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Abstract. Machine Learning models are prone to fail when test data
are different from training data, a situation often encountered in real
applications known as distribution shift. While still valid, the training-
time knowledge becomes less effective, requiring a test-time adaptation
to maintain high performance. Following approaches that assume batch-
norm layer and use their statistics for adaptation[19], we propose a
Test-Time Adaptation with Principal Component Analysis (TTAwPCA),
which presumes a fitted PCA and adapts at test time a spectral filter
based on the singular values of the PCA for robustness to corruptions.
TTAwPCA combines three components: the output of a given layer is
decomposed using a Principal Component Analysis (PCA), filtered by
a penalization of its singular values, and reconstructed with the PCA
inverse transform. This generic enhancement adds fewer parameters than
current methods[17, 25, 27]. Experiments on CIFAR-10-C and CIFAR-
100-C[8] demonstrate the effectiveness and limits of our method using a
unique filter of 2000 parameters.

Keywords: Robustness · Test-time Adaptation · Principal Component
Analysis · Filtering.

1 Introduction

Deep neural networks are optimized to achieve high accuracy on their training
distribution, given the hypothesis that they will be deployed on the same distri-
bution during inference. However, distribution shift occurs in many industrial
applications, for instance, when a sensor malfunctions. The accuracy of a predic-
tive task drops as the distribution of test data shifts [8, 21]. Domain adaptation
prevents such failures by jointly training on source and target data. Instead,
Test-time adaptation mitigates the domain gap either by test-time training or
fully test-time adaptation according to the availability of source data. Test-time
training augments the training objective on source data with an unsupervised
task that remains at test time to optimize domain-invariant representations.
Fully test-time adaptation [27] does not alter training and only needs testing
observations and a pre-trained model for privacy, applicability, or profit [3].



2 T. Cordier et al.

To enhance generalization, Spectral regularization [2] especially for GANs [16]
and L2−regularization are standard tools during training [20]. L2−regularization
reduces model variance for different potential training sets and constrains the
model complexity by lowering the weights of its layers. Spectral normalization
penalizes the weight matrices by their largest singular value to ensure the Lipschitz
continuity of the neural network.

Taking inspiration from these previous works, we aim to learn the best fitting
parameters of a spectral filter on a corrupted dataset without supervision. We
introduce TTAwPCA, which projects a batch of inputs onto a spectral basis,
filters the projected data points, and reconstructs the filtered batch. As [27], we
minimize entropy to learn the parameters of the filter. This generic unsupervised
learning loss makes few assumptions about the data.

In this paper, we first overview state-of-the-art test-time adaptation (Sec.
2). Then, we introduce a simple yet effective method: TTAwPCA (Sec. 3). We
demonstrate its effectiveness experimentally in tackling corrupted data (Sec. 4
and we discuss our results compared with other methods (Sec. 5).

2 Related work

Unsupervised Domain Adaptation jointly adapts on source and target
domain through transduction, thus requiring both simultaneously. Several prop-
erties have been optimized: cross-domain feature alignment[7, 1, 21], adversarial
invariance[26, 5, 6, 9], and shared proxy tasks [24] such as predicting rotation and
position. In our work, we want to use only the target domain at test time.

Test-time adaptation indicates methods tackling the domain gap during infer-
ence.TTT [25] augments the supervised training objective with a self-supervised
loss using source data. Only the self-supervised loss keeps adapting at test time
on target domain. It relies on predicting the rotation of inputs, a visual proxy
task, but designing suitable proxy tasks can be challenging. Training parameters
are altered during training and test-time adaptation. Test-time batch normal-
ization[22, 19] allows statistics of batch norm layers to be tracked during the
distribution shift at test time. TENT [27] exhibits entropy minimization at test
time on feature modulators extracted from spatial batch normalization to adapt
to distribution shift. Entropy minimization is a generic and standard loss for
domain adaptation to penalize classes overlap. Information maximization [12,
23, 10] used by [15, 17] involves entropy minimization and diversity regulariza-
tion. The diversity regularizer averts collapsed solutions of entropy minimization.
SLR+IT [17] argues that Information maximization compensates for the vanishing
gradient issues of entropy minimization for high confidence predictions. Moreover,
an additional trainable network shares the input samples with the tested network
to partially correct the domain shift. Principal Component Analysis cuts out
noisy eigenvalues to remove uncorrelated noise[14, 18]. In addition, we propose
to add fully test-time learnable parameters to reduce the remaining noise of
corrupted data onto the spectral basis.
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3 Filtering the corrupted Singular Values

