor are female sex, a good class, a fairly high fare and a
rather young age.
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Multiclass classification For this second type of task, we choose a dataset
created by Davide Anguita and his collaborators [4]. This dataset focuses on the
recognition of 6 types of physical behaviors: lying, sitting, standing, walking on a
flat surface, walking downstairs and walking upstairs. To this end, a smartphone
is placed on the subject’s waist. 12 features are then selected to describe the
movement of the device, using its accelerometer (for the acceleration over 3
axes) and its gyroscope (for the rotation over 3 axes).

Similarly to the binary classification, we create a neural network made of 4
layers: a first one for the input data, then 2 hidden layers and a last one for the
output classes. We focus on the definitions of the output classes.

– For the lying position, the main impacts reveal the following definition: "Not
standing, back of the waist and/or ribs towards ground, no change in altitude
(the phone doesn’t move over the vertical axis)".

– For the sitting position, the result is "Back of the waist orientated towards
ground, waist doesn’t move".

– For standing, "No change in altitude, waist doesn’t move, trunk upright".
– For walking on a flat surface, the main impacts lead to "Trunk upwards, hips

symmetrically moving back and forth, and up and down".
– For the walking downstairs, "Big changes in altitude (the phone is moving

quickly over the vertical axis), not standing still".
– Finally, for walking upstairs, "Trunk upwards, ankles symmetrically moving

back and forth, changes in altitude, moving forward".

As a comparison, the decision tree starts by separating walking activities
from still activities using the standard deviation of the acceleration along the
vertical axis, which describes the changes in altitude during the period. Then,
on the stationary activity side, the standing position is separated from the other
two using the mean acceleration on the vertical axis. In a second step, the lying
position is partly separated from the sitting position by using a threshold for
high values of antero-posterior acceleration. In fact, when lying down, gravity
no longer acts on the vertical axis but on the antero-posterior axis. On the other
side, regarding walking activities, walking downstairs is partly detached from the
two other activities by thresholding the very high values of standard deviation
on the vertical axis: when walking downstairs, the altitude of the phone changes
very quickly. In a second step, a part of walking upstairs is individualized by
selecting the high values of forward and slightly upward acceleration. These
nodes allow the classification of only about 80% of the data, and a large number
of additional nodes is needed to improve performance.

Regression In this last part, we are interested in regression, using a dataset
introduced by Kaggle [17]. This dataset is focused on the prediction of the final
ranking of a player in a PUGB game. The ranking is materialized by a value
between 0 and 1, where 1 corresponds to first place and 0 to last place.

Like previously, we create a neural network made of 4 layers: a first one for
the input data, then 2 hidden layers and a last one for the output ranking. As a
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result, our method leads to the following definition of the output: "Walks a lot,
makes a lot of damages (on opponents and vehicles) and uses health bonuses".

In parallel, a decision tree with a comparable level of performance first bases
its decision on the walking distance and then uses many different parameters
depending on the case.

5 Conclusion and Perspectives

We have introduced a way to explain autoencoders and, more generally, neural
networks. This method can be applied to all kind of tabular data. By putting
words on the pattern recognized by each neuron, it allows for a clear and simple
explainability of the network and of its results.

However, this approach points out several limitations of the explainability of
neural networks, due to the limits of human cognition and human-made concepts.
First, we are only able to put words on relatively simple patterns. Although
each node of a neural network is able to cross tens, hundreds, thousands of
inputs, it is hard for humans to gather more than 4 or 5 features under a single
concept. Thus, the networks are created taking this limitation into account and
may present a lower performance compared to networks only oriented towards
performance. On the other hand, we can also choose to work with less pruned
networks that perform well, but we have to keep in mind that this leads to less
pattern matching definitions.

Secondly, our culture and experience of the world restricts the diversity of
concepts. The network can create links between elements that do not necessary
make sense for humans. Our reasoning is impacted by the way we experience the
world, but the optimal result of the neural network does not take into account
this culture, which would be for him a limit to the performance.

Therefore, the limits of our method, and more broadly of the explainability
of tabular data problems, are not caused by a computational problem but rather
by the limits of human cognition.

The next step of our work will consist in applying this method to other
datasets, but also in comparing the results with other XAI approaches, to prove
the relevance of our work. Later, we could also imagine to automate the creation
of definitions through natural language processing techniques. One suggestion
would be to automatically compute, for each node, the distance between the
definitions of the 3 biggest impacts (neurons from the previous layer) and a set
of words/concepts, to automatically create a new definition based on the closest
words.
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