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EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SINGLE GPU
ARCHITECTURES

F. DELUZET†, G. FUBIANI‡, L. GARRIGUES‡, C. GUILLET†‡★, AND J. NARSKI†

Abstract. In the present paper, an efficient General Purpose Graphical Processing Unit (GPGPU)-based implementation of
sparse grid Particle-In-Cell (PIC) methods is proposed. The parallelization, implementing novel strategies specific to Sparse-
PIC methods and tailored to GPU architectures, provides speed-ups* as large as 100 on a single Tesla V100 GPU, with respect
to sequential Computing Processing unit (CPU) execution; and a four order of magnitude reduction of the computational time
in comparison with a standard PIC sequential CPU simulation. In addition, the simple implementation of the parallelization
with the OpenACC framework offers portability to a large class of accelerators.

Keywords. Plasma physics, Particle-In-Cell (PIC), sparse grids, sparse grid combination technique, parallelization ,
GPU , OpenACC

1. Introduction

Particle-In-Cell (PIC) schemes [1, 2, 15, 17, 21, 28, 33, 39] are widespread numerical methods used for the simulation
of kinetic plasma problems. The method is based on a coupling between a Lagrangian discretization for the Vlasov
equation, based on the integration of numerical particle trajectories and a mesh-based discretization of Poisson’s
equation for the computation of the self-consistent electrostatic field. For years, strategies have been developed to
mitigate the statistical error originating from the sampling of the distribution function by a limited number of numerical
particles, representing the major weakness of the method. In this context, noise reduction strategies such as variance
reduction methods [18], filtering methods [24], or more recently sparse grid techniques [17, 22, 23, 35, 40] arouse a
great interest. Sparse grids have been developed to interpolate high dimensional functions [3, 4, 5, 27], then, extended
to the approximation of partial differential equations [25, 26, 42, 41]. Lately, sparse grids have been introduced in PIC
framework, offering a significant mitigation of the statistical noise and a reduction of the grid operation complexity
(e.g. the resolution of Poisson equation).

In the last decades, the emergence ofGeneral PurposeGraphics ProcessingUnits (GPGPU) has dramatically disrupted
the High Performance Computing (HPC) domain with the appearance of accelerators with thousands of compute cores
achieving performance in the range of several TFLOP/s (1012 instructions per second). Most of supercomputers
now employ up to thousands of Graphical Processing Units (GPU), resulting in a total of millions of compute cores.
Therefore, an increasing interest of GPGPU for massively parallel applications has emerged in past decades. For
instance, several GPU implementations of 1D and 2D PIC simulations have been proposed, demonstrating speed-ups
in the range of 20-100 [8, 12, 13, 14, 6, 30, 20, 44, 31].

Recently, Sparse-PICmethod optimization and parallelization have been investigated in a sharedmemory architecture
framework [16]. On the one hand, Sparse-PIC methods have been proven to be particularly memory efficient, with
respect to the size of the grids used to accumulate the density and compute the electric field, as well as the storage of the
particles properties. The number of those numerical particles is significantly reduced, compared to standard methods,
owing to the better control of the statistical noise. This limited memory footprint calls for the development of parallel
implementations on a single GPU architecture, handling the memory requirements of Sparse-PIC methods. On the
other hand, Sparse-PIC has demonstrated substantial speed-ups both for sequential and parallel implementation with
respect to the standard PIC method. The sequential computational time of the standard method is reduced by two orders
of magnitude with the Sparse-PIC approach for an equivalent amount of statistical noise between the two simulations.

The present paper extends the works of [17, 16] to the parallelization of 3D-3V Sparse-PIC methods on GPU
architectures. Although GPUs offer a limited amount of memory in comparison to CPUs, this is not an issue for
Sparse-PIC implementations thanks to the substantial gains upon the memory footprint. The purpose of the present
paper is to propose a first efficient GPU implementation of the Sparse-PIC method with parallelization strategies
tailored specifically for accelerator architectures. The sparse grid reconstructions require operations of each particle
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with numerous (tens) anisotropic grids, with coarse discretizations and different sparsity patterns. These grids are
referred to as component grids, the set of nodes of all the component grids is being designated by the sparse grid
terminology.

