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Abstract: Energy communities are key enablers for end-users to actively participate in the energy
transition in a more consumer-centric context. This paper focuses on the expansion of existing energy
communities that may need to select new members among a pool of candidates. Selection is based
on heuristic methods for better explainability and to promote a transparent selection process from
end-users’ perspectives. The proposed methodology is further verified with an accurate optimization-
based energy management strategy. The member selection is performed in an iterative process where
the best potential candidate is added as a new member of the energy community before running
the same procedure over successive iterations. Simulations were performed for a complete month
with a real community of six houses and nine potential candidates. The proposed rule-based method
achieves similar ranks among candidates for two investigated metrics and return the same results
as the more accurate optimization. Furthermore, the results show a hint on how to identify the best
location (i.e., member) to install new assets that can contribute best to the energy community since
it can boost the value brought by the candidates to the community. In that sense, the proposed method
also serves as an investment decision support tool as well as a selection strategy for inhabitants
of an energy community.

Keywords: local energy system; collective self-consumption; energy community expansion planning;
new member candidates; member selection; optimization; scoring method

1. Introduction

An energy community (EC) is formed by a pool of households located in a close
geographical area with sharing production and possibly also storage asset at the community
level. This group of people can be composed of citizens, but also local authorities, small and
medium enterprises, and/or municipalities [1]. Energy communities are perceived as an
evolution of both distributed generation and microgrid concepts [2] to provide positive
environmental and economic impacts by using local development [3]. In the French context,
a limitation of 2 km between two members and 3 MW of total installed generation has been
imposed [4].

Heterogeneous household load and/or generation profiles in an energy community
enable energy exchanges between members, which leads to higher self-sufficiency and self-
consumption ratio, often denoted as load matching improvement [5,6]. The self-sufficiency
ratio (SSR) is defined as the amount of consumption that is supplied by local assets, while
the self-consumption ratio (SCR) is the portion of the local generation that is consumed
locally [7].

In the topic of the local energy community, most literature focuses on the system
design (i.e., solar and storage sizing) [8,9] and the topology/interconnection [10] of an EC
as well as the control strategy [11,12] considering grid constraint and privacy issues [13].
Allocation and sharing strategy is also an interesting area that has been explored exhaus-
tively [12,13] along with the local market [14] and peer-to-peer energy trading [9,15].
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Some selection processes have been studied in the scope of energy communities.
They include the selection of modeling tools such as HOMER, MATLAB, etc. [16] and com-
munity expansion planning in terms of generation and transmission energy sizing [17,18].
The considered distributed energy resources (DER) typically refer to renewable energy sources
such as solar PV, wind, biomass, heat pump, etc. and its selection is presented in [19,20].

One identified limitation of the current literature on the energy community is that their
expansion is oftentimes neglected. The members in energy communities are based on open and
voluntary participation [21]. However, joining or leaving an energy community is not possible
at any time [22]. The engagement of local citizens is perceived as a success factor in energy
communities and the number of households is one of the evaluations used in their decision
to continue the project [23]. The study in [24] identifies different factors that influence end-users
willingness to adopt the energy community as their energy supply model. Assuming that
legal constraints are satisfied, an existing energy community may want to expand, i.e.,
welcome new members such that the collective welfare increases. Individuals who live
in the neighborhood of an energy community may indeed have a desire to join the com-
munity and experience the use of local, affordable, and clean energy [25] at a more prof-
itable cost [12,26], especially when provided with adequate information on the financial
aspect [27,28]. Moreover, the majority of households in the EU are expected to be active
participants in the framework of sustainable energy transition [29].

Energy communities are often linked with fairness [30] and allow all participants
to benefit from green energy, including those who are economically marginalized. In this
context, the community manager needs a tool that helps determine the relevance of wel-
coming new members and also how to adapt their net load profile (for instance installing
additional production or storage) to improve the shared benefits of the community or its re-
liability. Another possibility would be a decision support tool to select new members, based
on similar criteria. However, this particular topic on new member selection in an energy
community has not been found in the literature to the knowledge of the authors.

