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Abstract. Let M be a complete Riemannian manifold satisfying the doubling volume condition for geodesic balls and L q scaled Poincaré inequalities on suitable remote balls for some q < 2. We prove the inequality ∆ 1/2 f p ∇f p for all p ∈ (q, 2], which generalizes previous results due to Auscher and Coulhon. Our conclusion applies, in particular, when M has a finite number of Euclidean ends. The proof strongly relies on Hardy inequalities, which are also new in this context and of independent interest.

Introduction

Throughout the paper, if A(f ) and B(f ) are two nonnegative quantities defined for all f belonging to a set E, the notation A(f ) B(f ) means that there exists C > 0 such that A(f ) ≤ CB(f ) for all f ∈ E, while A(f ) B(f ) means that A(f ) B(f ) and B(f ) A(f ). Let M be a complete connected noncompact Riemannian manifold. Denote by µ the Riemannian measure, by ∇ the Riemannian gradient and by ∆ the Laplace-Beltrami operator. The volume of a geodesic ball B will be denoted by V (B) instead of µ(B). In this work, we consider the following three inequalities for p ∈ (1, ∞) (where the L p -norms are computed with respect to the measure µ):

Date: today. ||∆ 1/2 u|| p ||∇u|| p ||∆ 1/2 u|| p , ∀u ∈ C ∞ 0 (M ) (E p ) ||∇u|| p ||∆ 1/2 u|| p , ∀u ∈ C ∞ 0 (M ) (R p ) ||∆ 1/2 u|| p ||∇u|| p , ∀u ∈ C ∞ 0 (M ) (RR p )
It follows easily from the Green formula and the self-adjointness of ∆ that

||∇u|| 2 2 = (∆u, u) = ||∆ 1/2 || 2 2
, ∀u ∈ C ∞ 0 (M ). Consequently, (E p ) holds for p = 2 on any complete Riemannian manifold. The inequality (R p ) is equivalent to the L p -boundedness of the Riesz transform R = ∇∆ -1/2 . A well-known duality argument, originally introduced in [START_REF] Bakry | The Riesz transforms associated with second order differential operators[END_REF], shows that (R p ) implies (RR q ) for q = p the conjugate exponent, but the converse implication does not hold (see Section 1.1 below). The present work focuses on the inequality (RR p ), which we establish for suitable ranges of p in situations where inequalities of the form (R p ) do not hold. The proofs are strongly related to the geometry of the underlying manifold and to the behaviour of the heat kernel p t , namely the kernel of the semigroup generated by ∆.

We consider the case where p t satisfies Gaussian type pointwise upper estimates, and prove that, if a scaled L q Poincaré inequality holds on remote balls of M for some q ∈ [1, 2), then (RR p ) for p ∈ (q, 2] (see Section 1.1 below for precise statements).

1.1. Previously known reverse Riesz inequalities. In [START_REF] Auscher | Riesz transform on manifolds and Poincaré inequalities[END_REF], P. Auscher and T. Coulhon have studied the inequality (RR p ), and the relationship between (R p ) and (RR q ), q = p . In order to recall some of their results, we need to introduce some geometric inequalities about M . For all x ∈ M and all r > 0, let B(x, r) be the open geodesic ball with center x and radius r and set V (x, r) := µ(B(x, r)). Say that the doubling volume property holds if and only if, for all x ∈ M and all r > 0, V (x, 2r) V (x, r).

(D)

By iteration, this condition implies at once that there exists D > 0 such that for all x ∈ M and all 0 < r < R,

V (x, R) R r D V (x, r). (VD)
An easy consequence of (D) is that for every 0 < r ≤ R, and for every x, y ∈ M such that d(x, y) ≤ r, one has V (x, R) V (y, R).

(1.1)

We also consider a reverse doubling volume condition: there exists ν > 0 such that, for all x ∈ M and all 0 < r < R, R r ν V (x, r) V (x, R).

(RD)

It is known that since M is non-compact and connected, (D) implies (RD) for some ν > 0.

Let p ∈ [1, ∞). We consider the scaled L p Poincaré inequality on balls, namely :

||f -f B || L p (B) r||∇f || L p (B) , f ∈ C ∞ (B), ∀B = B(x, r) ⊂ M, (P p )
where f B denotes the average of f on B, that is f B := V (B) -1 ´B f . Among other things, Auscher and Coulhon prove in [START_REF] Auscher | Riesz transform on manifolds and Poincaré inequalities[END_REF] that (i) if the Hodge projector onto exact 1-forms Π := RR * is L p -bounded, then (RR p ) implies (R p ), (ii) if (D) holds, as well as (P q ) for some q ∈ [1, 2), then, (RR p ) holds for all p ∈ (q, 2).

As a consequence of (ii), one can see that the implication (RR p ) ⇒ (R p ) is false in general. Indeed, let M be a complete Riemannian manifold of dimension n ≥ 3, such that M has only one end, and this end is asymptotically conic (see [12]); assume furthermore that the first eigenvalue of the cross-section of the corresponding cone is strictly less than n -1. Then, according to [12, Theorem 1.4], (R p ) holds on M if and only if p ∈ (1, p * ), where n < p * < +∞ only depends on the first eigenvalue of the cross-section of the cone. However, such a manifold M satisfies (P 1 ), so that (RR p ) holds for all p ∈ (1, 2] according to (ii).

Observe that (ii) above does not apply in the case where M is, for instance, the connected sum of two copies of R n , since (P 2 ) does not hold in this case ( [START_REF] Grigor'yan | Heat kernel estimates on a connected sum of two copies of R n along a surface of revolution[END_REF]Appendix]). As far as the Riesz transforms are concerned, it was shown in [START_REF] Carron | Riesz transform and L p -cohomology for manifolds with Euclidean ends[END_REF] that (R p ) holds on M if and only if 1 < p < n if n ≥ 3, and if and only if 1 < p ≤ 2 if n = 2, which implies that (RR p ) holds when p > n n-1 . However, the validity of (RR q ) for 1 < q ≤ n n-1 remained open in that case.

1.2. New results. In the present work, we extend statement (ii) above to the case where the L q Poincaré inequality only holds on some "remote" balls of M . Let us fix once and for all a point o in M . For x ∈ M , we will denote r(x) = d(x, o). We let B 0 = B(o, r 0 ), where r 0 > 0 is large enough and will be determined later.

Definition 1.1. Let x ∈ M and r > 0.

(

) The ball B(x, r) is called remote if r ≤ r(x) 2 . (2) The ball B(x, r) is called anchored if x = o. (3) The ball B(x, r) is called admissible if either B is remote, or B(x, r) 1 
is anchored and r ≤ r 0 .

In this article, instead of L p Poincaré inequalities (P p ) for all balls of M , we will consider the following assumption that L p Poincaré inequalities hold only for certain balls: Definition 1.2. We say that the L p Poincaré inequality holds in the ends of M if, for every admissible balls B,

||f -f B || L p (B) r||∇f || L p (B) , f ∈ C ∞ (B)
(P E p ) where r stands for the radius of B.

