
HAL Id: hal-03773372
https://hal.science/hal-03773372

Submitted on 9 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an Evaluation of Lipschitz Constant Estimation
Algorithms by building Models with a Known Lipschitz

Constant
William Piat, Jalal Fadili, Frédéric Jurie, Sébastien da Veiga

To cite this version:
William Piat, Jalal Fadili, Frédéric Jurie, Sébastien da Veiga. Towards an Evaluation of Lipschitz
Constant Estimation Algorithms by building Models with a Known Lipschitz Constant. Workshop
on Trustworthy Artificial Intelligence as a part of the ECML/PKDD 22 program, IRT SystemX [IRT
SystemX], Sep 2022, Grenoble, France, France. �hal-03773372�

https://hal.science/hal-03773372
https://hal.archives-ouvertes.fr

Towards an Evaluation of Lipschitz Constant Estimation
Algorithms by building Models with a Known Lipschitz

Constant

William Piat1,2, Jalal Fadili2, Frédéric Jurie1, and Sébastien Da Veiga1

1 Safran Tech, Digital Sciences and Technologies Department, Rue des Jeunes Bois,
Châteaufort, 78114 Magny-Les-Hameaux, France.

2 Normandie Univ, ENSICAEN, CNRS, GREYC, Caen, France

Abstract. We present a consistent framework for evaluating algorithms assessing
the Lipschitz constant of neural networks. Lipschitz constants are tightly linked
to robustness in the sense that they bound the overall amplification of the vector
processed through the network, in other words it directly correlates the changes
on the prediction with changes on the input. Controlling it precisely during the
training of statistical model is still an open problem and is key to certifying neural
networks. Our research is motivated by the fact that numerous algorithms exist for
computing Lipschitz constant and that papers tend to only compare the proposed
algorithms against each other without the knowledge of the actual target value.
This is sound if one wants to showcase the differences in performance and accu-
racy between algorithms, however there exist no reference test where the target is
known beforehand. We provide here, to the best of our knowledge, the first pro-
cedure to generate general networks with a known target Lipschitz constant. This
methodology enables to gain some insight on the results of Lipschitz assessing al-
gorithms, both on the behavior with respect to dimension and their behavior when
probed near the boundaries of their validity domain.

1 Introduction and related works

Robustness of neural networks, in particular their robustness to adversarial examples, has
been the subject of many recent works, given their increased usage in critical applications
(applications that involve a high level of validation). It has indeed been shown that deep
neural networks are very sensitive to adversarial attacks [1,2], which are small crafted
noise, usually unable to fool a human, that are able to completely perturb the predictions
made by deep neural networks. Ultimately the lack neural networks robustness leads to
little or no use in critical applications to date.

A measure of the robustness to such input perturbations is the Lipschitz constant as
it play an important role in generalization bounds [3] that describe the generalization
capacity of a broad class of function: The smaller the Lipschitz constant the smaller
the gap is bound to be between the training error and the testing error. Computing the
Lipschitz constant answers two specific needs: the first one is the need for certification
where the goal is to insure that around specific datapoints the prediction does not change.
The second one is the need for robustness that is to insure more stability to perturbation

on any sample of the data distribution. Measuring and controlling the Lipschitz constant
have hence become major challenges to characterize the robustness or to build robust
neural networks [4]. Indeed, the lack of robustness can be seen as the consequence of
uncontrolled Lipschitz constant during training, which allows a small perturbation to
cause large changes in the decision function.

Estimating the Lipschitz constant of a neural network is a NP hard problem [5] there-
fore different approaches are often facing an accuracy/complexity dilemma. Loose es-
timations of the Lipschitz constant [6] used simple product of operator norms. It was
then refined: Seqlip [5] is reformulating the estimation into a maximisation problem on
activation variables that if solved exactly provides an upper bound for the Lipschitz con-
stant. SDP relaxation such as LipSDP [7] or [8] give a true certified upper bound with
a heavy computational cost. Computing the Lipschitz constant of ReLU networks can
also be cast as polynomial optimization, for which the sparse version of the Lasserre’s
SDP-hierarchy was proposed in [9] to provide upper bounds that are sometimes strict
improvement over previously known upper bounds.