The present paper aims at developing several methodologies for existing energy com-
munities to (i) select new member candidates while targeting improvement of the overall
welfare or (ii) incentivize end-users to adapt their profile to a given community when consid-
ering investment options (e.g., by installing new local production or storage).
This work proposes a heuristic method, keeping in mind that explainability is the key
for end-users’ acceptance. Indeed, trust is essential for the sustainability of an EC [25]. Im-
portantly, the proposed rules and performance metrics are compared with results returned
by a more accurate optimization-based method. Specifically, these methods can be applied
to different household types regardless of the combination of individual energy assets.

The main contributions of this paper are the following:

• A heuristic method to discriminate new member candidates to join an existing com-
munity, which consists of production/consumption need and battery requirement;

• Two performance metrics to support the heuristic method;
• Validation of the proposed methodology with an optimization-based EMS which

yields similar results;
• A discussion on the usage of such a method in terms of a decision support tool for in-

habitants to select investment options before joining selected communities as a func-
tion of production and storage needs.

The rest of this paper is organized as follows. Section 2 introduces the EC model archi-
tecture of the members and their power exchanges. Section 3 presents the proposed heuris-
tic method based on two performance metrics and its comparison with an optimization-
based methodology. The use case is then described in Section 4, where results are analyzed
in terms of ranking performances and value contribution of various candidates (based
on their daily profile) for both methodologies. Finally, Section 5 concludes this paper and
provides points for future works.
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2. Energy Community Framework

An energy community is defined as an organization of several consumers or prosumers
that may be equipped with local DER assets such as solar panels or energy storage systems.
Individual members are the core of the existence of such community and their profiles are
keys to the social and economic relevance of the community. Presenting heterogeneous energy
profiles that can fill out each others’ deficit or surplus of generation at certain times leads
to more self-consumed energy at the community level, the so-called collective self-consumption
(CSC) [31]. This may be translated in the form of benefits for the community members.

A typical model of an energy community is illustrated in Figure 1 where the physi-
cal flows only lie in the house meter (import Pmeter+

n,t and export Pmeter−
n,t ) while different

exchanges can contractually occur between the members and the community as well as be-
tween the members and their conventional energy provider. Exchanges with the main
grid and/or the community are conducted through a virtual connection. In the model,

the grid import and export of a member n at a time t are denoted by Pgd+
n,t and Pgd−

n,t , respec-
tively. Similarly, Pcomm+

n,t and Pcomm−
n,t are the internal import and export power from and

to the community. Each household may own individual assets such as PV, battery, and
electric car.

Community

Main grid
} Contractual flow

Physical flow

Figure 1. Typical energy community architecture.

3. Methodology for Candidate Selection and Ranking

New member candidates to join an existing community typically are end-users with
specific demand profiles and potential local energy assets such as PVs, batteries, and/or EVs.
From the perspective of an existing EC, the opportunity to add more production and consump-
tion at the community level shall be investigated based on the community collective profiles
at the current situation and the candidates’ characteristics. The expansion process of an EC
is done in an iterative way to select one best candidate and include him as a new member
in the EC before taking another candidate, as shown in Figure 2. It means that at each iteration,
the EC cannot take more than one candidate because the state of the existing EC evolves and
it is important to have the right baseline of the community profiles (i.e., the needs of the evolved
new existing EC may be different from the previous one).
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Energy community expansion

Existing 

energy community

Set of new member 

candidates

Best candidate

Update 

as additional 

new member

Remove 

best candidate 

from set

Figure 2. Iterative process of member expansion in energy community.

In this paper, the proposed member selection methodology relies on a simple rule-
based approach regarding the existing energy community’s current performance and
successive tests for each new member candidate. This method differentiates between
the needs for production/consumption (based on two metrics) and the need for storage. In
particular, this profiling method allows giving a better idea of which new member candidate
is the most suited for the existing community. This choice is due to the need of justification
for future members of the energy community that may not be able to understand, thus
accept, a selection based on a “black-boxed-like” algorithm.

To assess the accuracy of the proposed method, a reference approach based on op-
timal energy management strategy (EMS) is run for each new EC formed after the ad-
dition of a new member candidate taken individually. The accuracy is here improved
(optimality guaranteed) at the cost of explainability.