For p = 2, an assumption similar to (P E p ) has been considered in [14]. It follows from [13, Theorem 2.1] and the Hölder inequality that if p ≤ q, (P E p ) ⇒ (P E q ). See also the beginning of [13, Section 4]. Let us also point out that if the Ricci curvature has a quadratic lower bound of the form:

Ric x ≥ - g 1 + r(x) 2 , (QD)
where g is the Riemannian metric on M , then (P E p ) holds for all p ≥ 1 (this follows from [START_REF] Saloff-Coste | Aspects of Sobolev-type inequalities[END_REF]Theorem 5.6.5]). In particular, (P E p ) holds for all p ≥ 1 in the case where M is the connected sum of two copies of R n . Before stating our main theorem, we need to introduce the heat kernel p t (x, y), which is the kernel of the heat semigroup e -t∆ . Say that p t satisfies pointwise Gaussian upper bounds if

p t (x, y) 1 V (x, √ t) exp - d 2 (x, y) ct , ∀t > 0, ∀x, y ∈ M. (UE)
It is well-known (see [7, Theorem 4]) that (UE) implies analogous estimates for the time-derivatives ∂ n ∂t n : for every n ∈ N,

∂ n ∂t n p t (x, y) 1 t n V (x, √ t) exp - d 2 (x, y) ct , ∀t > 0, ∀x, y ∈ M. (1.2)
Sometimes we will use a slightly different (but equivalent, under (D)) version of (1.2), which we record here:

∂ n ∂t n p t (x, y) 1 t n V (y, √ t) exp - d 2 (x, y) ct , ∀t > 0, ∀x, y ∈ M. (1.3)
(the constants that we call c in (1.2) and (1.3) not necessarily being the same).

Say that M has a finite number of ends if there exists an integer N ≥ 1 such that, for all R > 0, M \ B(o, R) has at most N unbounded connected components. It is known ([4,Section[2.4.1]) that condition (D) implies that M has a finite number of ends.

We also consider the following geometric condition.

Definition 1.3. We say that (M, g) with a finite number of ends satisfies the Relative Connectedness in the Ends (RCE) condition, if there is a constant θ ∈ (0, 1) such that for any point x with r(x) ≥ 1, there is a continuous path c : [0, 1] → M satisfying

• c(0) = x. • the length of c is bounded by r(x) θ . • c([0, 1]) ⊂ B(o, θ -1 r(x)) \ B(o, θr(x)).
• there is a geodesic ray γ : [0, +∞) → M \B(o, r(x)) with γ(0) = c(1).

When M only has one end, the (RCE) condition is nothing but the (RCA) condition introduced in [11]. Let us also recall ([4, Theorem 2.4]) that, if (QD) and (RCE) hold, as well as the volume comparison property, namely

V (o, R) V x, R 2 (VC)
for all R ≥ 1 and all x ∈ ∂B(o, R), then the relative Faber-Krahn inequality holds, hence (UE) and (D) hold.

The main purpose of this article is to show the following result:

Theorem 1.4. Let M be a complete Riemannian manifold satisfying (D), (UE), (RD) for some ν > 1 and (RCE). Assume that for some q ∈ (1, 2] such that q < ν, the L q Poincaré inequalities in the ends (P E q ) hold. Then, for every p ∈ [q, 2), (RR p ) holds on M . Question 1.5. Is the assumption (RCE) in Theorem 1.4 really necessary? Remark 1.6. Let us compare Theorem 1.4 with [2, Theorem 0.7]. Assume that (D), (P q ) for some q ∈ [1, 2] and (RD) for some ν > q hold. Then (P 2 ) holds as well; together with (D), it follows that (UE) holds (see [START_REF] Saloff-Coste | Aspects of Sobolev-type inequalities[END_REF]Theorem 4.2.6]). Moreover, [START_REF] Minerbe | Weighted Sobolev inequalities and Ricci flat manifolds[END_REF]Proposition 0.3] shows that the conjunction of (D), (P q ) and (RD) for some ν > q imply the (RCA) condition. Since it is clear that (P q ) ⇒ (P E q ), it follows that for every p ∈ (q, 2), (RR p ) holds on M . In other words, under the condition (RD) for some ν > q, assumptions in Theorem 1.4 are weaker than those of [2, Theorem 0.7]. Note also that, in Theorem 1.4, the conclusion (RR p ) holds for all p ∈ [q, 2), while the corresponding conclusion in [2, Theorem 0.7] under the assumption that (P q ) holds, is only stated for p ∈ (q, 2) (actually, a weak form of (RR p ) is proved for p = q is proved in [2, Section 1.2]). However, when (P q ) holds, there exists ε > 0 such that (P q-ε ) is also satisfied ([15, Theorem 1.0.1]), so that [2, Theorem 0.7] yields (RR p ) for p = q.

Corollary 1.7. Let M be a complete Riemannian manifold satisfying (QD), (VC), (RCE) and (RD) with ν > 1. Then, for every p ∈ (1, +∞), (RR p ) holds on M .

Proof. We are going to show that the assumptions of Theorem 1.4 are satisfied with q = 1. The L 1 Poincaré inequality in the ends follows from [START_REF] Saloff-Coste | Aspects of Sobolev-type inequalities[END_REF]Theorem 5.6.5]. Now, as we have mentioned before, (QD), (VC) and (RCE) imply (D) and (UE). Thus, the assumptions of Theorem 1.4 are satisfied, and therefore we get (RR p ) for all p ∈ (1, 2). The reverse inequalities (RR p ) for p ∈ [2, +∞) follow from [6] and the implication (R p ) ⇒ (RR q ), q = p .

The proof of Theorem 1.4 relies on three major ingredients: the first one (Proposition 3.1 below) is the covering of M by admissible balls (B α ) α∈N and the existence of an associated smooth partition of unity (χ α ) α∈N . The second one (Theorem 2.3 below) is an L p Hardy inequality on M , obtained (roughly speaking) by "gluing" together local Poincaré inequalities thanks to a suitable covering. Our approach also uses a localized version of the Calderón-Zygmund decomposition in Sobolev spaces as in [START_REF] Auscher | Riesz transform on manifolds and Poincaré inequalities[END_REF], already encountered in [9] (see Lemma 3.2 below). The structure of the paper is as follows. Hardy inequalities are proved in Section 2. We then turn to the proof of Theorem 1.4 in Section 3. An appendix is devoted to the clarification of some properties of the Calderón-Zygmund decomposition.

Hardy inequalities

Before stating the Hardy inequalities required for the proof of Theorem 1.4 and for the convenience of the reader, we feel it is worthwile to write down a more self-contained proof of the L p Hardy inequality in the case where M is a connected sum of the Euclidean spaces of dimension ≥ 2. It is well-known that on R n the following optimal Hardy inequality holds:

n -p p p ˆRn |f | p r p ≤ ˆM |df | p , ∀f ∈ C ∞ (R n ). (H R n )
Hence, the Hardy inequality on a connected sum of two Euclidean spaces follows from the following result, which we think is of interest by itself:

Proposition 2.1. Let M and N be two Riemannian manifolds, such that M and N are isometric at infinity: there exists

K M M , K N N compact sets such that M \ K M is isometric to N \ K N . Let p ∈ (1, ∞). Then, the Hardy inequality ˆM |f | r + 1 p ˆM |df | p , ∀f ∈ C ∞ 0 (M ). (H)
holds on M , if and only if it holds on N .