A common ground of approaches for estimating the constant concerns the tests they
are performing: given random or trained networks the methods are probed one against
another and the one providing the lowest constant has be the one performing the best
(only if the estimation is a true upper bound). Although interesting for comparing meth-
ods this simply does not answer basic questions: how close the estimation is to the real
Lipschitz constant? What are the dependencies of the error?

The main motivation for this paper is to provide procedures for designing diverse test
cases (i.e., diverse neural networks) for which the Lipschitz constant is known. This will
allow us to quantitatively compare and qualify algorithms for estimating Lipschitz con-
stants. The main difficulty is that building a general network that has a specific Lipschitz
constant is an NP hard problem.

2 Contributions

Section 4, provides an exact formulation of the problem of prescribing a Lipschitz con-
stant that can be solved approximately, this is to the best of our knowledge the first at-
tempt at designing a prescribed Lipschitz network without the use of Lipschitz layers
[10,11]. We probe the effectiveness of our approach by crafting neural networks with
different values of Lipschitz constant and show small error despite the lack of conver-
gence guaranties of our algorithm. In Section 5 we present a more naive approach that
has the advantage of giving an exact Lipschitz constant but covers a smaller class of
models this method is efficient, computationally speaking, and exact but it lacks the
generality of the former. This method is then used to appreciate the approximation prop-
erties of Lipschitz assessing algorithms: we are then able to highlight effectively their
respective properties and their dependencies to either input dimension and/or parameter
dimension.

3 Notations and definitions

3.1 Neural network

LetZ ⊂ Rp×Rq be a dataset with elements (x, y) ∈ Z where x is the input (explanatory
variables) and y is the target. We wish to build a predictor in order to predict y from x.

Definition 1. Given a non linear function ϕ : R → R that can be applied element-
wise on a vector, and a set of n ∈ N matrices (Wi)

n
i=1 with compatible dimensions so

that the matrix product W1W2...Wn is well defined. A linear neural network with biases
is a function f : Θ × X → Rq , where X → Rp and Θ is the space of parameters
(θ := (Wi, bi)i∈[n])

f1(θ, x) := W1x+b1, fi(θ, x) := Wiϕ(fi−1(θ, x))+bi,∀i = 1, .., n, f(θ, x) := fn(θ, x).
(1)

This function can be used to approximate y using x.

3.2 Lipschitz smoothness

The Lipschitz smoothness is a property that quantifies the variations of a non smooth
function: the smaller the constant is, the less the function varies. This is closely in-
tertwined with the notion of robustness as it give a direct way of upper bounding the
changes of a function with respect to the changes in its arguments. This is overall a suit-
able indicator of a well regularized decision process and it would ideally be enforced or
conditioned throughout a dedicated training.

Definition 2. Let X ⊂ Rp, p ∈ N and Y ⊂ Rq, q ∈ N, equipped with the usual norms,
a function f : X → Y is called Lipschitz if there exists a constant L such that for all
(x, y) ∈ X × Y

∥f(x)− f(y)∥2 ≤ L∥x− y∥2. (2)

Of course, any L′ > L is also a Lipschitz constant of f , for simplicity the minimal
Lipschitz constant Lf,X of the function f is called the Lipschitz constant of f .

Lf,X can be expressed also as the upper bound of the differential quotient:

Lf,X = sup
y,x∈X2

∥f(x)− f(y)∥2
∥x− y∥2

. (3)

4 Enforcing a Lipschitz smoothness to a given network

In this section, we propose an approach that initializes a model and then optimize its
parameters in order to fit a fixed target Lipschitz constant.

Let f be a neural network as defined in (1) In the case of a multi layer perceptron
the Lipschitz constant of f over X in the norm ∥·∥ is:

Lf,X (θ) := sup
x∈X

∥∥∥∥∥
(

d−1∏
i=1

W⊤
i diag(Gϕ(zi))

)
W⊤

d

∥∥∥∥∥ , (4)

where z1 = x, zi = Wixi−1+ bi for all i ∈ {2, ..., n}, and Gϕ(zi) is an appropriate
generalized Jacobian of ϕ evaluated at zi. Typically G is a conservative field [12] in
which case Lf,X (θ) is indeed a Lipschitz constant whenever X is convex [9]. When ϕ
is differentiable this generalized gradient is the singleton of the Jacobian.