The efficient implementation introduced in this paper is compared to another one, which is merely the extension
to GPU of Sparse-PIC strategies introduced for shared memory CPU architecture in [16]. The novel implementation
combines two level of parallelism for the charge density accumulation: a coarse-grain parallelism based on a particle
population decomposition and a Single Instruction Multiple Data (SIMD) parallelism based on a component grid work
sharing. This two-level parallelism exploits the architecture of the GPU decomposed into independent Streaming
Multiprocessors (SM), each containing compute cores. The particle population is divided into a large number of
particle clusters which are distributed onto the SMs. Within a cluster, each particle contribution is computed for all the
component grids at once, enabling Single Instruction Multiple Threads (SIMT) fashion for the GPU. In addition, this
approach offers a better management of the GPU cache memory and helps to mitigate the randomness of the memory
access, detrimental to GPU efficiency.

As a result of the large number of component grids involved, Sparse-PIC methods offer a trade-off between memory
access and computational instructions. This feature is capital for PIC implementations on GPU since PIC methods
are globally memory bounded (limited by the memory accesses) and GPUs are designed to maximize the number of
instructions treated at once.

The organization of the paper is the following. In section 2, the Sparse-PIC method and its major features are pre-
sented. The section 3 is devoted to the GPU parallelization of the method. A brief overview of the hardware architecture
and usual GPU programming is provided with the aim to outline the algorithmic issues to achieve performance. Then,
two implementations of the Sparse-PIC method are presented: an extension to GPU of the parallel version designed for
shared memory architectures, which has been introduced in [16], and a version tailored specifically for GPUs. Finally
in section 4, the efficiency of the implementations are assessed on three dimensional classical test cases: the non-linear
Landau damping and the diocotron instability using two different hardware: a laptop GPU (Quadro T2000) and a Tesla
V100.

2. Sparse grid reconstructions for Particle-In-Cell methods

2.1. Notations. Let us introduce some notations for the following of the paper. Let 3 be the dimension of the problem
considered, l = (;1, ..., ;3) ∈ N3 a multi-index denoting the level, i.e. the discretization resolution in a multivariate
sense and i = (81, ..., 83) ∈ N3 be a multi-index denoting spatial positions. In the following, the index l = (;1, ;2, ;3) is
also represented l = (:, ;, <). We define order relations on multi-index by:

k ≤ l ⇔ ∀ 9 ∈ {1, ...3} : 9 ≤ ; 9 ,(1)
k < l ⇔ k ≤ l and ∃ 9 ∈ {1, ..., 3} B.C. : 9 < ; 9 ,(2)

and discrete l1 norm and l∞ norm by:

|l|1 :=
3∑
9=1
|; 9 |, ‖l‖∞ := max

9∈{1,...,3 }
|; 9 |.(3)

2.2. Mathematical background. Let 5B (x, v, C) be the phase-space distribution function attached to a species B (ion,
electron, etc.), @B , <B the corresponding charge and mass, E the electric field and d the charge density. The non-
relativistic Vlasov-Poisson system with external magnetic field B is considered:

m 5B

mC
+ v · ∇x 5B +

@B

<B
(E + v × B) · ∇v 5B = 0,

∇ · E = d

Y0
, E = −∇Φ,

(4)

The charge density is obtained from the phase-space distribution of each species according to the relation:

d(x, C) =
∑
B

dB (x, C) =
∑
B

@B

∫
5B (x, v, C)3v.(5)

The particle distribution 5B is numerically represented by a collection of # particles whose positions and velocities are
denoted (x? , v?), for ? ∈ È1, #É.
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2.3. Sparse-PIC method. The main difference between the sparse grid PIC schemes and the standard PIC scheme
[10, 11] is the underlying mesh of the method. Unlike standard methods, based on an unique fine Cartesian grid, the
sparse grid PIC method is based on a collection of component grids upon which the grid operations (accumulation of
the density, field solver, etc.) are performed. Let us consider the family of d-dimensional anisotropic grids Ωℎl on the
unit interval Ω = [0, 1]3 called component grids:

Ωℎl :=
{
iℎl | i ∈ �ℎl

}
, �ℎl := È0, ℎ−1

;1
É × ... × È0, ℎ−1

;3
É ⊂ N3 ,(6)

and parameterized by the multi-index level l ∈ !:

! :=
⋃

9∈È0,3−1É
! 9 , ! 9 := {l ∈ N3 | |l| = = + 3 − 1 − 9 , l ≥ 1},(7)

where ℎl := (ℎ;1 , ..., ℎ;3 ) := 2−l is called the grid discretization. The number of component grid is given by:

Card(!) =
3−1∑
9=1

(
= + 3 − 2 − 9

3 − 1

)
,(8)

which falls down to
(= + 1)=

2
+ =(= − 1)

2
+ (= − 1) (= − 2)

2
for three dimensional computations. The Cartesian grid,

denoted Ω(∞)
ℎ=

, and corresponding to a component grid of level n = = · 1 with discretization ℎ= in all directions, is also
introduced.