Corollary 2.2. Let M = R n R n be a connected sum of two Euclidean spaces of dimension n ≥ 2. Let 1 ≤ p < n. Then, M satisfies the L p Hardy inequality (H).

Proof. (of the proposition)

Assume that (H) holds on N . We are going to show that it holds on M as well. By assumption, there exists two relatively compact, open sets U ⊂ M , V ⊂ N such that M \ U is isometric to N \ V . Let 0 ≤ χ ≤ 1 be a smooth, compactly supported function on M , which is equal to 1 identically in an neighborhood of U . Let K M be a compact set containing the support of χ. Let us take f ∈ C ∞ 0 (M ), and write f = χf + (1 -χ)f . The function (1 -χ)f identifies naturally with a smooth, compactly supported function defined on N \ V , hence the Hardy inequality on N yields:

ˆN |(1 -χ)f | 1 + r p ˆN |d ((1 -χ)f ) | p . Since d ((1 -χ)f ) = -(dχ)f +(1-χ)df , upon using the elementary inequal- ity (a + b) p ≤ 2 p-1 (a p + b p ) one gets: ˆN |(1 -χ)f | 1 + r p ˆN |dχ| p |f | p + ˆN |1 -χ| p |df | p ˆK |f | p + ˆM |df | p
On the other hand, one clearly has

ˆM |χf | 1 + r p ˆK |f | p ,
so that, finally, one arrives to

ˆM |f | 1 + r p ≤ 2 p-1 ˆM |χf | 1 + r p + 2 p-1 ˆM |(1 -χ)f | p r p ˆK |f | p + ˆM |df | p
Now, the assumed Hardy inequality on N implies that N is p-hyperbolic (see [8, Prop. 2.2]), and since M and N are isometric at infinity, it follows that the ends of M are p-hyperbolic, hence M itself is p-hyperbolic. For details, see [8, Section 2]. Therefore, there exists a constant

C K such that for every u ∈ C ∞ 0 (M ), ˆK |u| p ≤ C K ˆM |du| p .
Combining this inequality with the previous one, one obtains that

ˆM |f | 1 + r p ˆM |df | p ,
which is precisely the sought for Hardy inequality (H) on M .

Let us now state a more general result on L p Hardy inequalities that essentially stems from the work of V. Minerbe [START_REF] Minerbe | Weighted Sobolev inequalities and Ricci flat manifolds[END_REF]: Theorem 2.3. Let M be a complete Riemannian manifold satisfying (D), (RCE) and (RD) for an exponent ν > 1. Let 1 ≤ p < ν, and assume that (P E p ) holds. Then the L p Hardy inequality (H) holds on M .

Proof. Note first that the (RCE) assumption implies that every end of M satisfies the (RCA) condition considered in [START_REF] Minerbe | Weighted Sobolev inequalities and Ricci flat manifolds[END_REF]. Next, (D) and (P E p ) implies that the proof of [18, Lemma 2.10], which provides L p Poincaré inequalities for subset of annuli, applies mutatis mutandis in our context. Given (RCA) in each end of M , one can then construct a "good covering" of M (in the sense of [18, Definition 1.1]) for the pair of measure ( dvol 1+r p , dvol) as in [18, Section 2.3.1], and a weighted graph associated to this covering. The L p Poincaré inequalities for subset of annuli then implies that the good covering satisfies continuous L p Sobolev inequalities of order ∞, in the sense of [START_REF] Minerbe | Weighted Sobolev inequalities and Ricci flat manifolds[END_REF]Definition 1.3]. In fact, an L p Sobolev inequalities of order ∞ is just another terminology for an L p Poincaré inequality. The proof of [18, Theorem 2.23] shows that the weighted graph satisfies an isoperimetric inequality.

According to [18, Theorem 1.8], the continuous Sobolev inequality for the covering, together with the isoperimetric inequality for the weighted graph, imply the global L p Hardy inequality (H). Question 2.4. Let M be a complete Riemannian manifold satisfying (D), (UE), (RD) for an exponent ν > 1, and (P E p ) for some 1 ≤ p < ν; does the L p Hardy inequality (H) hold for 1 ≤ p < ν ? In other words, can the assumption (RCE) be replaced by (UE) in the statement of Theorem 2.3? For p = 2, it is proved in [16, Theorem 1.2] that, under (D), (RD) for some ν > 2 and (UE), an L 2 Hardy inequality holds, however the proof does not extend easily to the case p = 2 unless one knows a priori that (RR p ) holds (which of course we do not want to assume in the present paper).

Proof of the L p reverse inequality

To begin with, let us recall that, under the assumptions of Theorem 1.4, there exists a covering of M by admissible balls, as well as an associated partition of unity. The following statement can be found in [9, Section 2.1]: Proposition 3.1. There exists a covering (B α ) α∈N of M by balls and an associated smooth partition of unity (χ α ) α∈N such that:

(1) for every α ∈ N, the ball B α is admissible, (2) the covering is locally finite: there exists N ∈ N such that for every α ∈ N,

Card{β ∈ N ; B α ∩ B β = ∅} ≤ N, (3) 
for every R > 0, the set

{α ∈ N ; B α ∩ B(o, R) = ∅}
is finite, (4) for all α ∈ N, 0 ≤ χ α ≤ 1 and χ α has support in B α . Moreover, there exists a constant C > 0 such that, for every α ∈ N, ||∇χ α || ∞ ≤ C rα , where r α is the radius of B α , (5) for all α = 0,

2 -10 r(x α ) ≤ r α ≤ 2 -9 r(x α ). (3.1)
One can assume that B 0 = B(o, r 0 ), and up to enlarging the value of r 0 and discarding a finite number of balls intersecting B 0 , one can also assume that each of the remaining balls B of the covering is such that 14B is remote. In the sequel, we thus assume that the balls have been relabeled in such a way that B 0 = B(o, r 0 ) and for α = 0, 14B α is remote.

Let us mention that point (5) of Proposition 3.1 will play an important role in the last part of the proof of Theorem 1.4 in which the Hardy inequality will be utilized. See Lemma 3.7. The assumptions of Theorem 1.4 imply that, for all α ∈ N, all balls inside 14B α support the L q -Poincaré inequality; in particular, if B ⊂ 2B α , then 7 B supports the L q -Poincaré inequality.

The idea for the proof of Theorem 1.4 is as follows: first, decompose f into

f = α∈N χ α f =: α∈N f α .
We are going to estimate separately the "diagonal terms" ||∆ 1/2 f α || L p (4Bα) and the "off-diagonal" terms ||∆ 1/2 f α || L p (M \4Bα) for all α ∈ N.

3.1.