Our goal is the following:

Given a prescribed target Lipschitz constant L̄
Find θ∗ such that Lf,X (θ∗) = L̄.

(5)

It is intended in (5) that such θ∗ exists. Observe also that θ∗ is not unique in general
by obvious ambiguities (scale for instance). Thus, problem (5) can be solved only in an
equivalence class.

Let us chose a loss function ℓ : R2
+ → R+ such that ℓ(a, b) = 0 ⇐⇒ a = b. One

can then also formulate (5) as
min
θ∈Θ

L(θ, x, L̄)

where L(θ, x, L̄) := ℓ(Lf,X (θ), L̄).
(6)

If θ∗ exists in the first problem then the minimum value in (6) is indeed 0. One can show
using standard arguments that if Gϕ(·) is continuous (hence ϕ is C1), that Θ is compact,
the minimization problem (6) that the set of minimizers is a nonempty compact set
(which does not mean that it is attained at 0). The C1 assumption might be weakened
but we will stick with this assumption for now. The compactness assumption on Θ also
makes sense at least for some of the parameters to remove the ambiguities.
Remark 1. In any approach above, one has to appeal to some second-order information
on ϕ, i.e., at some point to differentiate Gϕ(z) wrt z. In turn, this necessitates a higher
order smoothness on ϕ compared to our work on robust optimization [13] (which is not
the case for the usual piece-wise linear activation functions).

4.1 Algorithm for solving (5)
A heuristic way to solve (5) is to alternatively maximize on x and then then apply a
generalized (sub-)gradient descent step in θ. This is summarized in algorithm 1, where
the inner maximization step is replaced in practice by a projected gradient ascent.

Algorithm 1: PGD-like pseudo-algorithm for approximating the prescription
of a Lipschitz constant using spectral norm maximizing

Input: θ1 = (W 1
i , b

1
i)i∈{1,...,d} initial parameters of the network

Input: L̄ the target Lipschitz constant
Input: (γk)k∈N the decaying learning rate
for k = 1, n do

x∗
k ∈ Argmaxx∈X ||

(∏d−1
i=1 W k

i
⊤
diag(Gϕ(zi))W

k
d

⊤
)
||;

L(θk, x∗
k, L̄) = ℓ

(
||
(∏d−1

i=1 W k
i
⊤
diag(Gϕ(z

∗
i,k))

)
W k

d

⊤||, L̄
)

;
uk ∈ GL(·,x∗

k,L̄)(θk);
θk+1 = θk − γkuk;

return θn;

In algorithm 1, GL(·,x,L̄)(θ) is a generalized derivative of L wrt variable θ evaluated
at (θ, x, L̄). Clearly, it is hoped that algorithm (1) provides an approximation to a solution
of problem (5), though we do not provide any guarantee on this. We are working towards
establishing some of these guarantees.

In the next section, we provide an algorithm that allows to have a guaranteed structure
of network with exactly L̄ as a Lipschitz constant. It is however only valid for the very
specific ReLU activation function.

5 Constructing known Lipschitz networks

Let us take the notation of equation (3): we can simply upper bound the Lipschitz con-
stant as done in [6] by the product of the spectral norm in case the activation function ϕ
is 1 Lipschitz:

Lf,X (θ) ≤
n∏

i=1

∥Wi∥2 (7)

Our goal is to tailor (W1, ...,Wn) so that this inequality become an equality.

5.1 Construction

Let us constraint our weights with the following conditions:

– for all i ∈ [n], Wi = OiSiO
⊤
i−1 ∈ Rm×m, m ∈ N, where Si are diagonal matrices

and Oi are square orthonormal matrices also of dimension m.
– Without loss of generality we can assume that the greatest valueλmax

i = maxj((Si)j,j)
is along the first dimension. We need to add another construction constraint here: we
choose λmax

i to be positive and to be the greatest eigenvalue in absolute norm (this
ensures that no product of 2 negative eigenvalues will be greater that the products
of the λmax

i).