These methods could complement a decision support tool for investments of local
production and/or storage assets for future members of a community (i.e., improve their
fitting to the need of the community, thus maximize the shared benefits).

3.1. Heuristic Approaches

This section describes the main proposed methodology that consists of a simple
heuristic and step-by-step decision method relying on two typical performance metrics.
In this method, we distinguish two different conditions for the existing EC: (1) the need
for more production/consumption; (2) the need for more storage.

3.1.1. Matching Production and Consumption

The characterization of production/consumption needs of an EC and the value con-
tribution from each candidate depends on the two proposed metrics: matching score
energy and collective self-consumption energy, described below. Both metrics are com-
puted at each time step and the total contribution of each candidate is then the summation
for the considered time horizon (typically a year).

Metric 1: Matching Score

The first metric option to differentiate the energy community’s needs relies on the so-called
‘community mismatch profile’ (CMP). The CMP (PCMP

comm,t) is computed based on the community
surplus or deficit at each time step (1). Note that it does not consider storage power output
as the need for storage will be investigated separately in Section 3.1.2. The set of existing
members n in the community is denoted byN while for the new member candidate m isM.
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PCMP
comm,t = ∑

n∈N
PPV

n,t − ∑
n∈N

Pload
n,t . (1)

The CMP is designed to help comparing new member candidates’ load curve (or net
load curve if the candidate possesses local productions) at each time step. The candidates’
net load curve (Pnet−load

m,t ) is defined as the candidates’ consumption minus production
at each time step (i.e., remaining consumption that is not covered by its generation, ignoring
battery control if any) (2) [32]. If a candidate has no individual DER asset, then the net load
curve is obviously defined as the conventional load curve.

Pnet−load
m,t = Pload

m,t − PPV
m,t . (2)

A scoring system is then proposed to estimate the matching degree between the com-
munity need and the candidates’ profile with Algorithm 1. The contribution of each
candidate m to the EC is based on the total score at each time step that is accumulated
for the whole considered time horizon.

If at a time step the EC suffers from a deficit of production (negative CMP value)
while a candidate displays a surplus (negative net-load), his score is the surplus produc-
tion, as illustrated in the first arrow representing example of CMP scores in Figure 3.
On the contrary, if the community has a surplus and the candidate has a deficit at the same
time, then the score is the net load value, as shown in the last three arrows in Figure 3.
Otherwise, at other times, the score’s default value is zero. The illustration of this metric is
shown in Figure 3.

4 8 12 16 20 24

Time (h)
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community mismatch profile - 𝑃𝑐𝑜𝑚𝑚,𝑡
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𝑛𝑒𝑡−𝑙𝑜𝑎𝑑

net-load of candidate 4 - 𝑃4,𝑡
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Figure 3. Sample score shown by the length of arrows.
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Algorithm 1: Matching score rules.

Input: PCMP
comm,t, Pnet−load

m,t .

1 foreach m ∈ M do
2 foreach t ∈ T do

3 if PCMP
comm,t > 0 and Pnet−load

m,t > 0 then
4 (surplus EC, deficit candidate)

sm,t = Pnet−load
m,t ;

5 else if PCMP
comm,t < 0 and Pnet−load

m,t < 0 then
6 (deficit EC, surplus candidate)

sm,t = −Pnet−load
m,t ;

7 else
8 sm,t = 0 ;
9 end

10 end
11 Total score for whole horizon: SP/C,h

m = ∑t∈T sm,t .
12 end

Metric 2: Collective Self-Consumption

The second investigated metric is another heuristic method that simply relies on the col-
lective self-consumption energy. It is defined as the consumption within an energy commu-
nity that is supplied by local generation, as expressed in (3) [33]. An additional member
m to the community will change this collective-self consumption energy based on his
load/generation profiles. Hence, the new collective self-consumption can be computed
as in (4). The contribution of each candidate is valued as the difference between the col-
lective self-consumption energy of the existing community before and after the addition
of a new member candidate (5).

CSCh = ∑
t∈T

(
min

(
∑

n∈N
Pload

n,t , ∑
n∈N

PPV
n,t

))
, (3)

CSCh′
m = ∑

t∈T

(
min

(
∑

n∈N
Pload

n,t + Pload
m,t , ∑

n∈N
PPV

n,t + PPV
m,t

))
, (4)

∆CSCh
m = CSCh′

m − CSCh. (5)

The two metrics in the heuristic method are used to investigate the needs for pro-
duction and consumption for the community. The next section presents the methodology
to evaluate the needs for the battery.