Estimates of the diagonal terms. We first explain how to deal with the "diagonal" term ||∆ 1/2 f α || L p (4Bα) , using ideas from [START_REF] Auscher | Riesz transform on manifolds and Poincaré inequalities[END_REF]. The main tool is a precise localized Calderón-Zygmund decomposition for gradients of functions, which is a variation on [2, Prop. 1.1]. Define the (uncentered) maximal function M by

M u(x) = sup x B 1 V (B) ˆB |u| dµ,
for all functions u ∈ L 1 loc (M ) and all x ∈ M . The required Calderón-Zygmund decomposition is as follows: Lemma 3.2. Let B be a ball in M , and u ∈ C ∞ 0 (B). Let 1 ≤ q < ∞, and assume that, for all balls B ⊂ 2B, the Poincaré inequality with exponent q holds in 7 B. Then, there exists a constant C > 0 depending only on the doubling constant, with the following property: for all λ > C ∇u q q V (B)

1 q , let Ω := {x ∈ M ; M (|∇u q )(x) > λ q }.
Then, Ω ⊂ 2B, and there exists a denumerable collection of balls

(B i ) i≥1 ⊂ Ω ⊂ 2B covering Ω, a denumerable collection of C 1 functions (b i ) i≥1 and a
Lipschitz function g such that:

(1)

u = g + i≥1 b i , (2) 
the support of g is included in 2B, and |∇g(x)| λ, for a.e. x ∈ M . Moreover, there exists a bounded vector field H ∈ L ∞ (T M ) vanishing outside Ω, such that

∇g = ∇u • 1 M \Ω + H a.e., ||H|| ∞ λ, (3.2) 
(3) the support of b i is included in B i , ˆBi |b i | q dµ r q i ˆBi |∇u| q dµ, and ˆBi |∇b i | q dµ λ q V (B i ).

(

) i≥1 V (B i ) λ -q ˆ|∇u| q dµ, 4 
there is a finite upper bound N for the number of balls B i that have a non-empty intersection, (6) if B i ∩ B j = ∅ and we denote by r i (reps. r j ) their radius, then

1 3 r j ≤ r i ≤ 3r j , (7) 
for every i ∈ N,

3B i ∩ (M \ Ω) = ∅.
The construction of the covering and of the functions (b i ) i≥1 has been explained in details in [9, Appendix B]; property 3 is an easy application of the Poincaré inequality which holds for every ball B i . It turns out that property (2) is subtle, in fact the proof of Proposition 1.1 in [START_REF] Auscher | Riesz transform on manifolds and Poincaré inequalities[END_REF] has a gap, which has subsequently been addressed in the unpublished note [START_REF] Auscher | On the Calderón-Zygmund lemma for Sobolev functions[END_REF]. For the sake of clarification of this point, we provide a proof of points 2-4 from Lemma 3.2 in the Appendix.

Let us now turn to the estimate of ∆ 1/2 f α L p (4Bα) . Following [START_REF] Auscher | Riesz transform on manifolds and Poincaré inequalities[END_REF], we first prove:

Lemma 3.3. For all α ∈ N, all ϕ ∈ C ∞ c (B α ) and all λ > C ∇h q q V (B α ) 1 q , µ({x ∈ 4B α ; |∆ 1/2 ϕ(x)| > λ}) 1 λ q ˆBα |∇ϕ| q dµ. (3.3) Proof. For every λ > C ∇ϕ q q V (B α ) 1 q
, Lemma 3.2 provides a collection of balls (B i α ) i≥1 included in 2B α , a Lipschitz function g α and a collection of C 1 functions (b i α ) i≥1 sharing the properties listed in Lemma 3.2. In particular,

ϕ = g α + i b i α .
Note that, for all α ∈ N and all i ≥ 1, B i α ⊂ 2B α and the balls B i α then satisfy the L q Poincaré inequality. In the sequel of the argument, we use the following integral representation of ∆ 1/2 :

∆ 1/2 = c ˆ+∞ 0 ∆e -t∆ dt √ t ,
where c > 0 is an unimportant constant. As in [2, Section 1.2], it is enough to prove the required estimates for ´R ε ∆e -t∆ dt √ t for 0 < ε < R < ∞, with constants independent of ε, R. In what follows, we ignore this issue and write directly ´+∞ 0 . The meaning of ∆ 1/2 g α and ∆ 1/2 b i α is analogous to the one given in [2, Section 1.2] and relies on the pointwise Gaussian upper bounds (UE) and (1.2) for p t (x, y) and ∂pt ∂t (x, y) respectively. We first claim that

µ x ∈ 4B α ; ∆ 1/2 g α (x) > λ 3 ≤ C λ q ˆ2Bα |∇g α (x)| q dµ(x). (3.4) Indeed, µ x ∈ 4B α ; ∆ 1/2 g α (x) > λ 3 ≤ 9 λ 2 ˆ4Bα ∆ 1/2 g α (x) 2 dµ(x) ≤ 9 λ 2 ˆM |∇g α (x)| 2 dµ(x) 1 λ 2 λ 2-q ˆM |∇g α (x)| q dµ(x) 1 λ q ˆM |∇ϕ(x)| q dµ(x).
The last line is due to the fact that ˆM

i ∇b i α (x) q dµ(x) i ˆM ∇b i α (x) q dµ(x) λ q i V (B i α ) ˆM |∇ϕ(x)| q dµ(x),
which implies in turn that ∇g α q ≤ ∇ϕ q + i ∇b i α q ∇ϕ q .

To cope with the terms involving ∆ 1/2 b i α , decompose

∆ 1/2 b i α = c ˆ+∞ 0 ∆e -t∆ b i α dt √ t = c ˆ(r i α ) 2 0 ∆e -t∆ b i α dt √ t + c ˆ+∞ (r i α ) 2 ∆e -t∆ b i α dt √ t =: T i α b i α + U i α b i α . (3.5) 
We therefore have to establish

I := µ x ∈ 4B α ; i T i α b i α (x) > λ 3 1 λ q ∇ϕ q q (3.6)
and

J := µ x ∈ 4B α ; i U i α b i α (x) > λ 3 1 λ q ∇ϕ q q . (3.7)
Let us first consider (3.6). The quantity I is easily estimated by

I ≤ µ i 2B i α + µ x ∈ 4B α \ i 2B i α ; i T i α b i α (x) > λ 3 =: I α + J α .
First, (D) and the properties of the Calderón-Zygmund decomposition yield at once

I α ≤ i V (2B i α ) i V (B i α ) λ -q ˆM |∇ϕ(x)| q dµ(x).
As far as J α is concerned, one has

J α ≤ 9 λ 2 ˆ4Bα\ i 2B i α i T i α b i α (x) 2 dµ(x) ≤ 9 λ 2 ˆ4Bα i u i α (x) 2 dµ(x), (3.8) 
where

u i α := 1 4Bα\2B i α T i α b i α .
To estimate the right-hand side in (3.8), we argue by duality. Pick up a fonction v ∈ L 2 (4B α ) with v 2 = 1 and decompose

ˆ4Bα i u i α (x)v(x)dµ(x) = i j≥1 ˆCj (B i α ) u i α (x)v(x)dµ(x) =: i j≥1 A α ij , (3.9) 
where

C j (B) := 2 j+1 B \ 2 j B
for all open balls B ⊂ M and all j ≥ 1. In order to estimate A α ij , we need a pointwise upper bound for ∂ ∂t e -t∆ b i α in C j (B i α ), j ≥ 1. So, let j ≥ 1 and x ∈ C j (B i α ). Denote by x i α the center of B i α , and notice that (VD) and (1.1) imply, for all z ∈ B i α and all t ∈ (0, (r i α ) 2 ),