We have to make slight changes to the matrices (Ok)k∈[n] in order to have their main
directions aligned along a positive dimension:

Let us write Oi = (V 1
i , V

2
i , ...V

m
i) with column vectors, we have by definition that

WiV
1
i−1 = λmax

i V 1
i .

We would like to have that for all i ∈ {1, ..., n}, V 1
i has positive or null components

(note that O0 is not considered here) so that the ReLU activations do not change V 1
i

when it is applied element-wise. To achieve so we simply define:

O′
i := diag(sign∗(V 1

i))Oi = diag(sign∗(Oie1))Oi (8)

where ei is the i vector of the standard base of Rm, sign∗ is the element-wise function
defined by:

sign∗(x) =

−1 if x < 0

1 otherwise

For all i ∈ {1, ..., n}, O′
i is orthonormal as the transformation (8) is only a symmetry

on carefully chosen axis. For the special case of O0 we select O′
0 = O0. Let us consider

then the matrices W ′
i = O′

iSiO
′⊤
i−1 and f∗(x) neural network composed with the W ′

i

weight matrices (and null biases). We will now check that Lf∗,X =
∏n

i=1 ∥W ′
i∥2 with

σ = ReLU.

5.2 Verification

Let (W ′
n...W

′
1) be the matrices as defined in the section 5.1 we will now check that we

know the value of the Lipschitz constant of the crafted network and its main direction:

∥
n∏

i=1

W ′
i∥2 = ∥O′

n

n∏
i=1

SiO
⊤
0 ∥2 = ∥

n∏
i=1

Si∥2 =

n∏
i=1

λi
max =

n∏
i=1

∥Si∥2 ≥ Lf ′

On top of that for all i ∈ {1, ..., n}we have by constructionV 1
i
′ (ie the main direction

of matrice i for the eigenvalue λmax
i) whose components are positive or null and thus

stable by the ReLU operation σ.
On the other hand we have for x∗ = V 1

0 :

f∗(x∗) = W ′
nσ(W

′
n−1σ(W

′
n−2...σ(W

′
1x

∗))

= W ′
nσ(W

′
n−1σ(W

′
n−2...σ(λ

max
1 V ′1

1))

= W ′
nσ(W

′
n−1σ(W

′
n−2...λ

max
1 V ′1

1)

=

n∏
i=1

λmax
i V ′1

n

thus Lf∗ ≥ ∥f∗(x∗)∥2

∥x∗∥2
=
∏n

i=1 λ
i
max

Then Lf∗ =
∏n

i=1 λ
i
max, we have successfully constructed a neural network with

a known Lipschitz constant. The subspace of maximum amplification is a half straight
line of the form x = t.V 1

0 , t > 0.

Remark 2. We could have limited the construction by aligning only the first eigenvectors
of the weight matrices and not the other ones, the verification would have remained the
same. However the construction and algorithm 2 (presented in section 5.3) would have
been more complex for little benefit on the class of models used.

5.3 Algorithm for designing Lipschitz test cases

The algorithm presented here is composed of 2 main components:

– A sampling operator in the set of orthonormal matrices [14] named Orthonormal Sampling.
– An procedure capable to change an orthogonal matrix in order to make a column

indexed i positive (it is only the implementation of equation (8) for a parametrizable
column i). We named Positivation by symmetry in the algorithm

Algorithm 2: Building a 1-Lipschitz network with n layers
Input: Number of neurones per layer m
Input: number of layers n
Oold = Orthonormal Sampling(m);
V0 = Oold,1;
for k = 1, n do

Onew = Orthonormal Sampling(m);
Onew = Positivation by symmetry(Onew, 1);
D = Diag((ui)i∈{1,2,...,m}), ui ∼ U(0, 1);
D1,1 = 1;
Wk = Onew.D.O⊤

old;
Oold = Onew;

return V0,W1,W2, ..,Wn;

Algorithm 2 gives the main directions, and gives matrices aligned along a positive
direction making ReLUs applied between each layer unable to alter the output vectors.
This allows the Lipschitz constant to be equal to the product of the spectral norms of the
weight matrices: 1.