3.1.2. Battery Energy Storage

Besides the need for more production/consumption in an already existing EC, storage
systems can also be of interest in order to manage local consumption and production more
efficiently. The need for batteries in an EC is based on how much energy can be stored to be
more independent from the main grid (i.e., increase the self-sufficiency ratio). The addi-
tional need for a battery (∆Ebat

comm in kWh) can be defined as the minimum daily average
energy between community surplus and deficit, taking into account the usable storage en-
ergy based on its existing capacity (6). The daily average surplus energy in the community
(Esur

comm) is computed as the total surplus from each member per time step over the time

horizon (7). Likewise, the daily average deficit energy (Ede f
comm) can be calculated from

the total deficit from each member at each time step over the number of days in the whole
horizon (8). The considered time horizon should last enough to capture consumption
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and production profiles as well as seasonality of the storage system. Ultimately, the value
brought by each candidate depends on his battery capacity and the community needs (9).

∆Ebat
comm = max

0,

min
(

Esur
comm, Ede f

comm

)
∆SOC

− Ebat,exist
comm


, (6)

Esur
comm =

∑t∈T max
(

0, ∑n∈N
(

PPV
n,t − Pload

n,t

))
× ∆t

ndays
, (7)

Ede f
comm =

∑t∈T max
(

0, ∑n∈N
(

Pload
n,t − PPV

n,t

))
× ∆t

ndays
, (8)

Sbat,h
m = min

(
∆Ebat

comm, Ebat
m

)
. (9)

Finally, Equations (10) and (11) are defined in order to combine the value contribution
both in production/consumption (Section 3.1.1) as well as battery side (Section 3.1.2).

Vsco,h
m = SP/C,h

m + ndays × Sbat,h
m , (10)

Vcsc,h
m = ∆CSCh

m + ndays × Sbat,h
m . (11)

3.2. Optimization-Based Approach

The most appropriate way to select new member candidates consists in running offline
simulations of the final community (i.e., with existing members n in the set N plus a new
member candidate m in the setM) while estimating the benefits with an energy management
strategy (EMS) that guarantees optimality. Such a simulation strategy relies on prior works [12].
The formulation here is expressed for the existing members n for the sake of simplicity. However,
it shall also include a new member candidate m (in the final community) in order to estimate
the final performances with each additional candidate taken individually.

This section proposes a more accurate and comprehensive scheme that considers
all energy assets in the energy community at once, including the energy storage system.
Unlike the heuristic method that relies on the practical calculation between PV production
and load, the optimization-based EMS considers a whole time horizon that operates energy
storage systems to maximize an objective, in our case the self-sufficiency ratio (SSR).

SSR is defined as the ratio between the load that is supplied locally and the total
consumption, as expressed in (12) [7,34]. Essentially, maximizing the SSR is equivalent
to minimizing the energy import from the main grid (13).

SSR = 1−
∑n∈N ∑t∈T Pgd+

n,t

∑n∈N ∑t∈T Pload
n,t

, (12)

f = min ∑
n∈N

∑
t∈T

Pgd+
n,t . (13)

The decision variables considered in this optimization are all positive and semi-definite
for every member n at each time step t as follows.

• The individual self-consumption power Pindsc
n,t and exchange power flows: grid import Pgd+

n,t ,

export Pgd−
n,t and community import Pcomm+

n,t , export Pcomm−
n,t .

• The storage charge Pst+
n,t and discharge Pst−

n,t : batteries Pbat+
n,t , Pbat−

n,t and electric vehicles
(EV) PEV+

n,t , PEV−
n,t .

• The storage state of charge SOCst
n,t: similarly refers to batteries and EVs.
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Note that there is no binary variable considered here to ensure that concurrent flows do
not occur simultaneously, but we check automatically that the optimization results are valid, i.e.,

no concurrent positive values for pairs (Pgd+
n,t , Pgd−

n,t ); (Pcomm+

n,t , Pcomm−
n,t ); (Pst+

n,t , Pst−
n,t ).