V (x i α , √ t) V (z, √ t) = V (x i α , √ t) V (x i α , r i α ) • V (x i α , r i α ) V (z, r i α ) • V (z, r i α ) V (z, √ t) r i α √ t D .
Bearing in mind that b i α has support in B i α , that, for all x ∈ C j (B i α ) and all z ∈ B i α , one has

d(x, z) ≥ d(x, x i α ) -d(z, x i α ) ≥ (2 j -1)r i α ≥ 1 2 2 j r i α
(recall that j ≥ 1) and using (1.3), one obtains, for all x ∈ C j (B i α ),

∂ ∂t e -t∆ b i α (x) 1 t r i α √ t D e -c 4 j (r i α ) 2 t V (x i α , √ t) ˆBi α |b i α (z)| dµ(z) 1 t r i α √ t D e -c 4 j (r i α ) 2 t V (x i α , r i α ) V (x i α , √ t) B i α |b i α (z)| dµ(z) 1 t r i α √ t 2D e -c 4 j (r i α ) 2 t B i α |b i α (z)| q dµ(z) 1/q r i α t (r i α ) 2 t D e -c 4 j (r i α ) 2 t 1 (V (B i α )) 1/q ∇ϕ L q (B i α ) ≤ r i α t (r i α ) 2 t D e -c 4 j (r i α ) 2 t λ,
where, in the third line, we have used (VD) and Hölder's inequality, while the fourth one follows from point (3) in Lemma 3.2. As a consequence, using doubling again, one obtains

∆e -t∆ b i α L 2 (C j (B i α )) ≤ µ(C j (B i α )) 1/2 ∆e -t∆ b i α L ∞ (C j (B i α )) V (2 j B i α ) 1/2 r i α t (r i α ) 2 t D e -c 4 j (r i α ) 2 t λ.
From thus, we infer that

u i α L 2 (C j (B i α )) = T i α b i α L 2 (C j (B i α )) ≤ ˆ(r i α ) 2 0 ∆e -t∆ b i α L 2 (C j (B i α )) dt √ t V (2 j B i α ) 1/2 λ ˆ(r i α ) 2 0 r i α t (r i α ) 2 t D e -c 4 j (r i α ) 2 t dt √ t V (2 j B i α ) 1/2 λ ˆ1 0 1 u 1 u D e -c 4 j u du √ u V (2 j B i α ) 1/2 e -c 2 4 j λ, . (3.10) 
where, in the fourth line, we made the change of.variables t = (r i α ) 2 u.

On the other hand, for all y ∈ B i α , ˆCj 

(B i α ) |v(z)| 2 dµ(z) 1 2 ≤ ˆ2j+1 B i α |v(z)| 2 dµ(z) 1 2 V 1/2 (2 j+1 B i α ) M (|v| 2 )(y)
A α ij ≤ . V (2 j B i α ) 1/2 e -c 2 4 j λ • V 1/2 (B i α ) B i α M (|v| 2 )(y) 1/2
dµ(y)

2 jD/2 e -c 2 4 j λ ˆBi α M (|v| 2 )(y) 1/2
dµ(y).

Summing up over i, j and recalling (3.9), one deduces

ˆ4Bα i u i α (x)v(x)dµ(x) λ ˆ4Bα i 1 B i α (y) M (|v| 2 )(y) 1/2 dµ(y) N λ ˆ i B i α M (|v| 2 )(y) 1/2 dµ(y) N λµ i B i α 1/2 M (|v| 2 ) 1/2 1,∞ N λµ i B i α 1/2 |v| 2 1 N λµ i B i α 1/2 , (3.12) 
where the second line follows from the finite overlap property for the balls B i α (recall that N is given by Lemma 3.2), the third one is due to the Kolmogorov inequality ([17, Lemma 10, Section 7.7]) and the fourth one to the weak (1, 1) boundedness of M . Finally, taking the supremum over all functions v ∈ L 2 (4B α ) such that v L 2 (4Bα) = 1 and recalling (3.8), we conclude

J α ≤ 9 λ 2 ˆ4Bα i u i α (x) 2 dµ(x) µ i B i α 1
λ q ∇ϕ q q . Thus, (3.6) is proved.

Let us now turn to the proof of (3.7). We follow ideas in [2, Section 1.2], however we estimate the L q norm of U i α b i α for each α separately, instead of considering the L q -norm of α U i α b i α as in [START_REF] Auscher | Riesz transform on manifolds and Poincaré inequalities[END_REF]. We write

U i α b i α = c ˆ∞ (r i α ) 2 t∆e -t∆ b i α √ t dt t = c ˆ∞ 0 t∆e -t∆ b t dt t , with b t := b i α √ t 1 [(r i α ) 2 ,+∞[ (t).
Let g ∈ L q (4B α ) with 1 q + 1 q = 1 and g L q (4Bα) = 1. Since q ∈ (1, +∞), Littlewood-Paley-Stein estimates ([20, Chapter 4, Theorem 10]) yield

ˆ4Bα (U i α b i α )gdµ = ˆ∞ 0 t∆e -t∆ b t , g = ˆ∞ 0 b t , t∆e -t∆ g ≤ ˆ∞ 0 |b t | 2 dt t 1/2 q ˆ∞ 0 |t∆e -t∆ g| 2 dt t 1/2 q ˆ∞ 0 |b t | 2 dt t 1/2 q ||g|| q .
It is easily seen that

ˆ∞ 0 |b t | 2 dt t 1/2 q = 1 r i α ||b i α || q , hence ˆ4Bα (U i α b i α )gdµ ≤ 1 r α ||b i α || q ∇ϕ L q (B i α ) ,
where the last line is derived from point (3) in Lemma 3.2. Taking the supremum over all functions g ∈ L q (4B i α ) with g L q (4B i α ) = 1, we get

||U i α b i α || L q (4Bα) ∇ϕ L q (B i α )
. Summing up on i and using the finite overlap property of the balls B i α , one obtains

i U i α b i α L q (4Bα) i U i α b i α L q (4Bα) ≤ i ∇ϕ L q (B i α )
∇ϕ L q (4Bα) , which entails at once that (3.7) holds. Gathering (3.4), (3.5), (3.6) and (3.7) concludes the proof of Lemma 3.3.

As a consequence of the weak type estimate provided by Lemma 3.3, we are now going to prove: Lemma 3.4. Let p ∈ (q, 2). There is a constant C > 0 such that for every α ∈ N,

||∆ 1/2 f α || p L p (4Bα) ≤ C ˆBα |∇f α | p .
Proof. Let C > 0 be given by Lemma 3.3. We first claim that

I := ˆ∞ C ∇fα p p V (Bα) 1/p λ p-1 µ({x ∈ 4B α ; |∆ 1/2 f α (x)| > λ}) dλ ˆBα |∇f α | p dµ.
(3.13) This estimate will be established through an interpolation type argument borrowed from [2, Section 1.3]. Noticing that, since f α is supported in B α and by the Hölder inequality,

∇f α q q V (B α ) 1 q ≤ ∇f α p p V (B α ) 1 p
and using the Calderón-Zygmund decomposition given by Lemma 3.2 again for λ >