Remark 3. This algorithm can easily be changed for increasing the resulting model class
broadness:

– Having any Lipschitz constant L by changing the eigenvalues
– Not aligning the last layer can add an extra difficulty for algorithms while not chang-

ing the main direction of the network, to that extend one should ensure that the
eigenvalues of the last layer do not shrink the main direction compared to other di-
rections which is feasible as there are no ReLUs after the last layer and thus the
problem is linear. This does changes the Lipschitz constant that can be computed by
processing the main direction and checking the norm increase

– Making different layer size on each layer to make more diverse structures

We kept the algorithm minimal to make it more understandable but some of these im-
provements may seem necessary for increasing the diversity of the networks generated
however the most general networks are the one made by solving (6) which we discussed
in the previous part

Remark 4. This is not an ideal case as this is not consistant with the behavior of random
normalized layers (see [5] lemma 2). We are creating a very specific case where finding
the Lipschitz constant can easily be achieved by finding the main direction of the first
weight matrix. Therefore we are expecting any greedy algorithm to perform exception-
ally well on these samples. Once again let us emphasize that using these networks for
assessing performance and accuracy of an approach to compute the Lipschitz constant
provides a biased view. However if a method fails this test it is a good indicator that
the method, as it is implemented, has difficulties for approximating correctly a Lipschitz
constant.

6 Experimental validation

6.1 Evaluation of Algorithm 1

We first evaluated the performance in enforcing a Lipschitz constant on a given network
by building networks with different targets L̂.

All the experiments were performed with a 6 layer linear neural network with 30
neurons on each layer. The input size is taken equal to the layer size: 30. We chose the
ELU activation function as it is C2. We chose to prescribe the Lipschitz constant for the
spectral norm thus we use power iteration for computing the operator norm. We noticed
that enforcing a 1 spectral norm on all layers except the last one helps for convergence
as it reduces the number of symmetries in the solution without loss of generality.

Fig. 1: Evolution of prescription of Lipschitz constant following algorithm 1 with objec-
tive (black) and Lipschitz constant of constrained network (blue)

Figure 1 presents the results using algorithm 1: the black curve is the objective that
we target and the blue points are Lipschitz constant of the resulting networks. The values
of the Lipschitz constant follows the tendency of the regularity we are enforcing even
though the algorithm used provides no guaranties of achieving this much.

6.2 Comparing Lipschitz assessing algorithms

Having no guaranties on the convergence of any of the previous algorithms, we can
hardly use them for testing Lipschitz assessing algorithm; this is why we will resort
to the networks provided by algorithm 2 that ensures the exact value of the Lipschitz
constant.

In this section, we present experiments in which we use this algorithm to compare
Lipschitz assessing algorithms. As explained above, all the networks used in these ex-
periments have a Lipschitz constant of 1.

Highlighting True/False bounds
Some algorithms are giving a True upper bound; this bound can be reasonably loose

depending on the approach used. Some other algorithms provide True lower bound that
always return a value that is lower than the actual Lipschitz constant. Finally there exists
also False upper/lower bounds that aims at approximating an upper/lower bound but
with no guaranties to get a value that is above/below the Lipschitz constant. We test the
following algorithms:

– The LipSDP-network algorithm [7] in Figure 2: the algorithm gives a ”true” upper
bound

– The SeqLip algorithm [5] using a greedy approach in Figure 3, the algorithm gives
an ”false” upper bound

– The SeqLip algorithm using a genetic optimizer in Figure 4, the algorithm gives a
”false” upper bound

– A ”true” lower bound computed by sampling uniformly the input space in Figure 5

The protocol of the experiment is the following: for a given layer size and depth, we build
a network using Algorithm 2 and then assess the Lipschitz constant using all the methods
enumerated above. We have chosen arbitrarily the dimension of the input to be equal to
the size layer. We display the evolution of the estimation of the Lipschitz constant when
making the layer size and depth vary for a given algorithm. We decided not to average
the evaluation over multiple experiments because we are trying to display the flaws in
given executions, not an average behavior. Advocating on general performance of the
algorithms on neural networks would be biased considering the specific kind of networks
that we are testing. Therefore we only want to highlight the dependencies between the
methods and the characteristic dimensions of the neural network: dimension of the inputs
and dimension of the parameters.

