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Abstract. Let M be a complete Riemannian manifold satisfying the
doubling volume condition for geodesic balls and Lq scaled Poincaré
inequalities on suitable remote balls for some q < 2. We prove the in-

equality
∥∥∥∆1/2f

∥∥∥
p
. ‖∇f‖p for all p ∈ (q, 2], which generalizes previous

results due to Auscher and Coulhon. Our conclusion applies, in particu-
lar, when M has a finite number of Euclidean ends. The proof strongly
relies on Hardy inequalities, which are also new in this context and of
independent interest.

1. Introduction

Throughout the paper, if A(f) and B(f) are two nonnegative quantities
defined for all f belonging to a set E, the notation A(f) . B(f) means
that there exists C > 0 such that A(f) ≤ CB(f) for all f ∈ E, while
A(f) ' B(f) means that A(f) . B(f) and B(f) . A(f).
Let M be a complete connected noncompact Riemannian manifold. Denote
by µ the Riemannian measure, by ∇ the Riemannian gradient and by ∆
the Laplace-Beltrami operator. The volume of a geodesic ball B will be
denoted by V (B) instead of µ(B). In this work, we consider the following
three inequalities for p ∈ (1,∞) (where the Lp-norms are computed with
respect to the measure µ):

Date: today.
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2 BAPTISTE DEVYVER AND EMMANUEL RUSS

||∆1/2u||p . ||∇u||p . ||∆1/2u||p, ∀u ∈ C∞0 (M) (Ep)

||∇u||p . ||∆1/2u||p, ∀u ∈ C∞0 (M) (Rp)

||∆1/2u||p . ||∇u||p, ∀u ∈ C∞0 (M) (RRp)

It follows easily from the Green formula and the self-adjointness of ∆ that

||∇u||22 = (∆u, u) = ||∆1/2||22, ∀u ∈ C∞0 (M).

Consequently, (Ep) holds for p = 2 on any complete Riemannian manifold.
The inequality (Rp) is equivalent to the Lp-boundedness of the Riesz trans-

form R = ∇∆−1/2. A well-known duality argument, originally introduced
in [3], shows that (Rp) implies (RRq) for q = p′ the conjugate exponent, but
the converse implication does not hold (see Section 1.1 below). The present
work focuses on the inequality (RRp), which we establish for suitable ranges
of p in situations where inequalities of the form (Rp′) do not hold. The
proofs are strongly related to the geometry of the underlying manifold and
to the behaviour of the heat kernel pt, namely the kernel of the semigroup
generated by ∆.

We consider the case where pt satisfies Gaussian type pointwise upper esti-
mates, and prove that, if a scaled Lq Poincaré inequality holds on remote
balls of M for some q ∈ [1, 2), then (RRp) for p ∈ (q, 2] (see Section 1.1
below for precise statements).

1.1. Previously known reverse Riesz inequalities. In [2], P. Auscher
and T. Coulhon have studied the inequality (RRp), and the relationship
between (Rp) and (RRq), q = p′. In order to recall some of their results, we
need to introduce some geometric inequalities about M .
For all x ∈M and all r > 0, let B(x, r) be the open geodesic ball with center
x and radius r and set V (x, r) := µ(B(x, r)). Say that the doubling volume
property holds if and only if, for all x ∈M and all r > 0,

V (x, 2r) . V (x, r). (D)

By iteration, this condition implies at once that there exists D > 0 such
that for all x ∈M and all 0 < r < R,

V (x,R) .

(
R

r

)D
V (x, r). (VD)

An easy consequence of (D) is that for every 0 < r ≤ R, and for every
x, y ∈M such that d(x, y) ≤ r, one has

V (x,R) ' V (y,R). (1.1)
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We also consider a reverse doubling volume condition: there exists ν > 0
such that, for all x ∈M and all 0 < r < R,(

R

r

)ν
V (x, r) . V (x,R). (RD)

It is known that since M is non-compact and connected, (D) implies (RD)
for some ν > 0.
Let p ∈ [1,∞). We consider the scaled Lp Poincaré inequality on balls,
namely :

||f − fB||Lp(B) . r||∇f ||Lp(B), f ∈ C∞(B), ∀B = B(x, r) ⊂M, (Pp)

where fB denotes the average of f on B, that is fB := V (B)−1
´
B f .

Among other things, Auscher and Coulhon prove in [2] that

(i) if the Hodge projector onto exact 1-forms Π := RR∗ is Lp-bounded,
then (RRp′) implies (Rp),

(ii) if (D) holds, as well as (Pq) for some q ∈ [1, 2), then, (RRp) holds
for all p ∈ (q, 2).

As a consequence of (ii), one can see that the implication (RRp′) ⇒ (Rp)
is false in general. Indeed, let M be a complete Riemannian manifold of
dimension n ≥ 3, such that M has only one end, and this end is asymptot-
ically conic (see [12]); assume furthermore that the first eigenvalue of the
cross-section of the corresponding cone is strictly less than n − 1. Then,
according to [12, Theorem 1.4], (Rp) holds on M if and only if p ∈ (1, p∗),
where n < p∗ < +∞ only depends on the first eigenvalue of the cross-section
of the cone. However, such a manifold M satisfies (P1), so that (RRp) holds
for all p ∈ (1, 2] according to (ii).
Observe that (ii) above does not apply in the case where M is, for instance,
the connected sum of two copies of Rn, since (P2) does not hold in this case
([10, Appendix]). As far as the Riesz transforms are concerned, it was shown
in [5] that (Rp) holds on M if and only if 1 < p < n if n ≥ 3, and if and
only if 1 < p ≤ 2 if n = 2, which implies that (RRp) holds when p > n

n−1 .

However, the validity of (RRq) for 1 < q ≤ n
n−1 remained open in that case.

1.2. New results. In the present work, we extend statement (ii) above to
the case where the Lq Poincaré inequality only holds on some “remote” balls
of M .
Let us fix once and for all a point o in M . For x ∈ M , we will denote
r(x) = d(x, o). We let B0 = B(o, r0), where r0 > 0 is large enough and will
be determined later.

Definition 1.1. Let x ∈M and r > 0.

(1) The ball B(x, r) is called remote if r ≤ r(x)
2 .

(2) The ball B(x, r) is called anchored if x = o.
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(3) The ball B(x, r) is called admissible if either B is remote, or B(x, r)
is anchored and r ≤ r0.

In this article, instead of Lp Poincaré inequalities (Pp) for all balls of M ,
we will consider the following assumption that Lp Poincaré inequalities hold
only for certain balls:

Definition 1.2. We say that the Lp Poincaré inequality holds in the ends
of M if, for every admissible balls B,

||f − fB||Lp(B) . r||∇f ||Lp(B), f ∈ C∞(B) (PEp )

where r stands for the radius of B.

For p = 2, an assumption similar to (PEp ) has been considered in [14]. It

follows from [13, Theorem 2.1] and the Hölder inequality that if p ≤ q, (PEp )

⇒ (PEq ). See also the beginning of [13, Section 4]. Let us also point out that
if the Ricci curvature has a quadratic lower bound of the form:

Ricx ≥ −
g

1 + r(x)2
, (QD)

where g is the Riemannian metric on M , then (PEp ) holds for all p ≥ 1 (this

follows from [19, Theorem 5.6.5]). In particular, (PEp ) holds for all p ≥ 1 in
the case where M is the connected sum of two copies of Rn.
Before stating our main theorem, we need to introduce the heat kernel
pt(x, y), which is the kernel of the heat semigroup e−t∆. Say that pt satisfies
pointwise Gaussian upper bounds if

pt(x, y) .
1

V (x,
√
t)

exp

(
−d

2(x, y)

ct

)
, ∀t > 0, ∀x, y ∈M. (UE)

It is well-known (see [7, Theorem 4]) that (UE) implies analogous estimates
for the time-derivatives ∂n

∂tn : for every n ∈ N,∣∣∣∣ ∂n∂tn pt(x, y)

∣∣∣∣ . 1

tnV (x,
√
t)

exp

(
−d

2(x, y)

ct

)
, ∀t > 0, ∀x, y ∈M. (1.2)

Sometimes we will use a slightly different (but equivalent, under (D)) version
of (1.2), which we record here:∣∣∣∣ ∂n∂tn pt(x, y)

∣∣∣∣ . 1

tnV (y,
√
t)

exp

(
−d

2(x, y)

ct

)
, ∀t > 0, ∀x, y ∈M. (1.3)

(the constants that we call c in (1.2) and (1.3) not necessarily being the
same).
Say that M has a finite number of ends if there exists an integer N ≥ 1
such that, for all R > 0, M \ B(o,R) has at most N unbounded connected
components. It is known ([4, Section[2.4.1]) that condition (D) implies that
M has a finite number of ends.
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We also consider the following geometric condition.