The first set of constraints in this problem is the limitation of the power exchanged by
the subscription power, both for the import energy (14) and export energy (15).
Also, the peak power perceived by the grid cannot be higher than its original peak without
any renewable assets (i.e., traditional load) (16).

Pgd+
n,t + Pcomm+

n,t ≤ Psubs
n ∀n ∈ N , ∀t ∈ T , (14)

Pgd−
n,t + Pcomm−

n,t ≤ Psubs
n ∀n ∈ N , ∀t ∈ T , (15)

max
(

Pgd+
n,t

)
≤ max

(
Pload

n,t

)
∀n ∈ N . (16)

The following set of constraints corresponds to the storage system [35]. Firstly, the stor-
age power (17) and state of charge (SOC) (18) need to remain within the limitation. Next,
the SOC calculation over time considering the storage’s power (Pst+

n,t , Pst−
n,t ) and efficiency (µst

n )
is expressed in (19) with the determined SOC value at the start (20) and end of the horizon (21).

0 ≤ Pst+
n,t , Pst−

n,t ≤ Pst
max,n ∀n ∈ N , ∀t ∈ T , (17)

SOCst
min,n ≤ SOCst

n,t ≤ SOCst
max,n ∀n ∈ N , ∀t ∈ T , (18)

SOCst
n,t+1 = SOCst

n,t +

(
Pst+

n,t × µst
n −

Pst−
n,t

µst
n

)
× ∆t× 100

Est
max,n

∀n ∈ N , ∀t ∈ T , (19)

SOCst
n,1 = SOCinit

n ∀n ∈ N , (20)

SOCst
n,end ≥ SOCinit

n ∀n ∈ N . (21)

The next set of constraints is related to the individual and community power balance
at each time step [12]. The overall production at the level of each member and its distribu-
tion is stated in (22). Similarly, the total individual consumption is expressed following (23).
Next, the power balance at the community level is given by (24).

PPV
n,t + Pbat−

n,t + PEV−
n,t = Pindsc

n,t + Pgd−
n,t + Pcomm−

n,t ∀n ∈ N , ∀t ∈ T , (22)

Pload
n,t + Pbat+

n,t + PEV+

n,t = Pindsc
n,t + Pgd+

n,t + Pcomm+

n,t ∀n ∈ N , ∀t ∈ T , (23)

∑
n∈N

Pcomm+

n,t = ∑
n∈N

Pcomm−
n,t ∀t ∈ T . (24)

The optimization returns the best values for the decision variables such that we can
compute the metric collective self-consumption (CSC). Since the storage is controlled
in the optimization method, the CSC needs to consider it unlike the CSC formulation
in the heuristic way. Referring to the SSR equation in the previous section (12), the CSC
can be calculated equivalently as the total consumption minus total import energy from
the main grid in case of non-sufficient local generation (25). The optimization problem is
solved for the baseline (i.e., the existing energy community) and after the addition of a can-

didate m with the CSC value: CSCopt and CSCopt′
m , respectively. Ultimately, the actual

contribution of the candidate m can be calculated with (26).

CSCopt = ∑
n∈N

∑
t∈T

Pload
n,t − ∑

n∈N
∑
t∈T

Pgd+
n,t , (25)

Vcsc,opt
m = ∆CSCopt

m = CSCopt′
m − CSCopt. (26)
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The contribution value by a candidate m using the optimization approach is then com-
pared with the heuristic method (with two metrics: score and collective self-consumption).
The next section describes the results of the proposed methods as a tool to evaluate new
member candidates to join an existing community.

4. Results
4.1. Case Study

The heuristic (with two different metrics) and optimization methods are applied
to an already existing pilot project of an EC located in Le Cailar, France which has been
developed by our industrial partner, Beoga. We consider six households that have in-
dividual energy components as the baseline for an existing energy community. Table 1
provides the detail of the installed capacity of each asset and households’ subscription
power. The round trip efficiency for all storage systems in the community is assumed to be
95 %. The initial and final state of charge of the storage are set to 50 % [36]. Particularly,
the period of EV availability is deterministic as follows: from 6 p.m. to 8 a.m. on weekdays,
from 3 p.m. to 11 a.m. on Saturdays, and 24 h on Sundays.