C ∇fα q q V (Bα) 1/q
, f α is decomposed as

f α =: g α + b α , which yields I ≤ ˆ∞ C ∇fα p p V (Bα) 1/p λ p-1 µ x ∈ 4B α ; |∆ 1/2 g α (x)| > λ 2 dλ + ˆ∞ C ∇fα p p V (Bα) 1/p λ p-1 µ x ∈ 4B α ; |∆ 1/2 b α (x)| > λ 2 dλ ˆ∞ 0 λ p-1 |∇g α | 2 2 λ 2 dλ + ˆ∞ 0 λ p-1 |∇b α | q q λ q dλ =: I 1 + I 2 .
In the fourth line, we used Lemma 3.3 with the function b α . Let us first estimate I 1 . Lemma 3.2 yields

∇g α = ∇f α • 1 M \Ωα + h α
where h α is supported in Ω α and h α ∞ λ. This decomposition provides

I 1 ˆ∞ 0 λ p-1 |∇f α | 2 L 2 (4Bα\Ωα) λ 2 dλ + ˆ∞ 0 λ p-1 h α 2 2 λ 2 dλ =: I 1 1 + I 2 1 . (3.14)
On the one hand, since p < 2,

I 1 1 ≤ ˆ∞ 0 λ p-3 ˆ4Bα\Ωα |∇f α | 2 dµ dλ ≤ ˆ4Bα |∇f α (x)| 2 ˆ∞ (M (|∇fα| q )(x)) 1/q λ p-3 dλ dµ(x) ˆ4Bα |∇f α (x)| 2 (M (|∇f α | q ) (x)) p-2 q dµ(x), (3.15) 
where, in order to pass from the first to the second line, we have used that by definition of Ω α ,

4B α \ Ω α = {x ∈ 4B α ; (M (|∇f α | q ) (x)) 1/q ≤ λ}. Since |∇f α (x)| 2 = |∇f α (x)| p |∇f α (x)| 2-p ≤ |∇f α (x)| p (M (|∇f α | q ) (x))
2-p q a. e. x ∈ M, it follows from (3.15) that

I 1 1 ˆ4Bα |∇f α (x)| p dµ(x) = ˆBα |∇f α (x)| p dµ(x) (3.16) 
(recall that f α has support inside B α ). On the other hand, since h α is supported in Ω α and |h α | λ, we get by using the definition of Ω α that

I 2 1 ≤ ˆ∞ 0 λ p-1 µ(Ω α )dλ = ˆ∞ 0 λ p-1 ˆ4Bα 1 Ωα (x)dµ(x) dλ ≤ ˆ4Bα ˆ(M (|∇fα| q )(x)) 1/q 0 λ p-1 dλ dµ(x) ˆ4Bα (M (|∇f α | q ) (x)) p/q dµ(x) ≤ M (|∇f α | q ) p/q p/q |∇f α | q p/q p/q = ˆBα |∇f α (x)| p dµ(x), . (3.17) 
where the sixth line holds since p q > 1. Gathering (3.14), (3.16) and (3.17) shows that

I 1 ˆBα |∇f α (x)| p dµ(x). (3.18) 
Our next task is to estimate I 2 . To that purpose, using Lemma 3.2 again, one starts from

∇b α = ∇f α -∇g α = ∇f α • 1 Ωα -h α ,
which leads to

I 2 ˆ∞ 0 λ p-1 |∇f α | q L q (Ωα) λ q dλ + ˆ∞ 0 λ p-1 h α q L q (Ωα) λ q dλ =: I 1 2 + I 2 2 . For I 1
2 , one has, arguing as before,

I 1 2 ≤ ˆ∞ 0 λ p-q-1 ˆΩα |∇f α (x)| q dµ(x) dλ ≤ ˆ4Bα |∇f α (x)| q ˆ(M (|∇fα| q )(x)) 1/q 0 λ p-q-1 dλ dµ(x) ˆ4Bα |∇f α (x)| q (M (|∇f α | q ) (x)) p-q q dµ(x) ˆ4Bα |∇f α (x)| p q p ˆ4Bα (M (|∇f α | q ) (x)) p q p-q q dµ(x) 1-q p where p q is such that q p + p q -1 = 1. Since p q p -q q -1 = 1 - q p q p -q = p -q p q p -q = q p ,
one therefore concludes, using the L p q -boundedness of M ,

I 1 2 ˆ4Bα |∇f α (x)| p dµ(x) q p ˆ4Bα (M (|∇f α |) q (x)) p q dµ(x) 1-q p ˆ4Bα |∇f α (x)| p dµ(x) q p ˆ4Bα |∇f α | p (x)dµ(x) 1-q p = ˆ4Bα |∇f α (x)| p dµ(x) = ˆBα |∇f α (x)| p dµ(x).
The estimate of I 2 2 is analogous to the one of I 2 1 , which concludes the proof of (3.13).

Let us consider now

J := ˆ C ∇fα p p V (Bα) 1/p 0 λ p-1 µ({x ∈ 4B α ; |∆ 1/2 f α (x)| > λ}) dλ.
Using a trivial estimate and doubling, one obtains at once

µ({x ∈ 4B α ; |∆ 1/2 f α (x)| > λ}) ≤ V (4B α ) V (B α ), so that J V (B α ) ˆ C ∇fα p p V (Bα) 1/p 0 λ p-1 dλ = C ˆBα |∇f α | p . (3.19) 
Putting together (3.13) and (3.19), we get

||∆ 1/2 f α || p L p (4Bα) = p ˆ∞ 0 λ p-1 µ({x ∈ 4B α ; |∆ 1/2 f α (x)| > λ}) dλ ≤ p(I + J) ˆBα |∇f α | p ,
which ends the proof of Lemma 3.4.

3.2.

Estimates of the non-diagonal terms. Let us now estimate the L p norm of ∆ 1/2 f α outside 4B α . As before, we use the splitting

∆ 1/2 f α = ˆr2 α 0 ∂ ∂t e -t∆ f α dt √ t + ˆ∞ r 2 α ∂ ∂t e -t∆ f α dt √ t = T α f α + U α f α .
The term U α f α is easily estimated: Lemma 3.5. Let s ∈ (1, +∞). Then, for every α ∈ N,

||U α f α || s ≤ 1 r α ||f α || s .
In particular, this implies that

||U α f α || L s (M \4Bα) ≤ 1 r α ||f α || s .
Proof. We follow ideas in [2, Section 1.2] again, arguing as in the estimate of (3.7). We write

U α f α = ˆ∞ r 2 α t∆e -t∆ f α √ t dt t = ˆ∞ 0 t∆e -t∆ f t dt t , with f t = f α √ t 1 [r 2 α ,+∞[ (t) 
. Using duality and Littlewood-Paley-Stein estimates again, we obtain, analogously to the proof of (3.7),

||U α f α || s ≤ 1 r α ||f α || s .
Let is now turn to the terms T α f α :

Lemma 3.6. Under the assumptions (D) and (UE), there exists a constant C > 0 such that for every s ∈ [1, ∞) and every α ∈ N,

||T α f α || L s (M \4Bα) ≤ C r α ||f α || s .
Proof. The argument is reminiscent of the one for (3.6). Let α ∈ N, and 0 < t < r 2 α . We first estimate ∂ ∂t e -t∆ f α pointwise on

C α j := C j (B α ) = 2 j+1 B α \ 2 j B α , j ≥ 2. Let j ≥ 2 and x ∈ C j α .
As before, (VD) and (1.1) imply, for all z ∈ B α ,