Definition 1.3. We say that (M, g) with a finite number of ends satisfies the
Relative Connectedness in the Ends (RCE) condition, if there is a constant
θ ∈ (0, 1) such that for any point x with r(x) ≥ 1, there is a continuous path
c : [0, 1]→M satisfying

• c(0) = x.

• the length of c is bounded by r(x)
θ .

• c([0, 1]) ⊂ B(o, θ−1r(x)) \B(o, θr(x)).
• there is a geodesic ray γ : [0,+∞)→M\B(o, r(x)) with γ(0) = c(1).

When M only has one end, the (RCE) condition is nothing but the (RCA)
condition introduced in [11]. Let us also recall ([4, Theorem 2.4]) that, if
(QD) and (RCE) hold, as well as the volume comparison property, namely

V (o,R) . V

(
x,
R

2

)
(VC)

for all R ≥ 1 and all x ∈ ∂B(o,R), then the relative Faber-Krahn inequality
holds, hence (UE) and (D) hold.
The main purpose of this article is to show the following result:

Theorem 1.4. Let M be a complete Riemannian manifold satisfying (D),
(UE), (RD) for some ν > 1 and (RCE). Assume that for some q ∈ (1, 2]
such that q < ν, the Lq Poincaré inequalities in the ends (PEq ) hold. Then,
for every p ∈ [q, 2), (RRp) holds on M .

Question 1.5. Is the assumption (RCE) in Theorem 1.4 really necessary?

Remark 1.6. Let us compare Theorem 1.4 with [2, Theorem 0.7]. Assume
that (D), (Pq) for some q ∈ [1, 2] and (RD) for some ν > q hold. Then
(P2) holds as well; together with (D), it follows that (UE) holds (see [19,
Theorem 4.2.6]). Moreover, [18, Proposition 0.3] shows that the conjunction
of (D), (Pq) and (RD) for some ν > q imply the (RCA) condition. Since it
is clear that (Pq)⇒ (PEq ), it follows that for every p ∈ (q, 2), (RRp) holds on
M . In other words, under the condition (RD) for some ν > q, assumptions
in Theorem 1.4 are weaker than those of [2, Theorem 0.7].
Note also that, in Theorem 1.4, the conclusion (RRp) holds for all p ∈ [q, 2),
while the corresponding conclusion in [2, Theorem 0.7] under the assumption
that (Pq) holds, is only stated for p ∈ (q, 2) (actually, a weak form of (RRp)
is proved for p = q is proved in [2, Section 1.2]). However, when (Pq) holds,
there exists ε > 0 such that (Pq−ε) is also satisfied ([15, Theorem 1.0.1]), so
that [2, Theorem 0.7] yields (RRp) for p = q.

Corollary 1.7. Let M be a complete Riemannian manifold satisfying (QD),
(VC), (RCE) and (RD) with ν > 1. Then, for every p ∈ (1,+∞), (RRp)
holds on M .
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Proof. We are going to show that the assumptions of Theorem 1.4 are sat-
isfied with q = 1. The L1 Poincaré inequality in the ends follows from [19,
Theorem 5.6.5]. Now, as we have mentioned before, (QD), (VC) and (RCE)
imply (D) and (UE). Thus, the assumptions of Theorem 1.4 are satisfied,
and therefore we get (RRp) for all p ∈ (1, 2). The reverse inequalities (RRp)
for p ∈ [2,+∞) follow from [6] and the implication (Rp) ⇒ (RRq), q = p′.

�

The proof of Theorem 1.4 relies on three major ingredients: the first one
(Proposition 3.1 below) is the covering of M by admissible balls (Bα)α∈N
and the existence of an associated smooth partition of unity (χα)α∈N. The
second one (Theorem 2.3 below) is an Lp Hardy inequality on M , obtained
(roughly speaking) by “gluing” together local Poincaré inequalities thanks
to a suitable covering. Our approach also uses a localized version of the
Calderón-Zygmund decomposition in Sobolev spaces as in [2], already en-
countered in [9] (see Lemma 3.2 below).
The structure of the paper is as follows. Hardy inequalities are proved in
Section 2. We then turn to the proof of Theorem 1.4 in Section 3. An
appendix is devoted to the clarification of some properties of the Calderón-
Zygmund decomposition.

2. Hardy inequalities

Before stating the Hardy inequalities required for the proof of Theorem
1.4 and for the convenience of the reader, we feel it is worthwile to write
down a more self-contained proof of the Lp Hardy inequality in the case
where M is a connected sum of the Euclidean spaces of dimension ≥ 2. It
is well-known that on Rn the following optimal Hardy inequality holds:(

n− p
p

)p ˆ
Rn

|f |p

rp
≤
ˆ
M
|df |p, ∀f ∈ C∞(Rn). (HRn)

Hence, the Hardy inequality on a connected sum of two Euclidean spaces
follows from the following result, which we think is of interest by itself:

Proposition 2.1. Let M and N be two Riemannian manifolds, such that
M and N are isometric at infinity: there exists KM bM , KN b N compact
sets such that M \KM is isometric to N \KN . Let p ∈ (1,∞). Then, the
Hardy inequality ˆ

M

(
|f |
r + 1

)p
.
ˆ
M
|df |p, ∀f ∈ C∞0 (M). (H)

holds on M , if and only if it holds on N .

Corollary 2.2. Let M = Rn]Rn be a connected sum of two Euclidean spaces
of dimension n ≥ 2. Let 1 ≤ p < n. Then, M satisfies the Lp Hardy
inequality (H).
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Proof. (of the proposition)
Assume that (H) holds on N . We are going to show that it holds on M as

well. By assumption, there exists two relatively compact, open sets U ⊂M ,
V ⊂ N such that M \ U is isometric to N \ V . Let 0 ≤ χ ≤ 1 be a smooth,
compactly supported function on M , which is equal to 1 identically in an
neighborhood of U . Let K b M be a compact set containing the support
of χ. Let us take f ∈ C∞0 (M), and write f = χf + (1− χ)f . The function
(1 − χ)f identifies naturally with a smooth, compactly supported function
defined on N \ V , hence the Hardy inequality on N yields:

ˆ
N

(
|(1− χ)f |

1 + r

)p
.
ˆ
N
|d ((1− χ)f) |p.

Since d ((1− χ)f) = −(dχ)f+(1−χ)df , upon using the elementary inequal-
ity (a+ b)p ≤ 2p−1(ap + bp) one gets:

ˆ
N

(
|(1− χ)f |

1 + r

)p
.

ˆ
N
|dχ|p|f |p +

ˆ
N
|1− χ|p|df |p

.
ˆ
K
|f |p +

ˆ
M
|df |p

On the other hand, one clearly has

ˆ
M

(
|χf |
1 + r

)p
.
ˆ
K
|f |p,

so that, finally, one arrives to

ˆ
M

(
|f |

1 + r

)p
≤ 2p−1

ˆ
M

(
|χf |
1 + r

)p
+ 2p−1

ˆ
M

|(1− χ)f |p

rp

.
ˆ
K
|f |p +

ˆ
M
|df |p

Now, the assumed Hardy inequality on N implies that N is p-hyperbolic
(see [8, Prop. 2.2]), and since M and N are isometric at infinity, it follows
that the ends of M are p-hyperbolic, hence M itself is p-hyperbolic. For
details, see [8, Section 2]. Therefore, there exists a constant CK such that
for every u ∈ C∞0 (M),

ˆ
K
|u|p ≤ CK

ˆ
M
|du|p.