0
10

1
0

1

a)	Cartesian	grid	of	discretization	h5

0
10

1
0

1

b)	Component	grid	of	discretization	(h5,h1,h1)

0
10

1
0

1

c)	Sparse	grid	of	discretization	h5

Figure 1. The discretization parameter is = = 5: Panel a) represents the Cartesian grid of discretiza-
tion ℎ=; panel b) represents the component grid of level l = (5, 1, 1); panel c) represents the sparse
grid, composed of all the nodes of the component grid.

Particle-In-Cell methods are based on a coupling between particles and a mesh-based discretization. Therefore,
interactions between the particle population and the mesh, i.e. the component grids, shall be defined for the Sparse-
PIC methods. The charge density accumulation consists in a reconstruction of the charge density at the component
grid nodes from the particles population. For each component grid Ωℎl , an estimator of the density, denoted d̂ℎl , is
constructed:

d̂ℎl (x) =
Q
#

#∑
?=1
Sℎl

(
x − x?

)
, Sℎl =

3⊗
9=1

(
ℎ−1
; 9
i

(
ℎ−1
; 9
·
))
, i(G) = max (1 − |G | , 0) .(9)

The local error between the density and its statistical estimator can be decomposed into the bias of the estimator and a
centered random variable, denotedV# ,ℎl corresponding to the error stemming from the variance of the sampling with
a finite number of particles, the latter’s being the cause of PIC methods statistical noise [17]:

( d̂ℎl − d) (x) = Bias( d̂ℎl ) (x) + V# ,ℎl (x),(10)

where

Bias( d̂ℎl ) (x) = $
(
ℎ2
;1
, ..., ℎ2

;3

)
, V(V# ,ℎl (x))

1
2 = $

(
(#ℎ=)−

1
2

)
.(11)
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A Poisson problem is considered on each component grid and approximated with finite difference method:

Eℎl = −∇ℎlΦℎl , ΔℎlΦℎl = −
d̂ℎl

Y0
,(12)

where ∇ℎl and Δℎl are finite difference operators defined on Ωℎl (see [17]). From these component grid contributions
of the electric potential, one shall reconstruct a precise solution on the refined Cartesian grid. Let i ∈ �ℎl , and consider
basis functions defined by tensor products of one-dimensional hat functions as follows:

iℎl ,i (x) := ©«
3⊗
9=1

iℎ; 9 ,8 9
ª®¬ (x), iℎ;8 ,8 9 (G) := i

(
ℎ−1
; 9
(G 9 − 8 9ℎ; 9 )

)
,(13)

where i is defined in equation (9). The space of d-dimensional hat functions with respect to the component grid Ωℎl ,
denoted +ℎl , is defined by:

+ℎl := span{iℎl ,i | i ∈ �ℎl }.(14)
The Sparse-PIC reconstruction of the electric potential is then defined by a linear combination of the component grid
contributions interpolated onto +ℎl :

ΦC
ℎ=
=

∑
l∈!
2l�+ℎlΦℎl ,(15)

where 2l := (−1) 9 (3 − 1)!
9!(3 − 1 − 9)! for l ∈ ! 9 are called the combination coefficients and �+ℎl defines the interpolation

onto the space +ℎl . In this paper, we consider an interpolation in the hierarchical basis of the space +ℎl , where a
transformation from the nodal basis to a hierarchical basis is performed (see [16] for details). The rest of the scheme is
similar to standard PIC methods and the Sparse-PIC scheme is summarized in algorithm 1.