V (x α , √ t) V (z, √ t) r α √ t D .
Since f α has support in B α and (1.3) holds, one obtains, for all x ∈ C α j , j ≥ 2,

∂ ∂t e -t∆ f α (x) 1 t r α √ t 2D e -c 4 j r 2 α t Bα |f α (z)| s dµ(z) 1/s = 1 r α r 2 α t D+1 e -c 4 j r 2 α t Bα |f α (z)| s r s α dµ(z) 1/s .
Note that the condition j ≥ 2 was used in the last inequality. As a consequence,

∆e -t∆ f α L s (C j α ) ≤ µ(C j α ) 1/s ∆e -t∆ f α L ∞ (C j α ) V (2 j+1 B α ) 1/s 1 r α r 2 α t D+1 e -c 4 j r 2 α t (V (B α )) 1/s ˆBα |f α (z)| s r s α dµ(z) 1/s 1 r α 2 jD/s r 2 α t D+1 e -c 4 j r 2 α t ˆBα |f α (z)| s r s α dµ(z) 1/s ≤ 1 r α 2 j r 2 α t D+1 e -c 4 j r 2 α t ˆBα |f α (z)| s r s α dµ(z) 1/s ≤ 1 r α e -c 4 j r 2 α t ˆBα |f α (z)| s r s α dµ(z) 1/s .
It follows that

T α f α L s (C j α ) 1 r α ˆBα |f α (z)| s r s α dz 1/s ˆr2 α 0 e -c 4 j r 2 α t dt √ t ≤ 1 r α ˆBα |f α (z)| s r s α dz 1/s 2 j r α ˆ+∞ 4 j e -c u u -3 2 du e -c 2 j ˆBα |f α (z)| s r s α dz 1/s
, where, in the second line, we made the change of variables u = 4 j r 2 α t . Therefore,

T α f α L s (M \4Bα) ≤ j≥2 T α f α L s (C j α ) ≤   j∈N e -c 2 j   ˆBα |f α (z)| s r s α dz 1/s ˆBα |f α (z)| s r s α dz 1/s
.

Summarizing what we have done so far, we get, according to Lemmas 3.4, 3.5 and 3.6:

||∆ 1/2 f || L p (M ) = ||∆ 1/2 α∈N f α || p ≤ α∈N ||∆ 1/2 f α || L p (4Bα) + α∈N ||∆ 1/2 f α || L p (M \4Bα) ≤ α∈N ||∆ 1/2 f α || L p (4Bα) + α∈N ||T α f α || L p (M \4Bα) + α∈N ||U α f α || L p (M \4Bα) α∈N ||∇f α || L p (4Bα) + α∈N f α r α L p .
Recalling that

f α = χ α f and ||∇χ α || ∞ 1 rα , one has ||∇f α || p f α r α p + ||∇f || L p (Bα) .
Since the balls (B α ) α∈N have the finite intersection property, one has

α∈N ||∇f || L p (Bα) ||∇f || p .
Therefore, In this section we explain the proof of Lemma 3.2; the construction of the (Whitney type) covering (B i ) i∈N satisfying ( 5), ( 6) and ( 7), and of the functions b i , has already been presented in details in [9, Appendix B]. Here we intend to explain mainly the proof of points 2-4. We assume also that Ω = ∅, otherwise the Calderón-Zygmund decomposition simply writes g = u. We denote by F the complement of Ω in M . The proof of (4) is easy enough: according to (5), one has i≥1 V (B i ) ≤ N µ(Ω) λ -q ˆ|∇u| q dµ, where in the last inequality we have used the weak (1,1) type of the maximal function and the definition of Ω. This proves (4). Let us now recall how the functions b i are defined: according to [9], one can find a smooth partition of unity (χ i ) i∈N associated with the covering (B i ) i∈N of Ω, and such that for every i ∈ N,

||∆ 1/2 f || L p (M ) ||∇f || p + α∈N f α r α L p . ( 3 
||∇χ i || L ∞ 1 r i ,
where r i denotes the radius of B i . Then, b i is defined by

b i = (u -u B i )χ i . It is clear by definition that b i has support in B i . Moreover, since B i ⊂ Ω ⊂ 2B (see [9]
), it follows that B i satisfies the L q Poincaré inequality. Hence,

||b i || q ≤ ˆBi |u -u B i | q dµ 1/q r i ||∇u|| L q (B i ) . (4.1)
Also,

∇b i = (u -u B i )∇χ i + χ i ∇u,
so that, again applying Poincaré on B i and the estimate on ∇χ i , we obtain

||∇b i || q ||∇u|| L q (B i ) .
But property (7) in Lemma 3.2 and doubling imply that We will see in a moment that b is actually a well-defined, locally integrable function on M . Since u has support in B and b in 2B, it follows that g has support in 2B. It remains to prove [START_REF] Auscher | Riesz transform on manifolds and Poincaré inequalities[END_REF]. Since the covering is locally finite by ( 5), the sum defining b is merely a finite sum at every point in Ω. There is a subtle point which is that it is possible that the balls B i accumulate near the boundary of Ω, making ∇b having a singularity on the boundary of Ω (think of the extreme case where b = 1 Ω , for instance). So, despite the fact that each b i is smooth and has support inside Ω, and despite the sum i≥0 b i being locally finite in Ω, one must check carefully that b is Lipschitz up to the boundary of Ω. First, let us see that the series defining b converges in L 1 loc (M ). Indeed, let K be a compact set in M , and ϕ ∈ L ∞ (M ) vanishing outside of K; then, for every n ∈ N,

||∇u|| q L q (B i ) ≤ ||∇u|| q L q (3B i ) ≤ V (3B i )λ q V (B i )λ q , so (3) 
i≤n |b i |, ϕ = i≤n |b i |, ϕ = i≤n |b i | r i , r i ϕ ≤ i≤n |b i | r i , r i |ϕ| ≤ i≤n b i r i q sup x∈K d(x, F )||ϕ|| L q i≤n ||∇u|| L q (B i ) ||ϕ|| ∞ N ||∇u|| q ||ϕ|| ∞ .
Since n is arbitrary, this proves that i≥0 |b i | converges in L 1 loc , hence b ∈ L 1 loc is well-defined. This yields that g ∈ L 1 loc (M ), too. The estimate on ||∇b i || q and the fact that the covering satisfies (4) in Lemma 3.2 easily imply that ∇b, defined as a distribution, actually belongs to L q (M ), and one has the following equality in L q :

∇b = i≥0 ∇b i = i≥0 ((u -u B i )∇χ i + (∇u) • χ i ) .
It is clear that i≥0 (∇u) • χ i converges in L q to (∇u) • 1 Ω , hence ∇g, defined as a distribution, actually belongs to L q (M ) and we get the following equality in L q (M ):

∇g = (∇u) • 1 F - i≥0 (u -u B i )∇χ i . Define H = - i≥0 (u -u B i )∇χ i ,
which is an L q vector field since the series of the L q norms converge. We claim that the vector field H is in fact essentially bounded, and that we have the estimate ||H|| L ∞ λ. This is proven in [START_REF] Auscher | On the Calderón-Zygmund lemma for Sobolev functions[END_REF] and we partially reproduce the proof from there, adding some more details. Since L 1 (T M ) ∩ L q (T M ) is dense in L 1 (T M ), it is enough to prove that for every vector field X ∈ L