Combining this inequality with the previous one, one obtains that

ˆ
M

(
|f |

1 + r

)p
.
ˆ
M
|df |p,

which is precisely the sought for Hardy inequality (H) on M .
�
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Let us now state a more general result on Lp Hardy inequalities that
essentially stems from the work of V. Minerbe [18]:

Theorem 2.3. Let M be a complete Riemannian manifold satisfying (D),
(RCE) and (RD) for an exponent ν > 1. Let 1 ≤ p < ν, and assume that
(PEp ) holds. Then the Lp Hardy inequality (H) holds on M .

Proof. Note first that the (RCE) assumption implies that every end of M
satisfies the (RCA) condition considered in [18]. Next, (D) and (PEp ) implies
that the proof of [18, Lemma 2.10], which provides Lp Poincaré inequalities
for subset of annuli, applies mutatis mutandis in our context. Given (RCA)
in each end of M , one can then construct a “good covering” of M (in the
sense of [18, Definition 1.1]) for the pair of measure ( dvol

1+rp , dvol) as in [18,

Section 2.3.1], and a weighted graph associated to this covering. The Lp

Poincaré inequalities for subset of annuli then implies that the good cover-
ing satisfies continuous Lp Sobolev inequalities of order ∞, in the sense of
[18, Definition 1.3]. In fact, an Lp Sobolev inequalities of order ∞ is just
another terminology for an Lp Poincaré inequality. The proof of [18, Theo-
rem 2.23] shows that the weighted graph satisfies an isoperimetric inequality.
According to [18, Theorem 1.8], the continuous Sobolev inequality for the
covering, together with the isoperimetric inequality for the weighted graph,
imply the global Lp Hardy inequality (H).

�

Question 2.4. Let M be a complete Riemannian manifold satisfying (D),
(UE), (RD) for an exponent ν > 1, and (PEp ) for some 1 ≤ p < ν; does
the Lp Hardy inequality (H) hold for 1 ≤ p < ν ? In other words, can the
assumption (RCE) be replaced by (UE) in the statement of Theorem 2.3?
For p = 2, it is proved in [16, Theorem 1.2] that, under (D), (RD) for some
ν > 2 and (UE), an L2 Hardy inequality holds, however the proof does not
extend easily to the case p 6= 2 unless one knows a priori that (RRp) holds
(which of course we do not want to assume in the present paper).

3. Proof of the Lp reverse inequality

To begin with, let us recall that, under the assumptions of Theorem 1.4,
there exists a covering of M by admissible balls, as well as an associated
partition of unity. The following statement can be found in [9, Section 2.1]:

Proposition 3.1. There exists a covering (Bα)α∈N of M by balls and an
associated smooth partition of unity (χα)α∈N such that:

(1) for every α ∈ N, the ball Bα is admissible,
(2) the covering is locally finite: there exists N ∈ N such that for every

α ∈ N,

Card{β ∈ N ; Bα ∩Bβ 6= ∅} ≤ N,
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(3) for every R > 0, the set

{α ∈ N ; Bα ∩B(o,R) 6= ∅}

is finite,
(4) for all α ∈ N, 0 ≤ χα ≤ 1 and χα has support in Bα. Moreover, there

exists a constant C > 0 such that, for every α ∈ N, ||∇χα||∞ ≤ C
rα

,
where rα is the radius of Bα,

(5) for all α 6= 0,

2−10r(xα) ≤ rα ≤ 2−9r(xα). (3.1)

One can assume that B0 = B(o, r0), and up to enlarging the value of r0

and discarding a finite number of balls intersecting B0, one can also assume
that each of the remaining balls B of the covering is such that 14B is remote.
In the sequel, we thus assume that the balls have been relabeled in such a
way that B0 = B(o, r0) and for α 6= 0, 14Bα is remote.

Let us mention that point (5) of Proposition 3.1 will play an important
role in the last part of the proof of Theorem 1.4 in which the Hardy inequality
will be utilized. See Lemma 3.7. The assumptions of Theorem 1.4 imply
that, for all α ∈ N, all balls inside 14Bα support the Lq-Poincaré inequality;
in particular, if B̃ ⊂ 2Bα, then 7B̃ supports the Lq-Poincaré inequality.

The idea for the proof of Theorem 1.4 is as follows: first, decompose f
into

f =
∑
α∈N

χαf =:
∑
α∈N

fα.

We are going to estimate separately the “diagonal terms” ||∆1/2fα||Lp(4Bα)

and the “off-diagonal” terms ||∆1/2fα||Lp(M\4Bα) for all α ∈ N.

3.1. Estimates of the diagonal terms. We first explain how to deal with
the “diagonal” term ||∆1/2fα||Lp(4Bα), using ideas from [2]. The main tool is
a precise localized Calderón-Zygmund decomposition for gradients of func-
tions, which is a variation on [2, Prop. 1.1]. Define the (uncentered) maximal
function M by

Mu(x) = sup
x3B

1

V (B)

ˆ
B
|u| dµ,

for all functions u ∈ L1
loc(M) and all x ∈ M . The required Calderón-

Zygmund decomposition is as follows:

Lemma 3.2. Let B be a ball in M , and u ∈ C∞0 (B). Let 1 ≤ q < ∞, and

assume that, for all balls B̃ ⊂ 2B, the Poincaré inequality with exponent q
holds in 7B̃. Then, there exists a constant C > 0 depending only on the
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doubling constant, with the following property: for all λ >

(
C ‖∇u‖qq
V (B)

) 1
q

,

let

Ω := {x ∈M ; M (|∇uq)(x) > λq}.
Then, Ω ⊂ 2B, and there exists a denumerable collection of balls (Bi)i≥1 ⊂
Ω ⊂ 2B covering Ω, a denumerable collection of C1 functions (bi)i≥1 and a
Lipschitz function g such that:

(1) u = g +
∑
i≥1

bi,

(2) the support of g is included in 2B, and |∇g(x)| . λ, for a.e. x ∈
M . Moreover, there exists a bounded vector field H ∈ L∞(TM)
vanishing outside Ω, such that

∇g = ∇u · 1M\Ω +H a.e., ||H||∞ . λ, (3.2)

(3) the support of bi is included in Bi,

ˆ
Bi

|bi|qdµ . rqi
ˆ
Bi

|∇u|q dµ,

and

ˆ
Bi

|∇bi|qdµ . λqV (Bi).

(4)
∑
i≥1

V (Bi) . λ
−q

ˆ
|∇u|qdµ,

(5) there is a finite upper bound N for the number of balls Bi that have
a non-empty intersection,

(6) if Bi ∩Bj 6= ∅ and we denote by ri (reps. rj) their radius, then

1

3
rj ≤ ri ≤ 3rj ,

(7) for every i ∈ N,

3Bi ∩ (M \ Ω) 6= ∅.

The construction of the covering and of the functions (bi)i≥1 has been
explained in details in [9, Appendix B]; property 3 is an easy application
of the Poincaré inequality which holds for every ball Bi. It turns out that
property (2) is subtle, in fact the proof of Proposition 1.1 in [2] has a gap,
which has subsequently been addressed in the unpublished note [1]. For
the sake of clarification of this point, we provide a proof of points 2-4 from
Lemma 3.2 in the Appendix.
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Let us now turn to the estimate of
∥∥∆1/2fα

∥∥
Lp(4Bα)

. Following [2], we first
prove:

Lemma 3.3. For all α ∈ N, all ϕ ∈ C∞c (Bα) and all λ >

(
C ‖∇h‖qq
V (Bα)

) 1
q

,

µ({x ∈ 4Bα; |∆1/2ϕ(x)| > λ}) . 1

λq

ˆ
Bα

|∇ϕ|q dµ. (3.3)

Proof. For every λ >

(
C ‖∇ϕ‖qq
V (Bα)

) 1
q

, Lemma 3.2 provides a collection of

balls (Bi
α)i≥1 included in 2Bα, a Lipschitz function gα and a collection of C1

functions (biα)i≥1 sharing the properties listed in Lemma 3.2. In particular,

ϕ = gα +
∑
i

biα.