Let a neural network fθ with parameters θ be trained to completion on a source
set XD of N samples from a distribution D. Parameters θ are thus frozen after
training. The initialization of our method takes place before testing. TTAwPCA
is added after the jth layer. It consists of a Principal Component Analysis (PCA)
and, for now, a pass-through filter. To fit its PCA, the concatenated output Aj,D
of the jth layer has to be flattened from the shape N elements of the batch
times c channels times the spatial dimensions h × w to a rectangular matrix
of size N × p where p = c · h · w and then mean normalized. Singular Value
Decomposition breaks down the flattened training output ÃD as:

Aj,D = UΛV ⊤ (1)

where Λ is an N × p matrix of singular values, U an N × N matrix of left
singular vectors and V an p × p matrix of right singular vectors. We define a
hyperparameter L such that only the first L singular values are conserved. Note
that this operation belongs to the training procedure.

At test time, the filter FΓ is enabled to optimize its parameters Γ = {γi; i ∈
[0, L − 1]} of the corrupted singular values. Let the t-th batch of corrupted
observation xt ∼ D′ be presented to the model fθ,Γ . Let Aj,D′,t be the tth
batched output of the jth layer. After the flatten operation and the mean
normalization, Aj,D′,t is projected onto the singular basis vectors by VL, filtered
by FΓ and reconstructed by V ⊤

L as Ot,D′ in its original basis:

Ot,D′ = Aj,D′,tVLFΓV
⊤
L (2)

We designed a filter FΓ related with L2−regularization as demonstrated in A.1
of diagonal element Fi,i based on the singular values ΛL of the training set and
L learning parameters γi:

Fi,i(γi) =
λi

λi,i +ReLU(γi)
(3)

The ReLU activation assures the stability of the filter.
Similarly, we designed a negative exponential filter FΓ of diagonal element

Fi,i:

Fi,i(γi) =
1

1 + exp(γ2
i − λi)

(4)

We denote this model fθ,Γ composed of fθ and TTAwPCA. The learning
parameters Γ are optimised over the batch xt using entropy minimization of
model prediction ŷt = fθ,Γ (xt) as test-time objective.

4 Experiments

Dataset. We classify CIFAR-10-C and CIFAR-100-C [8]. Both test sets contain
10,000 images of CIFAR-10 and CIFAR-100 [13] augmented by 15 common
corruptions and five severity levels.
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Table 1: Episodic corruption error benchmark on CIFAR-10-C and CIFAR-100-C
with the highest severity [in %].

Dataset Method Mean Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

CIFAR-10-C

No Adaptation 43.53 72.33 65.71 72.92 46.94 54.32 34.3 42.02 25.07 41.30 26.01 9.30 46.69 26.59 58.45 30.30
BN 20.44 28.08 26.12 36.27 12.82 35.28 14.17 12.13 17.28 17.39 15.26 8.39 12.63 23.76 19.66 27.30

TENT 19.96 28.05 26.11 36.31 12.80 35.28 14.16 12.14 17.27 17.36 15.23 8.37 12.59 23.77 19.61 27.31
exp-TTAwPCA (ours) 20.35 25.5 23.55 33.77 14.82 35.04 15.24 13.76 17.73 17.43 16.09 8.62 14.58 24.44 20.00 24.68

ReLU-TTAwPCA (ours) 20.42 28.10 25.99 36.13 12.72 34.93 14.00 12.24 17.29 17.8 15.07 8.26 13.09 23.47 19.76 27.41

CIFAR-100-C

No Adaptation 85.54 93.84 93.60 96.63 91.49 92.79 86.51 88.69 70.91 82.30 84.74 47.26 96.30 85.02 89.50 83.49
BN 36.61 47.21 46.72 55.59 27.33 47.75 28.23 26.65 32.74 33.63 32.92 21.35 29.64 37.79 33.99 47.56

TENT 34.56 42.91 41.94 49.76 28.27 44.55 28.75 27.38 30.99 31.59 30.72 21.88 30.81 35.42 31.27 42.09
exp-TTAwPCA (ours) 37.89 45.92 45.71 54.23 32.82 47.88 31.98 30.04 33.53 35.12 36.26 22.46 32.92 39.18 34.91 45.37

ReLU-TTAwPCA (ours) 36.62 47.41 46.80 55.50 27.61 47.76 28.28 26.54 32.67 33.46 32.80 21.41 29.55 37.67 34.25 47.53

Table 2: Online corruption error benchmark on CIFAR-10-C and CIFAR-100-C
with the highest severity [in %].