1 ∩ L q (T M ), | H, X | λ||X|| 1 .
Here, q denotes the conjugate exponent to q, that is 1 q + 1 q = 1. Fix such a vector field X, then by L q -L q duality,

H, X = lim n→∞ ˆ  i≤n (u -u B i ) • (∇χ i ) • X   dµ.
Here, ∇χ i (x) • X(x) denotes the inner product on the tangent space T x M defined by the Riemannian metric. Since i≤n (u -u B i )∇χ i is a finite sum, it defines a smooth function with compact support inside Ω. Using that

m∈N χ m = 1 Ω , we have i≤n (u -u B i )(∇χ i ) • X = m∈N i≤n (u -u B i )(∇χ i ) • (χ m X).
Denote X m := χ m X, which has now compact support in Ω. Denote by I m the set of indices i for which B i ∩ B m = ∅, which is a finite set of cardinal at most N by [START_REF] Carron | Riesz transform and L p -cohomology for manifolds with Euclidean ends[END_REF]. Then,

i≤n (u -u B i )(∇χ i )X m = i∈Im, i≤n (u -u B i )(∇χ i )X m = i∈Im, i≤n (u -u Bm )(∇χ i )X m + i∈Im, i≤n (u Bm -u B i )(∇χ i )X m
We deal with the first sum in the right hand side: using (6), 

≤ N m ||r -1 m (u -u Bm ))|| L q (Bm) ||X|| L q N m ||∇u|| L q (Bm) ||X|| L q N 2 ||∇u|| L q • ||X|| L q < +∞
Since the constant N 2 is independant of n, the limit 

(u Bm -u B i )(∇χ i ) • X m     dµ.
We now estimate |u Bm -u B i | for i ∈ I m . According to (6), r i ≤ 3r m , and since B i ∩ B m = ∅, we have B i ⊂ 7B m . Also, since B m ⊂ 2B, the L q Poincaré inequality holds for 7B m . We now estimate

|u 7Bm -u B i | ≤ ˆBi |u(x) -u 7Bm | dµ(x) V (B i ) ≤ ˆBi |u(x) -u 7Bm | q dµ(x) V (B i ) 1/q ≤ ˆ7Bm |u(x) -u 7Bm | q dµ(x) V (B i ) 1/q r m ˆ7Bm |∇u(x)| q dµ(x) V (B m ) 1/q
, where in the last line we have used doubling and the fact that r i r m . A completely analogous argument gives This estimate being valid for every X ∈ L 1 (T M ) ∩ L q (T M ), which is dense in L 1 (T M ), we conclude by duality that H ∈ L ∞ with ||H|| L ∞ λ. (u B i -u Bm ) • χ m • (∇χ i ) a.e., the right-hand side being an essentially bounded vector field with L ∞ norm bounded by Cλ for some C > 0.

[20] E. M. Stein. Topics in harmonic analysis related to the Littlewood-Paley theory, volume 63. Princeton University Press, Princeton, NJ, 1970. 16
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 12 (3.11) Gathering (3.10) and (3.11) and using Cauchy-Schwarz and (D), one therefore obtains

  m i∈Im, i≤n |u -u Bm | • |∇χ i | • |X m | ≤ m i∈Im |u -u Bm | • |∇χ i | • |X m | m i∈Im 1 r i |u -u Bm |χ m • |X| N m 1 r m |u -u Bm |χ m • |X|Integrating the above inequality, using Fubini-Tonelli and Poincaré on each ball B m and (5), we getˆ (m,i)∈N 2 i∈Im, i≤n |u -u Bm | • |∇χ i | • |X m | dµ ≤ N m ˆ1 r m |u -u Bm | • χ m • |X| dµ

(m,i)∈N 2

 2 i∈Im (u -u Bm )(∇χ i ) • X m = lim n→∞ (m,i)∈N 2 i∈Im, i≤n (u -u Bm )(∇χ i ) • X mexists in L 1 , and and one can evaluate it using Fubini to exchange the order of summation; since i∈N χ i = 1 Ω , we have by definition of I m that for every m ∈ N, i∈Im χ i = 1 in restriction to B m . Thus, i∈Im(∇χ i ) χ m = χ m ∇ i∈Im χ i = χ m (∇1) = 0.Therefore, we have the following equality which holds in L 1 :(m,i)∈N 2 i∈Im (u -u Bm )(∇χ i ) • (χ m X) = 0.Consequently, we have -H, X = lim n→∞

.Given that |∇χ i | 1 r i 1 rm

 1 |u 7Bm -u Bm | r m ˆ7Bm |∇u(x)| q dµ(x) V (B m ) 1/q, and summing these two estimates we find that|u Bm -u B i | r m ˆ7Bm |∇u(x)| q dµ(x) V (B m ) , one obtains |u Bm -u B i | • |∇χ i | ˆ7Bm |∇u(x)| q dµ(x) V (B m ) 1/q .However, (7) entails that 7B m ∩ F = ∅. The definition of F in terms of the maximal function gives thatˆ7Bm |∇u(x)| q dµ(x) V (B m ) ≤ λ q , hence |u Bm -u B i | • |∇χ i | λ. It follows that (m,i)∈N 2 i∈Im, i≤n |u Bm -u B i | • |∇χ i | • |X m | N λ m χ m |X| λ|X|.Therefore, integrating one findsˆ (m,i)∈N 2 i∈Im, i≤n |u Bm -u B i | • |∇χ i | • |X m |dµ λ||X|| 1 .One thus concludes thatˆ (m,i)∈N 2 i∈Im |u Bm -u B i | • |∇χ i | • |X m |dµ λ||X|| 1 . But one has | H, X | ≤ ˆ (m,i)∈N 2 i∈Im |u Bm -u B i | • |∇χ i | • |X m |dµ, which finally yields | H, X | λ||X|| 1 .

Remark 4. 1 .

 1 Note that the proof actually yields the following representation for H:H = (m,i)∈N 2 i∈Im

  .20)We now rely on the L p Hardy inequality to establish: which is easily checked, whether B α is anchored or remote (note that (3.1) is used in that case). Thus, using the finite overlap property for the balls (B α ) α∈N again, one obtains

	α	|f α | r α p			(r(x) + 1) p dµ(x) ˆM |f (x)| p	1 p
					∇f p ,
	where the last inequality follows from the Hardy inequality (H) (see Theorem
	2.3).			
	Finally, combining (3.20) and Lemma 3.7, we conclude that (RR p ) holds,
	which concludes the proof of Theorem 1.4.
	4. Appendix: proof of the Calderón-Zygmund lemma for
			Sobolev functions
	Lemma 3.7. For all p ∈ [q, 2), one has
			α	|f α | r α p	∇f p .
	Proof. Notice first that (P E p ) holds, which entails, by Theorem 2.3, that the L p Hardy inequality
		ˆM	|f | 1 + r	p	dµ ˆM |∇f | p dµ
	holds on M . Let α ∈ N. Then	
				|f α | ≤ |f | 1 Bα ,
	and, for all x ∈ B α ,			
				1 r α	1 r(x) + 1	,
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