Note that, for all α ∈ N and all i ≥ 1, Bi
α ⊂ 2Bα and the balls Bi

α then
satisfy the Lq Poincaré inequality.
In the sequel of the argument, we use the following integral representation
of ∆1/2:

∆1/2 = c

ˆ +∞

0
∆e−t∆

dt√
t
,

where c > 0 is an unimportant constant. As in [2, Section 1.2], it is enough

to prove the required estimates for
´ R
ε ∆e−t∆ dt√

t
for 0 < ε < R < ∞, with

constants independent of ε,R. In what follows, we ignore this issue and
write directly

´ +∞
0 . The meaning of ∆1/2gα and ∆1/2biα is analogous to

the one given in [2, Section 1.2] and relies on the pointwise Gaussian upper

bounds (UE) and (1.2) for pt(x, y) and
∣∣∣∂pt∂t (x, y)

∣∣∣ respectively.

We first claim that

µ

({
x ∈ 4Bα;

∣∣∣∆1/2gα(x)
∣∣∣ > λ

3

})
≤ C

λq

ˆ
2Bα

|∇gα(x)|q dµ(x). (3.4)

Indeed,

µ

({
x ∈ 4Bα;

∣∣∣∆1/2gα(x)
∣∣∣ > λ

3

})
≤ 9

λ2

ˆ
4Bα

∣∣∣∆1/2gα(x)
∣∣∣2 dµ(x)

≤ 9

λ2

ˆ
M
|∇gα(x)|2 dµ(x)

.
1

λ2
λ2−q

ˆ
M
|∇gα(x)|q dµ(x)

.
1

λq

ˆ
M
|∇ϕ(x)|q dµ(x).



12 BAPTISTE DEVYVER AND EMMANUEL RUSS

The last line is due to the fact thatˆ
M

∣∣∣∣∣∑
i

∇biα(x)

∣∣∣∣∣
q

dµ(x) .
∑
i

ˆ
M

∣∣∇biα(x)
∣∣q dµ(x)

. λq
∑
i

V (Bi
α)

.
ˆ
M
|∇ϕ(x)|q dµ(x),

which implies in turn that

‖∇gα‖q ≤ ‖∇ϕ‖q +

∥∥∥∥∥∑
i

∇biα

∥∥∥∥∥
q

. ‖∇ϕ‖q .

To cope with the terms involving ∆1/2biα, decompose

∆1/2biα = c

ˆ +∞

0
∆e−t∆biα

dt√
t

= c

ˆ (riα)2

0
∆e−t∆biα

dt√
t

+ c

ˆ +∞

(riα)2
∆e−t∆biα

dt√
t

=: T iαb
i
α + U iαb

i
α. (3.5)

We therefore have to establish

I := µ

({
x ∈ 4Bα;

∣∣∣∣∣∑
i

T iαb
i
α(x)

∣∣∣∣∣ > λ

3

})
.

1

λq
‖∇ϕ‖qq (3.6)

and

J := µ

({
x ∈ 4Bα;

∣∣∣∣∣∑
i

U iαb
i
α(x)

∣∣∣∣∣ > λ

3

})
.

1

λq
‖∇ϕ‖qq . (3.7)

Let us first consider (3.6). The quantity I is easily estimated by

I ≤ µ

(⋃
i

2Bi
α

)
+ µ

({
x ∈ 4Bα \

⋃
i

2Bi
α;

∣∣∣∣∣∑
i

T iαb
i
α(x)

∣∣∣∣∣ > λ

3

})
=: Iα + Jα.

First, (D) and the properties of the Calderón-Zygmund decomposition yield
at once

Iα ≤
∑
i

V (2Bi
α)

.
∑
i

V (Bi
α)

. λ−q
ˆ
M
|∇ϕ(x)|q dµ(x).
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As far as Jα is concerned, one has

Jα ≤ 9

λ2

ˆ
4Bα\

⋃
i 2Biα

∣∣∣∣∣∑
i

T iαb
i
α(x)

∣∣∣∣∣
2

dµ(x)

≤ 9

λ2

ˆ
4Bα

∣∣∣∣∣∑
i

uiα(x)

∣∣∣∣∣
2

dµ(x), (3.8)

where

uiα := 14Bα\2Biα

∣∣T iαbiα∣∣ .
To estimate the right-hand side in (3.8), we argue by duality. Pick up a
fonction v ∈ L2(4Bα) with ‖v‖2 = 1 and decompose

∣∣∣∣∣
ˆ

4Bα

∑
i

uiα(x)v(x)dµ(x)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i

∑
j≥1

ˆ
Cj(Biα)

uiα(x)v(x)dµ(x)

∣∣∣∣∣∣
=:

∣∣∣∣∣∣
∑
i

∑
j≥1

Aαij

∣∣∣∣∣∣ , (3.9)

where

Cj(B) := 2j+1B \ 2jB

for all open balls B ⊂M and all j ≥ 1. In order to estimate Aαij , we need a

pointwise upper bound for
∣∣ ∂
∂te
−t∆biα

∣∣ in Cj(B
i
α), j ≥ 1. So, let j ≥ 1 and

x ∈ Cj(Bi
α). Denote by xiα the center of Bi

α, and notice that (VD) and (1.1)
imply, for all z ∈ Bi

α and all t ∈ (0, (riα)2),

V (xiα,
√
t)

V (z,
√
t)

=
V (xiα,

√
t)

V (xiα, r
i
α)
· V (xiα, r

i
α)

V (z, riα)
· V (z, riα)

V (z,
√
t)

.

(
riα√
t

)D
.

Bearing in mind that biα has support in Bi
α, that, for all x ∈ Cj(Bi

α) and all
z ∈ Bi

α, one has

d(x, z) ≥ d(x, xiα)− d(z, xiα) ≥ (2j − 1)riα ≥
1

2
2jriα

(recall that j ≥ 1) and using (1.3), one obtains, for all x ∈ Cj(Bi
α),
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∣∣∣∣ ∂∂te−t∆biα(x)

∣∣∣∣ . 1

t

(
riα√
t

)D
e−c

4j(riα)2

t

V (xiα,
√
t)

ˆ
Biα

|biα(z)| dµ(z)

.
1

t

(
riα√
t

)D
e−c

4j(riα)2

t
V (xiα, r

i
α)

V (xiα,
√
t)

 
Biα

|biα(z)| dµ(z)

.
1

t

(
riα√
t

)2D

e−c
4j(riα)2

t

( 
Biα

|biα(z)|q dµ(z)

)1/q

.
riα
t

(
(riα)2

t

)D
e−c

4j(riα)2

t
1

(V (Bi
α))1/q

‖∇ϕ‖Lq(Biα)

≤ riα
t

(
(riα)2

t

)D
e−c

4j(riα)2

t λ,

where, in the third line, we have used (VD) and Hölder’s inequality, while
the fourth one follows from point (3) in Lemma 3.2. As a consequence, using
doubling again, one obtains∥∥∆e−t∆biα

∥∥
L2(Cj(Biα))

≤ µ(Cj(B
i
α))1/2

∥∥∆e−t∆biα
∥∥
L∞(Cj(Biα))

. V (2jBi
α)1/2 r

i
α

t

(
(riα)2

t

)D
e−c

4j(riα)2

t λ.

From thus, we infer that∥∥uiα∥∥L2(Cj(Biα))
=

∥∥T iαbiα∥∥L2(Cj(Biα))

≤
ˆ (riα)2

0

∥∥∆e−t∆biα
∥∥
L2(Cj(Biα))

dt√
t

. V (2jBi
α)1/2λ

ˆ (riα)2

0

riα
t

(
(riα)2

t

)D
e−c

4j(riα)2

t
dt√
t

. V (2jBi
α)1/2λ

ˆ 1

0

1

u

(
1

u

)D
e−c

4j

u
du√
u

. V (2jBi
α)1/2e−

c
2

4jλ, . (3.10)

where, in the fourth line, we made the change of.variables t = (riα)2u.