Fig. 2: Computation of the Lipschitz
constant using the LipSDP algorithm
for different depths (y axis) and dif-
ferent layer size (x axis).

Fig. 3: Computation of the Lipschitz
constant using the seqLip algorithm
for different depths (y axis) and dif-
ferent layer size (x axis) with numpy
optimizer.

Fig. 4: Computation of the Lipschitz
constant using the seqLip algorithm
for different depths (y axis) and dif-
ferent layer size (x axis) with genetic
optimizer.

Fig. 5: Computation of the Lipschitz
constant using the random explo-
ration for different depths (y axis)
and different layer size (x axis)

Figure 2 and 4 provide the best landscape of estimation of the Lipschitz constant:
according to the color scale the methods appear to be finding accurately the value of 1
of the Lipschitz constant which makes them very suitable for estimating the Lipschitz
smoothness. One very interesting comparison to make is between Figure 3 and 4: they
are both implementations of SeqLip however they are resorting to different solvers. The
former solver is greedy - and therefore sub-optimal for dealing with an NP hard problem
- and the latter is non deterministic - and therefore finds the optimal solution provided
it has iterated sufficiently. This shows, although the theory proves that SeqLip provides
ultimately an upper bound, that the result is rarely the correct value if the problem is not
solved suitably. On top of that it showcases that the value given by this algorithm should
be treated carefully and can’t be compared reliably to a lower bound. Figure 5 presents a
methods for computing a lower bound for the Lipschitz constant: this is a random search
that seeks the maximum of the differential quotient. The random search depends only on
the dimension of the sampling space (that is taken equal to the layer size in our specific
case) and thus why the quality of the approximation only depends on the abscissa.

Highlighting computational limits
One other major use of these test cases is the possibility to test the limits of these al-
gorithms and their behaviors alongside validity boundaries: are their predictions still
valid next to their validity limits or are the algorithms already giving a degraded value
of the Lipschitz constant? To that extend we probe the four previous algorithms on a
much larger range of values of depth and size layer that should trespass most of the al-
gorithm range of validity. This time we present in hatches the zones that were not solved
by the algorithms. This can be considered as zooming out from the previous section al-
though the object of this study is more the validity domain rather than the accuracy of
the predictions.

Fig. 6: Computation of the Lipschitz
constant using the LipSDP algorithm
for larger depths (y axis) and larger
layer size (x axis).

Fig. 7: Computation of the Lipschitz
constant using the seqLip algorithm
for larger depths (y axis) and larger
layer size (x axis) with numpy opti-
mizer.

On Figure 6 we see that the algorithm gives a very good approximation of the Lips-
chitz constant but on a small region: as depicted in the original work from [7] this ”net-
work” version of LipSDP suffers greatly from the dimension, we clearly see that this is
the case here. Figure 7 and 8 present two different optimizers on the same maximization
problem. Figure 8 is clearly dependent on the dimension of the parameters as it is dis-
playing similar quality of estimation along the iso-dimension curves (y×x2 = constant)
whereas Figure 6 displays similar performance along same depths. On the other hand
the random approach (Figure 9) seems to suffer much less from the dimension than the
two previous algorithms making it a more viable choice at high parameter dimension as
it only depends on the dimension of the input.

Fig. 8: Computation of the Lipschitz
constant using the seqLip algorithm
for larger depths (y axis) and larger
layer size (x axis) with genetic opti-
mizer.

Fig. 9: Computation of the Lipschitz
constant using the random explo-
ration for larger depths (y axis) and
larger layer size (x axis).

7 Conclusions and future work

This paper introduced a new paradigm for evaluating and understanding algorithms as-
sessing the Lipschitz constant of neural networks. This work fills a gap in the evaluation
of such algorithms, as none of the methods proposed to date have been evaluated on
models for which the constant to be estimated is known. In addition, our experiments
allow a better analysis of the estimates given by the algorithms. It helps to highlight the
specificity of some approaches, such as the dependency to the input dimension for some
of the algorithms or the choice of the optimizer for others. Overall it allows to improve
and validate the parameters chosen for a given estimation algorithm: our results show
that, for computing lower bounds, random approaches are quite easily plagued by the
dimension if the sampling does not increase accordingly.