The new member candidates are taken from an open database of household profiles [37].
From 20 household consumption profiles in Portugal and 30 in the UK, we use the Kmenoid
method to create 9 clusters; thus, we obtain 9 central and representative profiles for each cluster.
Those will be the load profiles for the new member candidates. The PV production profiles are
also provided in the same source. Hence, different sets of candidates are described as follows
(in total 3 × 9 candidates).

Table 1. Household parameters of the existing community.

House PV Battery EV Subscription
(kW) (kW/kWh) (kW/kWh) (kVA)

1 3.2 5/9.8 11/40 18
2 12.24 5/9.8 - 36
3 - 5/9.8 - 9
4 3.2 - - 9
5 3.2 - - 9
6 6.4 - - 9

(a) Load only (9 candidates);
(b) Load and PV (9 candidates);
(c) Load, PV and battery (9 candidates):

• Battery of 3 kW/4 kWh for candidate 1, 5, 7;
• Battery of 4 kW/6 kWh for candidate 8, 9;
• Battery of 4 kW/8 kWh for candidate 3, 6;
• Battery of 7 kW/10 kWh for candidate 2, 4;

(d) Mixed individual assets:

• Candidate 1–3 from sets (c) with load, PV and battery;
• Candidate 4–6 from sets (b) with load and PV;
• Candidate 7–9 from sets (a) with load only.

In order to have the right perspectives regarding the condition of the existing energy
community as well as the candidates, the proposed methodology shall be run at least over
a full year to capture all seasons’ profiles. However, due to the limited availability and
readiness data, frequently caused by the candidates, in this paper, we use one month profile
in April 2022 with a 30-min granularity. The same methods can be applied to a larger time
horizon without any modification. The optimization problem is modeled in MATLAB with
the YALMIP toolbox [38] and solved with Gurobi.
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4.2. Results and Discussion

In this section, the results of the heuristic methods (with two different metrics: match-
ing score and CSC energy) are presented and further compared with the optimization
method in the way they rank the potential candidate for the considered EC.

In order to distinguish clearly the performance of each method (heuristic metrics 1
and 2 as well as optimization), we normalize the contribution value by dividing every
candidate’s contribution by the maximum value observed in the dataset (27).

V̂m =
Vm

max(Vm)
. (27)

4.2.1. First Iteration—Selecting the First Candidate

The base case of the existing EC with six households yields a CSC energy of 564 kWh
with the heuristic calculation and 1023 kWh with the optimization-based EMS. These values
serve as the baseline to compute the improvement of the CSC energy with an additional
member candidate in the EC (i.e., Metric 2: ∆CSCh

m and optimization: ∆CSCopt
m ). Note that

one computation process of the methods proposed here is aimed at selecting the best profile
among the candidates in the considered set. It shall not be used to pick more than one
candidate since the baseline of the EC after the addition of the first candidate will change
accordingly (i.e., the need for this new baseline is different from the initial one). In such
cases, the proposed procedure would have to be run successively several times, once per
additional member.

Among all the candidates in the set, the maximum value of the different metrics is
used as the normalization basis (refer to Table 2). The normalized value for each candidate
of each set (set (a)–(d)) with the proposed methods (Metric 1: matching score, Metric 2: CSC
energy, reference: optimization) is illustrated in Figure 4. Since the best candidate for all
the considered methods is Candidate 2, the normalized values presented in the graphic are
based on the ones from this candidate for each set and method.
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Figure 4. Normalized contribution value for every method of each candidate in the set of candidates:
(a) with load only. (b) with load and PV. (c) with load, PV and battery. (d) with mixed individual
energy assets.
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Table 2. Maximum-base value of normalization for each method in kWh.

Set of Candidates Metric 1 Metric 2 Optimization

Load 198 173 98
Load, PV 225 348 489

Load, PV, battery 478 602 597
Mix 478 602 597

Note that the value contribution (in kWh) of the candidates in Figure 4 between
Metric 2 (∆CSCh

m) and the reference (∆CSCopt
m ) cannot be compared properly because

the CSC of the existing community is computed differently in both metrics. One can argue
that the CSC value reached with the optimization is higher due to the storage control,
but the heuristic method can fully capture all the potential contributions since there is no
constraint, as observed in the optimization formulation.