On the other hand, for all y ∈ Bi
α,(ˆ

Cj(Biα)
|v(z)|2 dµ(z)

) 1
2

≤

(ˆ
2j+1Biα

|v(z)|2 dµ(z)

) 1
2

. V 1/2(2j+1Bi
α)
(
M (|v|2)(y)

)1/2
. (3.11)
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Gathering (3.10) and (3.11) and using Cauchy-Schwarz and (D), one there-
fore obtains

Aαij ≤ . V (2jBi
α)1/2e−

c
2

4jλ · V 1/2(Bi
α)

 
Biα

(
M (|v|2)(y)

)1/2
dµ(y)

. 2jD/2e−
c
2

4jλ

ˆ
Biα

(
M (|v|2)(y)

)1/2
dµ(y).

Summing up over i, j and recalling (3.9), one deduces∣∣∣∣∣
ˆ

4Bα

∑
i

uiα(x)v(x)dµ(x)

∣∣∣∣∣ . λ

ˆ
4Bα

∑
i

1Biα(y)
(
M (|v|2)(y)

)1/2
dµ(y)

. Nλ

ˆ
⋃
iB

i
α

(
M (|v|2)(y)

)1/2
dµ(y)

. Nλµ

(⋃
i

Bi
α

)1/2 ∥∥∥(M (|v|2)
)∥∥∥1/2

1,∞

. Nλµ

(⋃
i

Bi
α

)1/2 ∥∥∥|v|2∥∥∥
1

. Nλµ

(⋃
i

Bi
α

)1/2

, (3.12)

where the second line follows from the finite overlap property for the balls
Bi
α (recall that N is given by Lemma 3.2), the third one is due to the

Kolmogorov inequality ([17, Lemma 10, Section 7.7]) and the fourth one
to the weak (1, 1) boundedness of M . Finally, taking the supremum over
all functions v ∈ L2(4Bα) such that ‖v‖L2(4Bα) = 1 and recalling (3.8), we

conclude

Jα ≤ 9

λ2

ˆ
4Bα

∣∣∣∣∣∑
i

uiα(x)

∣∣∣∣∣
2

dµ(x)

. µ

(⋃
i

Bi
α

)

.
1

λq
‖∇ϕ‖qq .

Thus, (3.6) is proved.

Let us now turn to the proof of (3.7). We follow ideas in [2, Section 1.2],
however we estimate the Lq norm of U iαb

i
α for each α separately, instead of

considering the Lq-norm of
∑

α U
i
αb
i
α as in [2]. We write

U iαb
i
α = c

ˆ ∞
(riα)2

t∆e−t∆
(
biα√
t

)
dt

t
= c

ˆ ∞
0

t∆e−t∆bt
dt

t
,
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with

bt :=
biα√
t
1[(riα)2,+∞[(t).

Let g ∈ Lq′(4Bα) with 1
q + 1

q′ = 1 and ‖g‖Lq′ (4Bα) = 1. Since q′ ∈ (1,+∞),

Littlewood-Paley-Stein estimates ([20, Chapter 4, Theorem 10]) yield

∣∣∣∣ˆ
4Bα

(U iαb
i
α)gdµ

∣∣∣∣ =

∣∣∣∣ˆ ∞
0
〈t∆e−t∆bt, g〉

∣∣∣∣
=

∣∣∣∣ˆ ∞
0
〈bt, t∆e−t∆g〉

∣∣∣∣
≤

∥∥∥∥∥
(ˆ ∞

0
|bt|2

dt

t

)1/2
∥∥∥∥∥
q

∥∥∥∥∥
(ˆ ∞

0
|t∆e−t∆g|2dt

t

)1/2
∥∥∥∥∥
q′

.

∥∥∥∥∥
(ˆ ∞

0
|bt|2

dt

t

)1/2
∥∥∥∥∥
q

||g||q′ .

It is easily seen that ∥∥∥∥∥
(ˆ ∞

0
|bt|2

dt

t

)1/2
∥∥∥∥∥
q

=
1

riα
||biα||q,

hence ∣∣∣∣ˆ
4Bα

(U iαb
i
α)gdµ

∣∣∣∣ ≤ 1

rα
||biα||q . ‖∇ϕ‖Lq(Biα) ,

where the last line is derived from point (3) in Lemma 3.2. Taking the

supremum over all functions g ∈ Lq′(4Bi
α) with ‖g‖Lq′ (4Biα) = 1, we get

||U iαbiα||Lq(4Bα) . ‖∇ϕ‖Lq(Biα) .

Summing up on i and using the finite overlap property of the balls Bi
α, one

obtains ∥∥∥∥∥∑
i

U iαb
i
α

∥∥∥∥∥
Lq(4Bα)

.
∑
i

∥∥U iαbiα∥∥Lq(4Bα)

≤
∑
i

‖∇ϕ‖Lq(Biα)

. ‖∇ϕ‖Lq(4Bα) ,

which entails at once that (3.7) holds. Gathering (3.4), (3.5), (3.6) and (3.7)
concludes the proof of Lemma 3.3. �
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As a consequence of the weak type estimate provided by Lemma 3.3, we are
now going to prove:

Lemma 3.4. Let p ∈ (q, 2). There is a constant C > 0 such that for every
α ∈ N,

||∆1/2fα||pLp(4Bα) ≤ C
ˆ
Bα

|∇fα|p.

Proof. Let C > 0 be given by Lemma 3.3. We first claim that

I :=

ˆ ∞(
C‖∇fα‖

p
p

V (Bα)

)1/p λp−1µ({x ∈ 4Bα; |∆1/2fα(x)| > λ}) dλ .
ˆ
Bα

|∇fα|p dµ.

(3.13)
This estimate will be established through an interpolation type argument
borrowed from [2, Section 1.3]. Noticing that, since fα is supported in Bα
and by the Hölder inequality,(

‖∇fα‖qq
V (Bα)

) 1
q

≤

(
‖∇fα‖pp
V (Bα)

) 1
p

and using the Calderón-Zygmund decomposition given by Lemma 3.2 again

for λ >
(
C‖∇fα‖qq
V (Bα)

)1/q

, fα is decomposed as

fα =: gα + bα,

which yields

I ≤
ˆ ∞(

C‖∇fα‖
p
p

V (Bα)

)1/p λp−1µ

({
x ∈ 4Bα; |∆1/2gα(x)| > λ

2

})
dλ

+

ˆ ∞(
C‖∇fα‖

p
p

V (Bα)

)1/p λp−1µ

({
x ∈ 4Bα; |∆1/2bα(x)| > λ

2

})
dλ

.
ˆ ∞

0
λp−1 ‖|∇gα|‖

2
2

λ2
dλ

+

ˆ ∞
0

λp−1
‖|∇bα|‖qq

λq
dλ

=: I1 + I2.

In the fourth line, we used Lemma 3.3 with the function bα. Let us first
estimate I1. Lemma 3.2 yields

∇gα = ∇fα · 1M\Ωα + hα
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where hα is supported in Ωα and ‖hα‖∞ . λ. This decomposition provides

I1 .
ˆ ∞

0
λp−1

‖|∇fα|‖2L2(4Bα\Ωα)

λ2
dλ

+

ˆ ∞
0

λp−1 ‖hα‖
2
2

λ2
dλ

=: I1
1 + I2

1 . (3.14)

On the one hand, since p < 2,

I1
1 ≤

ˆ ∞
0

λp−3

(ˆ
4Bα\Ωα

|∇fα|2 dµ

)
dλ

≤
ˆ

4Bα

|∇fα(x)|2
(ˆ ∞

(M (|∇fα|q)(x))1/q
λp−3dλ

)
dµ(x)

'
ˆ

4Bα

|∇fα(x)|2 (M (|∇fα|q) (x))
p−2
q dµ(x), (3.15)

where, in order to pass from the first to the second line, we have used that
by definition of Ωα,

4Bα \ Ωα = {x ∈ 4Bα ; (M (|∇fα|q) (x))1/q ≤ λ}.