In future work, we plan to attempt at softening the constraints that we enforced on the
neural networks, without sacrificing our knowledge of the Lipschitz constant. Extensions
to convolution layers seems the logical path but it has its own challenges as the Lipschitz
constant depends not only on the parametrization of the convolution layer but also on the
input size, which can differ from one sample to another. One could also consider, in the
same fashion that we did in this contribution, slightly constrained special cases where it
would be easier to actually know the Lipschitz constant of the convolutions beforehand.

8 Declaration of funding

This work was partially supported by the ANRT and the ANR-19-CHIA-0017-01-DEEP-
VISION project.

References

1. Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Ad-
versarial Examples. In Yoshua Bengio and Yann LeCun, editors, 3rd International Confer-
ence on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings, 2015.

2. Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards Deep Learning Models Resistant to Adversarial Attacks. In 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

3. Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. In David Helmbold and Bob Williamson, editors, Computational
Learning Theory, volume 2111, pages 224–240. Springer Berlin Heidelberg. Series Title:
Lecture Notes in Computer Science.

4. Louis Béthune, Alberto González-Sanz, Franck Mamalet, and Mathieu Serrurier. The Many
Faces of 1-Lipschitz Neural Networks. CoRR, abs/2104.05097, 2021. arXiv: 2104.05097.

5. Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis
and efficient estimation. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 3839–3848, 2018.

6. Todd Huster, Cho-Yu Jason Chiang, and Ritu Chadha. Limitations of the Lipschitz Constant
as a Defense Against Adversarial Examples. In Carlos Alzate, Anna Monreale, Haytham
Assem, Albert Bifet, Teodora Sandra Buda, Bora Caglayan, Brett Drury, Eva Garcı́a-Martı́n,
Ricard Gavaldà, Stefan Kramer, Niklas Lavesson, Michael Madden, Ian M. Molloy, Maria-
Irina Nicolae, and Mathieu Sinn, editors, ECML PKDD 2018 Workshops - Nemesis 2018,
UrbReas 2018, SoGood 2018, IWAISe 2018, and Green Data Mining 2018, Dublin, Ireland,
September 10-14, 2018, Proceedings, volume 11329 of Lecture Notes in Computer Science,
pages 16–29. Springer, 2018.

7. Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George J. Pap-
pas. Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché Buc, Emily B.
Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, Decem-
ber 8-14, 2019, Vancouver, BC, Canada, pages 11423–11434, 2019.

8. Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite relaxations for certifying
robustness to adversarial examples. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 10900–10910,
2018.

9. Tong Chen, Jean-Bernard Lasserre, Victor Magron, and Edouard Pauwels. Semialgebraic
Optimization for Lipschitz Constants of ReLU Networks. arXiv:2002.03657 [cs, math], Oc-
tober 2020. arXiv: 2002.03657.

10. Mathieu Serrurier, Franck Mamalet, Alberto González-Sanz, Thibaut Boissin, Jean-Michel
Loubes, and Eustasio del Barrio. Achieving Robustness in Classification Using Optimal
Transport With Hinge Regularization. In IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2021, virtual, June 19-25, 2021, pages 505–514. Computer Vision
Foundation / IEEE, 2021.

11. Moustapha Cissé, Piotr Bojanowski, Edouard Grave, Yann N. Dauphin, and Nicolas Usunier.
Parseval Networks: Improving Robustness to Adversarial Examples. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learn-
ing, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of
Machine Learning Research, pages 854–863. PMLR, 2017.

12. Jérôme Bolte and Edouard Pauwels. Conservative set valued fields, automatic differentiation,
stochastic gradient methods and deep learning. Math. Program., 188(1):19–51, 2021.

13. William Piat, Jalal Fadili, Frédéric Jurie, and Sébastien da Veiga. Regularized Robust Opti-
mization with Application to Robust Learning. working paper or preprint, June 2022.

14. Francesco Mezzadri. How to generate random matrices from the classical compact groups.
arXiv:math-ph/0609050, February 2007. arXiv: math-ph/0609050.

	Towards an Evaluation of Lipschitz Constant Estimation Algorithms by building Models with a Known Lipschitz Constant