Most noticeably, the ranking of candidates (from the best to the worst) in each set is
respected between the proposed methods (Metric 1, Metric 2) and compared to the refer-
ence optimization-based approach, see Figure 4. The best candidate in every method is
Candidate 2 and the worst is Candidate 7.

In the set (a), see Figure 4a, the value brought by each candidate when using Metric 1
(matching score) is higher than with Metric 2 (CSC) because we account for the whole
potential energy that can be given by a candidate (i.e., regardless of the actual need from
the community, see Algorithm 1). This computation is proposed since we can only select
one best profile for each iterative process, as the baseline of the existing EC will evolve
after a new member joins. While in Metric 2, we rather take the actual contribution, i.e.,
the minimum between what is needed and what is offered.

For other sets of candidates (i.e., the last three), the observed Metric 2 (CSC) may be
higher than Metric 1 (matching score) since the individual self-consumption is excluded
in the net-load power used in the matching score. On the contrary, the Metric 2 CSC energy
consists of the candidate’s individual self-consumption energy besides the main additional
contribution to the existing community.

In Figure 4b, the normalized values among methods are still similar, except for can-
didate 4 since he presents quite a large amount of individual self-consumption that is
considered in the CSC energy metric (Metric 2 and optimization) but not in the matching
score (Metric 1).

The investigation of the battery need is based on the daily average need of the ex-
isting EC compared with the availability from the candidates. The baseline of the exist-
ing EC requires more batteries at the community level, with ∆Ebat

comm as big as 8.4 kWh.
This value comes from (6) (in this case, the average community surplus) mostly indicating that
the existing EC presents a surplus that can be stored rather than exported to the main grid.

For the sets of candidates with PV and battery, see Figure 4c, the batteries clearly
improve a candidate’s value such that it significantly alters the overall ranking. The higher
the battery size, the higher the value of the candidates. See for example candidates 3 and 4
with a large battery and candidates 1 and 5 with a smaller battery in Figure 4b,c.

Figure 4d distinguishes the DER assets owned by a candidate. Candidates 1–3 have
high normalized values, followed by candidates 4–6, then very small values for candidates
7–9. It shows that the production and/or storage seem to always improve the relevance
of a candidate for the considered EC.

Table 3 compares the total computational time for all nine candidates in each set
for different metrics proposed and optimization strategies. The computational time is
very low for both metrics with the heuristic method (only 1.1 to 12.2 ms) but extremely
higher when computed with the optimization method (2 to 3 min). This duration is still
acceptable as this selection process is done in an offline mode and not aimed at operational
purposes. However, in the case of a bigger existing energy community and/or a larger pool
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of candidates, it is recommended to use the heuristic method to save time as the ranking
result among candidates has been shown similar to the optimization strategy.

Table 3. Computational time for the three methods.

Set of Candidates Metric 1 Metric 2 Optimization

Load 4.8 ms 1.1 ms 130 s
Load, PV 7.7 ms 1.2 ms 138 s

Load, PV, battery 10.4 ms 3.9 ms 163 s
Mix 12.2 ms 4.6 ms 146 s

4.2.2. Second Iteration and More—Evaluating the Remaining Candidates

In this section, we select Candidate 2 (with PV) as a new member of the EC such
that its baseline evolves from six to seven members. We then perform the next iteration
of candidate selection. This new EC baseline results in a CSC value of 912 kWh computed
heuristically and 1511 kWh with the optimization-based EMS. The need for more batteries
in the community is 13.9 kWh. Similarly, we calculate the value brought by each can-
didate using the three methods: Metric 1 (matching score), Metric 2 (CSC energy) and
the optimization.

Similar to the previous results with the first iteration, normalized values are used
in order to compare methods easily based on the maximum value observed in the set
of candidates. The maximum values observed for each method and each set of candidates
are shown in Table 4. These normalized base values may refer to different candidates
for each set of candidates (e.g., Candidate 1 for the set (a) and Candidate 4 for the set (c))
as shown in Figure 5.