Since

|∇fα(x)|2 = |∇fα(x)|p |∇fα(x)|2−p

≤ |∇fα(x)|p (M (|∇fα|q) (x))
2−p
q a. e. x ∈M,

it follows from (3.15) that

I1
1 .

ˆ
4Bα

|∇fα(x)|p dµ(x) =

ˆ
Bα

|∇fα(x)|p dµ(x) (3.16)
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(recall that fα has support inside Bα). On the other hand, since hα is
supported in Ωα and |hα| . λ, we get by using the definition of Ωα that

I2
1 ≤

ˆ ∞
0

λp−1µ(Ωα)dλ

=

ˆ ∞
0

λp−1

(ˆ
4Bα

1Ωα(x)dµ(x)

)
dλ

≤
ˆ

4Bα

(ˆ (M (|∇fα|q)(x))1/q

0
λp−1dλ

)
dµ(x)

.
ˆ

4Bα

(M (|∇fα|q) (x))p/q dµ(x)

≤ ‖M (|∇fα|q)‖p/qp/q

. ‖|∇fα|q‖p/qp/q

=

ˆ
Bα

|∇fα(x)|p dµ(x), . (3.17)

where the sixth line holds since p
q > 1. Gathering (3.14), (3.16) and (3.17)

shows that

I1 .
ˆ
Bα

|∇fα(x)|p dµ(x). (3.18)

Our next task is to estimate I2. To that purpose, using Lemma 3.2 again,
one starts from

∇bα = ∇fα −∇gα = ∇fα · 1Ωα − hα,
which leads to

I2 .
ˆ ∞

0
λp−1

‖|∇fα|‖qLq(Ωα)

λq
dλ

+

ˆ ∞
0

λp−1
‖hα‖qLq(Ωα)

λq
dλ

=: I1
2 + I2

2 .

For I1
2 , one has, arguing as before,

I1
2 ≤

ˆ ∞
0

λp−q−1

(ˆ
Ωα

|∇fα(x)|q dµ(x)

)
dλ

≤
ˆ

4Bα

|∇fα(x)|q
(ˆ (M (|∇fα|q)(x))1/q

0
λp−q−1dλ

)
dµ(x)

.
ˆ

4Bα

|∇fα(x)|q (M (|∇fα|q) (x))
p−q
q dµ(x)

.

(ˆ
4Bα

|∇fα(x)|p
) q
p
(ˆ

4Bα

(M (|∇fα|q) (x))

(
p
q

)′
p−q
q dµ(x)

)1− q
p
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where
(
p
q

)′
is such that q

p +

[(
p
q

)′]−1

= 1. Since

((
p

q

)′ p− q
q

)−1

=

(
1− q

p

)
q

p− q

=
p− q
p

q

p− q
=
q

p
,

one therefore concludes, using the L
p
q -boundedness of M ,

I1
2 .

(ˆ
4Bα

|∇fα(x)|p dµ(x)

) q
p
(ˆ

4Bα

(M (|∇fα|)q (x))
p
q dµ(x)

)1− q
p

.

(ˆ
4Bα

|∇fα(x)|p dµ(x)

) q
p
(ˆ

4Bα

|∇fα|p (x)dµ(x)

)1− q
p

=

ˆ
4Bα

|∇fα(x)|p dµ(x)

=

ˆ
Bα

|∇fα(x)|p dµ(x).

The estimate of I2
2 is analogous to the one of I2

1 , which concludes the proof
of (3.13).

Let us consider now

J :=

ˆ (
C‖∇fα‖

p
p

V (Bα)

)1/p

0
λp−1µ({x ∈ 4Bα ; |∆1/2fα(x)| > λ}) dλ.

Using a trivial estimate and doubling, one obtains at once

µ({x ∈ 4Bα ; |∆1/2fα(x)| > λ}) ≤ V (4Bα) . V (Bα),

so that

J . V (Bα)

ˆ (
C‖∇fα‖

p
p

V (Bα)

)1/p

0
λp−1 dλ = C

ˆ
Bα

|∇fα|p. (3.19)

Putting together (3.13) and (3.19), we get

||∆1/2fα||pLp(4Bα) = p

ˆ ∞
0

λp−1µ({x ∈ 4Bα ; |∆1/2fα(x)| > λ}) dλ

≤ p(I + J)

.
ˆ
Bα

|∇fα|p,

which ends the proof of Lemma 3.4. �
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3.2. Estimates of the non-diagonal terms. Let us now estimate the Lp

norm of ∆1/2fα outside 4Bα. As before, we use the splitting

∆1/2fα =

ˆ r2α

0

∂

∂t
e−t∆fα

dt√
t

+

ˆ ∞
r2α

∂

∂t
e−t∆fα

dt√
t

= Tαfα + Uαfα.

The term Uαfα is easily estimated:

Lemma 3.5. Let s ∈ (1,+∞). Then, for every α ∈ N,

||Uαfα||s ≤
1

rα
||fα||s.

In particular, this implies that

||Uαfα||Ls(M\4Bα) ≤
1

rα
||fα||s.

Proof. We follow ideas in [2, Section 1.2] again, arguing as in the estimate
of (3.7). We write

Uαfα =

ˆ ∞
r2α

t∆e−t∆
(
fα√
t

)
dt

t
=

ˆ ∞
0

t∆e−t∆ft
dt

t
,

with

ft =
fα√
t
1[r2α,+∞[(t).

Using duality and Littlewood-Paley-Stein estimates again, we obtain, anal-
ogously to the proof of (3.7),

||Uαfα||s ≤
1

rα
||fα||s.

�

Let is now turn to the terms Tαfα:

Lemma 3.6. Under the assumptions (D) and (UE), there exists a constant
C > 0 such that for every s ∈ [1,∞) and every α ∈ N,

||Tαfα||Ls(M\4Bα) ≤
C

rα
||fα||s.

Proof. The argument is reminiscent of the one for (3.6). Let α ∈ N, and
0 < t < r2

α. We first estimate
∣∣ ∂
∂te
−t∆fα

∣∣ pointwise on Cαj := Cj(Bα) =

2j+1Bα \ 2jBα, j ≥ 2. Let j ≥ 2 and x ∈ Cjα. As before, (VD) and (1.1)
imply, for all z ∈ Bα,

V (xα,
√
t)

V (z,
√
t)
.

(
rα√
t

)D
.
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Since fα has support in Bα and (1.3) holds, one obtains, for all x ∈ Cαj ,
j ≥ 2,

∣∣∣∣ ∂∂te−t∆fα(x)

∣∣∣∣ . 1

t

(
rα√
t

)2D

e−c
4jr2α
t

( 
Bα

|fα(z)|s dµ(z)

)1/s

=
1

rα

(
r2
α

t

)D+1

e−c
4jr2α
t

( 
Bα

|fα(z)|s

rsα
dµ(z)

)1/s

.

Note that the condition j ≥ 2 was used in the last inequality. As a conse-
quence,

∥∥∆e−t∆fα
∥∥
Ls(Cjα)

≤
(
µ(Cjα)

)1/s ∥∥∆e−t∆fα
∥∥
L∞(Cjα)

.
(
V (2j+1Bα)

)1/s 1

rα

(
r2
α

t

)D+1
e−c

4jr2α
t

(V (Bα))1/s

(ˆ
Bα

|fα(z)|s

rsα
dµ(z)

)1/s

.
1

rα
2jD/s

(
r2
α

t

)D+1

e−c
4jr2α
t

(ˆ
Bα

|fα(z)|s

rsα
dµ(z)

)1/s

≤ 1

rα

(
2jr2

α

t

)D+1

e−c
4jr2α
t

(ˆ
Bα

|fα(z)|s

rsα
dµ(z)

)1/s

≤ 1

rα
e−c

′ 4
jr2α
t

(ˆ
Bα

|fα(z)|s

rsα
dµ(z)

)1/s

.

It follows that

‖Tαfα‖Ls(Cjα)
.