Dataset Method Mean Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

CIFAR-10-C
TENT 18.57 25.09 22.76 32.71 12.01 31.88 13.25 11.12 15.9 16.32 ± 0.59 13.82 8.21 11.66 22.02 17.29 24.5 ± 0.43

exp-TTAwPCA (ours) 20.28 25.42 23.44 33.92 14.79 34.81 15.18 13.71 17.52 17.53 ± 0.17 16.09 8.62 14.58 24.44 20.00 24.68 ± 0.12
ReLU-TTAwPCA (ours) 20.45 28.14 25.84 36.23 12.85 35.04 14.01 12.22 17.27 17.63 15.08 8.37 13.05 23.58 19.93 27.44

CIFAR-100-C
TENT 31.7 38.74 36.88 44.00 26.91 41.03 27.33 25.54 28.18 28.85 28.03 20.44 28.81 33.93 28.41 38.41

exp-TTAwPCA (ours) 37.89 46.02 45.8 54.15 32.56 47.87 31.91 30.14 33.62 35.19 35.98 22.33 33.08 39.18 34.93 45.51
ReLU-TTAwPCA (ours) 36.83 47.39 46.82 55.95 27.80 48.30 28.49 26.85 32.92 33.78± 0.20 32.91 21.64 29.58 37.94 34.48 47.59± 0.10

Models. We use the publicly available pre-trained WideResNet-28-10 [28] of
RobustBench [4]. We trained a model on CIFAR-100 achieving 83% accuracy on
the test set, as Robustbench does not provide one. TTAwPCA is set after the
first convolutional layer with only 2000 parameters for our best results on both
datasets. We compare our two different filters with TENT [27] and test-time
batch statistics updates[22, 19].
Settings. Episodic and online settings describe whether the model is reset after
optimization on each batch or after optimization on the corruption at a given
severity.
Optimization. We optimize the parameters Γ of the filter by Adam [11] for one
step on both offline and episodic fully test-time adaptation settings. We set the
batch size at 200 samples and the learning rate at 0,001. L = 2000 proved to be
sufficient for our method, as shown in A.2.

5 Discussion

TTAwPCA tackles common corruptions [8] by improving the accuracy of each
perturbed set. With only the 2000 parameters, TTAwPCA achieves state-of-
the-art performance on various corruptions in the episodic CIFAR-10-C setting.
Namely: Gaussian Noise, Shot Noise, Impulse Noise, Glass Blur, and JPEG
compression for the exponential filter and Defocus Blur, Glass Blur, Motion
Blur, Fog, Brightness, and Elastic Transformation for the ReLU filter whereas
performing close to TENT [27] on the rest. Our method achieves a better trade-off
between accuracy retrieval and the number of parameters. On the other hand,
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TTAwPCA does not take advantage of the online setting and does not scale well
to CIFAR-100-C. We provide intuitions to explain this observation.

TTAwPCA enables PCA to filter noisy singular values on the remaining
dimensions, assuming additive noises increase singular values. However, we observe
some corruptions to reduce singular values effectively, thus filtering crucial
information to the tested task. A penalizing filter is unable to recover this loss
of information. Adding a multiplicative parameter to each diagonal element of
our filter became a subject of our interest but was found unstable. To increase
stability, we normalized each singular value λi by its higher value: λ0. The
instability of the tested filter prevents its convergence in an online setting.

Our results on CIFAR-100-C tend to be underperforming. High similarity
between classes of CIFAR-100 might be too complex for TTAwPCA to reach
over-parametrized methods such as TENT. A subtle change in the first principal
components of the PCA can significantly affect the discriminability of the model
if corruption occurs and the classes are too close. The first convolutional layer
might not be discriminative enough to perform reliable principal components.
On the other hand, the following layers merge the corruption and the features
relevant to the task.

We argue that TTAwPCA follows the setting of Fully test-time adaptation
[27] as TTAwPCA does not change the training objective. TTAwPCA expects a
model to have a fitted PCA after completing the training procedure. Equivalently
TENT needs spatial batch normalization layers to operate.

Lastly, TTAwPCA is the only method that does not alter any training
parameter. Its test-time update can be fully deactivated without reloading the
model instead of TENT or batch adaptation at test time (BN). The batch
normalization parameters are forgotten through their processes. PCA also offers
a linear adaptation of the model.