Table 4. Iteration 2. Maximum-base value of normalization for each method in kWh.

Set of candidates Metric 1 Metric 2 Optimization

Load 113 108 64
Load, PV 106 206 276

Load, PV, battery 321 457 499
Mix 314 356 366
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Figure 5. Iteration 2. Normalized contribution value for the three methods of each candidate from
the set of candidates: (a) with load only. (b) with load and PV. (c) with load, PV and battery. (d) with
mixed individual energy assets.
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The result of the second iteration shows similar ranks between the methods (regarding
the best candidate). In the set (a), Candidate 1 is the best while it is Candidate 4 in the set (c)
and (d). In the set (b), the best candidate using the heuristics (Candidate 1) and optimization
(Candidate 4) is not the same but their difference is not significant (see the value of candidate
1, 4 with Metric 2 and optimization). Note that the gap between the matching score
(Metric 1) and CSC energy (Metric 2, optimization) is due to the individual self-consumption
that is accounted for in the computation of CSC but not in the matching score (see analysis
in Iteration 1).

4.2.3. Investment Decision Support Tool

The result of the different sets of candidates can also give an idea of where to install
the DER assets in the most rewarding candidate’s household, for instance in the form
of an investment decision support tool. For example in Figure 5, Candidate 4 can yield
a higher value than Candidate 1 if he has PV and/or battery (i.e., Candidate 4 has the po-
tential to be the one selected). Similarly, Candidate 3 is better than Candidate 1 if he installs
a battery storage system. Hence, this methodology on candidate selection provides the re-
sults on the best profile to include as a new member and possibly also the position/location
recommendation on the generation/storage expansion. Based on those results, it is then
possible to compute the levelized cost of energy of a new PV or storage system assuming
the integration in an EC and an anticipation of the upcoming shared benefits, which can be
investigated in further works.

5. Conclusions and Perspectives

This paper proposes a methodology for an existing energy community (EC) to properly
select a new member candidate or to help them decide on potential investment that would
maximize their chance to get shared benefits of this EC. Two heuristic metrics, matching score
(metric 1) and collective self-consumption energy (metric 2), are presented to differentiate
whether the EC needs more production/consumption and how to evaluate the relevance of each
new member candidate to the EC. The assessment of more battery capacity is also performed
heuristically which computes the daily average energy storage needed.

The need for an existing EC for more DER assets is then compared with the value offered
by the candidates. Further, these methods are verified with optimization-based EMS where
the storage control is optimal and, as such, constitutes a reference. Especially, the ranking
of potential candidates with heuristic metrics is very similar to the optimization method but
obtained with a much shorter computational time and with a much better explainability.

A real case study in Le Cailar, France has been used that consists of six existing
members. Then, a total of 3 × 9 potential candidates are compared in terms of DER assets
(i.e., set of load only; set of load and PV; set of load, PV, and storage; set of heterogeneous
assets). The results of the proposed heuristic method are consistent after normalization and
aligned with the collective self-consumption energy from the accurate optimization-based
strategy. After the best candidate has been included as a new member in the existing
EC, the second iteration is performed and shows similar results that the simple heuristic
ranking system is reliable (compared with the accurate optimization method).

The result of metric 2 is closer to the optimization in the first iteration while it is metric
1 in the second iteration. Therefore, the authors believe that there is no better method
to recommend in terms of technical performance between the two metrics as the result de-
pends significantly on the profiles of existing members and potential candidates. However,
metric 1 is considered to be more explicable and easy to understand from the viewpoint
of end-users, mainly using visualization support.

The results in the second iteration also show that this method can be an investment
decision support tool to install a new DER asset in the interest of the overall community. In
our case for instance, the value offered by candidate 4 can be higher than candidate 1 (the
best candidate if no DER installed) if he integrates PV. This can be used as an investment
argument for candidate 4.
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Future work will investigate the role of the energy community in the flexibility market
and the sizing of assets in long-term planning. The provision of energy from the commu-
nity to support the grid, mainly in the tertiary reserve can be activated manually from
the residential storage. Also, it could be interesting to study the proper size of the different
types of DER installed in the households such that it would achieve better community
performance (higher rate of SSR and SCR).
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