1

rα

(ˆ
Bα

|fα(z)|s

rsα
dz

)1/s ˆ r2α

0
e−c

′ 4
jr2α
t
dt√
t

≤ 1

rα

(ˆ
Bα

|fα(z)|s

rsα
dz

)1/s

2jrα

(ˆ +∞

4j
e−c

′uu−
3
2du

)
. e−c

′′2j
(ˆ

Bα

|fα(z)|s

rsα
dz

)1/s

,

where, in the second line, we made the change of variables u = 4jr2α
t . There-

fore,

‖Tαfα‖Ls(M\4Bα) ≤
∑
j≥2

‖Tαfα‖Ls(Cjα)

≤

∑
j∈N

e−c
′′2j

(ˆ
Bα

|fα(z)|s

rsα
dz

)1/s

.

(ˆ
Bα

|fα(z)|s

rsα
dz

)1/s

.

�
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Summarizing what we have done so far, we get, according to Lemmas 3.4,
3.5 and 3.6:

||∆1/2f ||Lp(M) = ||∆1/2
∑
α∈N

fα||p

≤
∑
α∈N
||∆1/2fα||Lp(4Bα) +

∑
α∈N
||∆1/2fα||Lp(M\4Bα)

≤
∑
α∈N
||∆1/2fα||Lp(4Bα) +

∑
α∈N
||Tαfα||Lp(M\4Bα)

+
∑
α∈N
||Uαfα||Lp(M\4Bα)

.
∑
α∈N
||∇fα||Lp(4Bα) +

∑
α∈N

∥∥∥∥fαrα
∥∥∥∥
Lp
.

Recalling that fα = χαf and ||∇χα||∞ . 1
rα

, one has

||∇fα||p .
∥∥∥∥fαrα

∥∥∥∥
p

+ ||∇f ||Lp(Bα).

Since the balls (Bα)α∈N have the finite intersection property, one has∑
α∈N
||∇f ||Lp(Bα) . ||∇f ||p.

Therefore,

||∆1/2f ||Lp(M) . ||∇f ||p +
∑
α∈N

∥∥∥∥fαrα
∥∥∥∥
Lp
. (3.20)

We now rely on the Lp Hardy inequality to establish:

Lemma 3.7. For all p ∈ [q, 2), one has∑
α

∥∥∥∥ |fα|rα
∥∥∥∥
p

. ‖∇f‖p .

Proof. Notice first that (PEp ) holds, which entails, by Theorem 2.3, that the
Lp Hardy inequality

ˆ
M

(
|f |

1 + r

)p
dµ .

ˆ
M
|∇f |pdµ

holds on M . Let α ∈ N. Then

|fα| ≤ |f |1Bα ,
and, for all x ∈ Bα,

1

rα
.

1

r(x) + 1
,
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which is easily checked, whether Bα is anchored or remote (note that (3.1)
is used in that case). Thus, using the finite overlap property for the balls
(Bα)α∈N again, one obtains∑

α

∥∥∥∥ |fα|rα
∥∥∥∥
p

.

(ˆ
M

|f(x)|p

(r(x) + 1)p
dµ(x)

) 1
p

. ‖∇f‖p ,

where the last inequality follows from the Hardy inequality (H) (see Theorem
2.3). �

Finally, combining (3.20) and Lemma 3.7, we conclude that (RRp) holds,
which concludes the proof of Theorem 1.4.

4. Appendix: proof of the Calderón-Zygmund lemma for
Sobolev functions

In this section we explain the proof of Lemma 3.2; the construction of
the (Whitney type) covering (Bi)i∈N satisfying (5), (6) and (7), and of the
functions bi, has already been presented in details in [9, Appendix B]. Here
we intend to explain mainly the proof of points 2-4. We assume also that
Ω 6= ∅, otherwise the Calderón-Zygmund decomposition simply writes g = u.
We denote by F the complement of Ω in M . The proof of (4) is easy enough:
according to (5), one has∑

i≥1

V (Bi) ≤ Nµ(Ω) . λ−q
ˆ
|∇u|qdµ,

where in the last inequality we have used the weak (1,1) type of the maximal
function and the definition of Ω. This proves (4). Let us now recall how the
functions bi are defined: according to [9], one can find a smooth partition of
unity (χi)i∈N associated with the covering (Bi)i∈N of Ω, and such that for
every i ∈ N,

||∇χi||L∞ .
1

ri
,

where ri denotes the radius of Bi. Then, bi is defined by

bi = (u− uBi)χi.
It is clear by definition that bi has support in Bi. Moreover, since Bi ⊂ Ω ⊂
2B (see [9]), it follows that Bi satisfies the Lq Poincaré inequality. Hence,

||bi||q ≤
(ˆ

Bi

|u− uBi |q dµ
)1/q

. ri||∇u||Lq(Bi). (4.1)

Also,

∇bi = (u− uBi)∇χi + χi∇u,
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so that, again applying Poincaré on Bi and the estimate on ∇χi, we obtain

||∇bi||q . ||∇u||Lq(Bi).
But property (7) in Lemma 3.2 and doubling imply that

||∇u||qLq(Bi) ≤ ||∇u||qLq(3Bi)
≤ V (3Bi)λ

q

. V (Bi)λ
q,

so (3) holds. Define

b =
∑
i≥0

bi,

and let

g = u− b.
We will see in a moment that b is actually a well-defined, locally integrable
function on M . Since u has support in B and b in 2B, it follows that g has
support in 2B. It remains to prove (2). Since the covering is locally finite by
(5), the sum defining b is merely a finite sum at every point in Ω. There is a
subtle point which is that it is possible that the balls Bi accumulate near the
boundary of Ω, making ∇b having a singularity on the boundary of Ω (think
of the extreme case where b = 1Ω, for instance). So, despite the fact that
each bi is smooth and has support inside Ω, and despite the sum

∑
i≥0 bi

being locally finite in Ω, one must check carefully that b is Lipschitz up to
the boundary of Ω. First, let us see that the series defining b converges in
L1
loc(M). Indeed, let K be a compact set in M , and ϕ ∈ L∞(M) vanishing

outside of K; then, for every n ∈ N,

〈
∑
i≤n
|bi|, ϕ〉 =

∑
i≤n
〈|bi|, ϕ〉

=
∑
i≤n
〈 |bi|
ri
, riϕ〉

≤
∑
i≤n
〈 |bi|
ri
, ri|ϕ|〉

≤
∑
i≤n

∣∣∣∣∣∣∣∣biri
∣∣∣∣∣∣∣∣
q

sup
x∈K

d(x, F )||ϕ||Lq′

.
∑
i≤n
||∇u||Lq(Bi)||ϕ||∞

. N ||∇u||q||ϕ||∞.
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Since n is arbitrary, this proves that
∑

i≥0 |bi| converges in L1
loc, hence b ∈

L1
loc is well-defined. This yields that g ∈ L1

loc(M), too. The estimate on
||∇bi||q and the fact that the covering satisfies (4) in Lemma 3.2 easily
imply that ∇b, defined as a distribution, actually belongs to Lq(M), and
one has the following equality in Lq:

∇b =
∑
i≥0

∇bi =
∑
i≥0

((u− uBi)∇χi + (∇u) · χi) .

It is clear that
∑

i≥0(∇u) · χi converges in Lq to (∇u) · 1Ω, hence ∇g, de-

fined as a distribution, actually belongs to Lq(M) and we get the following
equality in Lq(M):

∇g = (∇u) · 1F −
∑
i≥0

(u− uBi)∇χi.

Define

H = −
∑
i≥0

(u− uBi)∇χi,

which is an Lq vector field since the series of the Lq norms converge. We
claim that the vector field H is in fact essentially bounded, and that we have
the estimate ||H||L∞ . λ. This is proven in [1] and we partially reproduce
the proof from there, adding some more details.
Since L1(TM) ∩ Lq′(TM) is dense in L1(TM), it is enough to prove that

for every vector field X ∈ L1 ∩ Lq′(TM),

|〈H,X〉| . λ||X||1.
Here, q′ denotes the conjugate exponent to q, that is 1

q + 1
q′ = 1.