6 Conclusion

This paper introduced a new layer called TTAwPCA, filtering the singular values
to tackle the out-of-distribution shift at test time. This spectral filter, initialized
after training, is optimized on the test dataset with a task agnostic loss. We
compared the effectiveness of our method in an online and an episodic setting to
TENT [27] on CIFAR-10-C and CIFAR-100-C [8]. We argue our technique to
adapt efficiently, reaching a new state-of-the-art on some corruptions without
altering training parameters. We provided explanations of the success and the
flaws of spectral penalization and its connections with standard methods in
Machine Learning.
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A Appendix

A.1 Connection with L2−Regularization

Let X ∈ Rn×d, where n is the number of samples and d is the number of features.
We consider the simple case of linear regression where Y = Xθ where θ is the
parameter of the model. The optimal parameter are defined as follows:

θ⋆ := argmin
θ

||Y −Xθ||2 (5)

and it is straightforward to observe the following closed form:

θ⋆ =
(
X⊤X

)−1
X⊤Y (6)

it is also straightforward to observe that:

θ⋆γ := argmin
θ

||Y −Xθ||2 + γ · ||θ||2 (7)

leads to the close form:

θ⋆γ =
(
X⊤X + γId

)−1
X⊤Y (8)

In the following, we note C = X⊤X. C is has an orthogonal eigen decomposi-
tion (symmetric, positive and definite).

C = U⊤DU (9)

where U ∈ U(d) which is the unitary group U⊤U = Id. We note the basis change
of X as follows:

X̃ := XU⊤ (10)

By construction, X̃ has a diagonal covariance,

X̃⊤X = UX⊤XU⊤ = UX⊤XU⊤ = UCU⊤ = D (11)

Now, what happens when regressing from X̃ to obtain θ̃⋆:

θ̃⋆ := D−1X̃Y (12)

Now,
X̃θ̃⋆ = X̃D−1X̃⊤Y = Y (13)

X U⊤D−1UX⊤Y︸ ︷︷ ︸
=θ

= X̃D−1X̃⊤Y = Y (14)

X U⊤(D + γId)
−1UX⊤Y︸ ︷︷ ︸

=θ

= X̃D−1X̃⊤Y = Y (15)

θ⋆X̃ = θ⋆X (16)
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Let break the equation of θ⋆γ :

θ⋆γ =
(
X⊤X + γId

)−1
X⊤Y (17)

=
(
U⊤(D + γId)U

)−1
X⊤Y (18)

= U⊤(D + γId)
−1UX⊤Y (19)

= U⊤ D(D + γId)
−1︸ ︷︷ ︸

Fγ

D−1UX⊤Y (20)

= U⊤FγUU⊤D−1UX⊤Y (21)

= U⊤FγUθ⋆0 (22)

where Fγ is a diagonal matrix such that:

Fγ,i,i =
λi

λi + γ
(23)

where λi is the i−th eigen-value of C.

A.2 Ablation Studies

(a) CIFAR-10-C (b) CIFAR-100-C

Fig. 1: Episodic mean error along all corruptions at severity 5 for different rank
of the PCA of TTAwPCA.

PCA rank and parameters of the filter Our experiments investigated
how many parameters are enough to tackle corrupted data points. While these
results only apply to CIFAR-10-C and CIFAR-100-C, we experienced that 2000
parameters are enough to effectively train a model to regain accuracy after
a distributional shift at test time. In Figure 1, we show the mean error on
all corruptions at severity 5 for different ranks of the PCA on both datasets.
We averaged over three runs for each PCA rank with minor variations. The
optimization has been done in an episodic setting.
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(a) CIFAR-10-C (b) CIFAR-100-C

Fig. 2: Online mean error along all corruptions at severity 5 for different number
of learning steps of TTAwPCA.

Optimizing steps As shown in [17], error degrades over optimization steps as
entropy minimization lacks target distribution regularization. Still, this effect is
minor compared with the accuracy retrieval achieved by our simple method.

A.3 Insight on CIFAR-10-C

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Glass Blur

Motion Blur Zoom Blur Snow Frost Fog

Brightness Contrast Elastic Pixelate JPEG

Fig. 3: CIFAR-10-C [8] consists of 15 corrupted versions of the CIFAR-10 test
dataset [13] with 5 levels of severity (level 5 here).

A.4 Insight on Principal Component Analysis

Principal Component Analysis (PCA) linearly separates multivariate systemic
variation from noise. Consider A an N × p data matrix. PCA defines its principal
components as the q ≤ p unit vectors such that the i-th vector satisfy orthogonality
with the first i− 1 and best fits the direction of data. The process performs a
change of basis on the data according to the principal components. They are
computed by Singular Value Decomposition (SVD) of A and ranked by the
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corresponding singular value scale. Thus irrelevant principal components can be
ignored.

Incremental PCA can be performed if the dataset is too large to fit in the
memory. Incremental PCA uses an amount of memory independent of the number
of input data samples to build a low-rank approximation.
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