Fix such a vector field X, then by Lq − Lq′ duality,

〈H,X〉 = lim
n→∞

ˆ ∑
i≤n

(u− uBi) · (∇χi) ·X

 dµ.

Here, ∇χi(x) · X(x) denotes the inner product on the tangent space TxM
defined by the Riemannian metric. Since

∑
i≤n(u−uBi)∇χi is a finite sum,

it defines a smooth function with compact support inside Ω. Using that∑
m∈N χm = 1Ω, we have∑

i≤n
(u− uBi)(∇χi) ·X =

∑
m∈N

∑
i≤n

(u− uBi)(∇χi) · (χmX).

Denote Xm := χmX, which has now compact support in Ω. Denote by Im
the set of indices i for which Bi ∩ Bm 6= ∅, which is a finite set of cardinal
at most N by (5). Then,
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∑
i≤n

(u− uBi)(∇χi)Xm =
∑

i∈Im, i≤n
(u− uBi)(∇χi)Xm

=
∑

i∈Im, i≤n
(u− uBm)(∇χi)Xm

+
∑

i∈Im, i≤n
(uBm − uBi)(∇χi)Xm

We deal with the first sum in the right hand side: using (6),

∑
m

∑
i∈Im, i≤n

|u− uBm | · |∇χi| · |Xm| ≤
∑
m

∑
i∈Im

|u− uBm | · |∇χi| · |Xm|

.
∑
m

∑
i∈Im

1

ri
|u− uBm |χm · |X|

. N
∑
m

1

rm
|u− uBm |χm · |X|

Integrating the above inequality, using Fubini-Tonelli and Poincaré on each
ball Bm and (5), we get

ˆ ∑
(m,i)∈N2

i∈Im, i≤n

|u− uBm | · |∇χi| · |Xm| dµ ≤ N
∑
m

ˆ
1

rm
|u− uBm | · χm · |X| dµ

≤ N
∑
m

||r−1
m (u− uBm))||Lq(Bm)||X||Lq′

. N
∑
m

||∇u||Lq(Bm)||X||Lq′

. N2||∇u||Lq · ||X||Lq′ < +∞

Since the constant N2 is independant of n, the limit

∑
(m,i)∈N2

i∈Im

(u− uBm)(∇χi) ·Xm = lim
n→∞

∑
(m,i)∈N2

i∈Im, i≤n

(u− uBm)(∇χi) ·Xm

exists in L1, and and one can evaluate it using Fubini to exchange the order
of summation; since

∑
i∈N χi = 1Ω, we have by definition of Im that for

every m ∈ N,
∑

i∈Im χi = 1 in restriction to Bm. Thus,
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∑
i∈Im

(∇χi)χm = χm∇

(∑
i∈Im

χi

)
= χm(∇1)

= 0.

Therefore, we have the following equality which holds in L1:∑
(m,i)∈N2

i∈Im

(u− uBm)(∇χi) · (χmX) = 0.

Consequently, we have

−〈H,X〉 = lim
n→∞

ˆ
 ∑

(m,i)∈N2

i∈Im, i≤n

(uBm − uBi)(∇χi) ·Xm

 dµ.

We now estimate |uBm − uBi | for i ∈ Im. According to (6), ri ≤ 3rm, and
since Bi ∩ Bm 6= ∅, we have Bi ⊂ 7Bm. Also, since Bm ⊂ 2B, the Lq

Poincaré inequality holds for 7Bm. We now estimate

|u7Bm − uBi | ≤
ˆ
Bi

|u(x)− u7Bm |
dµ(x)

V (Bi)

≤
(ˆ

Bi

|u(x)− u7Bm |q
dµ(x)

V (Bi)

)1/q

≤
(ˆ

7Bm

|u(x)− u7Bm |q
dµ(x)

V (Bi)

)1/q

. rm

(ˆ
7Bm

|∇u(x)|q dµ(x)

V (Bm)

)1/q

,

where in the last line we have used doubling and the fact that ri ' rm. A
completely analogous argument gives

|u7Bm − uBm | . rm
(ˆ

7Bm

|∇u(x)|q dµ(x)

V (Bm)

)1/q

,

and summing these two estimates we find that

|uBm − uBi | . rm
(ˆ

7Bm

|∇u(x)|q dµ(x)

V (Bm)

)1/q

.

Given that |∇χi| . 1
ri
. 1

rm
, one obtains
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|uBm − uBi | · |∇χi| .
(ˆ

7Bm

|∇u(x)|q dµ(x)

V (Bm)

)1/q

.

However, (7) entails that 7Bm ∩ F 6= ∅. The definition of F in terms of the
maximal function gives that

ˆ
7Bm

|∇u(x)|q dµ(x)

V (Bm)
≤ λq,

hence

|uBm − uBi | · |∇χi| . λ.
It follows that

∑
(m,i)∈N2

i∈Im, i≤n

|uBm − uBi | · |∇χi| · |Xm| . Nλ

(∑
m

χm

)
|X|

. λ|X|.
Therefore, integrating one finds

ˆ ∑
(m,i)∈N2

i∈Im, i≤n

|uBm − uBi | · |∇χi| · |Xm|dµ . λ||X||1.

One thus concludes that

ˆ ∑
(m,i)∈N2

i∈Im

|uBm − uBi | · |∇χi| · |Xm|dµ . λ||X||1.

But one has

|〈H,X〉| ≤
ˆ ∑

(m,i)∈N2

i∈Im

|uBm − uBi | · |∇χi| · |Xm|dµ,

which finally yields

|〈H,X〉| . λ||X||1.
This estimate being valid for every X ∈ L1(TM)∩Lq′(TM), which is dense
in L1(TM), we conclude by duality that H ∈ L∞ with ||H||L∞ . λ.

Remark 4.1. Note that the proof actually yields the following representa-
tion for H:

H =
∑

(m,i)∈N2

i∈Im

(uBi − uBm) · χm · (∇χi) a.e.,
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the right-hand side being an essentially bounded vector field with L∞ norm
bounded by Cλ for some C > 0.
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Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 4(3):531–555, 2005. 2, 3, 5, 6, 9, 10, 11, 15,
17, 21

[3] D. Bakry. The Riesz transforms associated with second order differential operators.
Stochastic processes, Proc. 8th Semin., Gainesville/Florida 1988, Prog. Probab. 17,
1-43 (1989), 1989. 2

[4] G. Carron. Riesz transform on manifolds with quadratic curvature decay. Rev. Mat.
Iberoam., 33(3):749–788, 2017. 4, 5

[5] G. Carron, T. Coulhon, and A. Hassell. Riesz transform and Lp-cohomology for
manifolds with Euclidean ends. Duke Math. J., 133(1):59–94, 2006. 3

[6] T. Coulhon and X.T. Duong. Riesz transforms for 1 ≤ p ≤ 2. Trans. Am. Math. Soc.,
351(3):1151–1169, 1999. 6

[7] E. B. Davies. Non-Gaussian aspects of heat kernel behaviour. J. Lond. Math. Soc.,
II. Ser., 55(1):105–125, 1997. 4

[8] B. Devyver. A perturbation result for the Riesz transform. Ann. Sc. Norm. Super.
Pisa, Cl. Sci. (5), 14(3):937–964, 2015. 7

[9] B. Devyver and E. Russ. Hardy spaces on Riemannian manifolds with quadratic
curvature decay. arXiv preprint arXiv:1910.09344, 2019. 6, 8, 10, 24

[10] A. Grigor’yan and S. Ishiwata. Heat kernel estimates on a connected sum of two
copies of Rn along a surface of revolution. Glob. Stoch. Anal., 2(1):29–65, 2012. 3

[11] A. Grigor’yan and L. Saloff-Coste. Stability results for Harnack inequalities. Ann.
Inst. Fourier, 55(3):825–890, 2005. 5

[12] C. Guillarmou and A. Hassell. Resolvent at low energy and Riesz transform for
Schrödinger operators on asymptotically conic manifolds. I. Math. Ann., 341(4):859–
896, 2008. 3

[13] P. Haj lasz and P. Koskela. Sobolev met Poincaré, volume 688. Providence, RI: Amer-
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