Proposition 2.1. Let Φ and d be sufficiently smooth functions, then the function Φℎl defined by equation (12) verifies
the following point-wise error expression for each l ∈ !:

Φ(x) −Φℎl (x) =
3∑
<=1

∑
{ 91 ,..., 9< }
⊂{1,...,3 }
98≠ 9:

0 91 ,..., 9< (x; ℎ; 91 , ..., ℎ; 9< )ℎ
2
; 91
...ℎ2

; 9<
(16)

with bounded ‖0 91 ,..., 9< (·; ℎ; 91 , ..., ℎ; 9< )‖∞ ≤ ^, and the sparse grid reconstruction ΦC
ℎ=

verifies:

‖ΦC
ℎ=
−Φ‖∞ = $

(
ℎ2
= · | log ℎ= |3−1

)
+$

(
(#ℎ=)−

1
2 | log ℎ= |3−1

)
(17)

Proof. We refer to [17] for the proof of this proposition. �

Algorithm 1 PIC-Sg scheme
Require: Particle positions and velocities (x? , v?), time step ΔC, external magnetic field B.
for each time step ΔC do

for each component grid Ωℎl of index l ∈ ! do
Accumulate the charge density onto Ωℎl according to (9)
Compute the electric potential from the charge density on Ωℎl with finite differences according to (12)
Interpolate the electric potential onto +ℎl (14).

end for
Combine the electric potential onto Ω(∞)

ℎ=
(15).

Differentiate the electric potential on Ω(∞)
ℎ=

.
Interpolate the electric field at the particle positions.
Update the particle positions and velocities:

3x?
3C

= v? ,
3v?
3C

=
@B

<B
(E + v? × B) |x=x? .(18)

end for

A capital feature of the Sparse-PIC methods is the sparsity of the component grids upon which the density is
accumulated and the Poisson problems are solved, resulting in a significant reduction of the statistical noise, as well as a
mitigation of the linear system resolution computational effort. In order to control the statistical noise in the simulation,
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it is common for standard PIC methods to choose the number of numerical particle # accordingly to the mean number
of particle per cell of the grid, referred to as %2:

# = %2 ∗ ℎ−3= ,(19)

where ℎ= is the discretization of the Cartesian grid. A similar estimation is provided for the Sparse-PIC methods,
derived from the mean number of particles per cell of all the component grids:

# = %2 ∗
(∑
l∈!
|2l |ℎ−1

;1
...ℎ−1

;3

)
= %2 ∗ ℎ−1

= ∗
(
9
2
=2 − 3

2
= + 1

)
, for 3 = 3.(20)

It follows that the same amount of statistical noise as in the standard scheme is obtained for much less particles,
drastically reducing memory requirements of three dimensional simulations. In addition, this estimation does not
furnish an accurate estimator of the noise reduction. As hinted by [16], the reduction of the number of particles within
Sparse-PIC methods may be significantly strengthen to obtain a comparable numerical noise to that of standard PIC
methods. This feature is capital for the Sparse-PIC methods since memory requirements is often limiting for a lot of
3D-3V computations with standard methods.

The reduction of the number of particles in Sparse-PIC methods comes along with an increase of the number of
grid-particle operations. For instance, the charge of one particle shall be accumulated onto all the component grids,
instead of one Cartesian grid for the standard method. The ranking of the step computational costs is therefore reversed
such that the charge accumulation consumes the largest part of the execution time of the algorithm [16] (around 90%
of the time iteration, depending on the configurations). A particular attention shall then be payed to the optimization
and parallelization of the charge accumulation so that we mainly focus on this step in the present paper.

3. Implementations on Graphical Processing Units (GPU)

3.1. GPU architecture and programming. The hardware architecture of a GPU differs from that of a Computing
Processing Unit (CPU) in some key aspects, the differences being being inherited from the initial field of application of
GPUs (realtime graphics) where the same instruction has to be applied to a large amount of data [43].

A common CPU is optimized to minimize memory latency, since fetching data from the (off chip) main memory is
a very time consuming operation. Therefore, CPU cores have a complex structure and involve out-of-order execution,
branch prediction, memory pre-fetching and cache hierarchy, the purpose of all these optimizations being to improve
the performance in a Single Instruction Single Data (SISD) fashion. By contrast, GPU is optimized to maximize
throughput, i.e. allowing to execute as many tasks as possible at once. In order to achieve this, a large number of cores,
as simple as possible, is required, thus removing all logic that boosts single instruction stream performance but gaining
the ability to put more cores on a chip.

A single GPU device consists of multiple Streaming Multiprocessors (SM). Each SM contains several compute
cores, separated in Floating-Point single or double precision (FP32, FP64) cores, integer (INT32) cores, Tensor Cores
and accommodates a layer-1 instruction cache layer. SM are general purpose processors with a lot of compute units
and small caches that execute several thread blocks in parallel.

The streaming processors can be operated independently. One SM contains tens (e.g. 32) compute cores working
in a Single Instruction Multiple Thread (SIMT) fashion, meaning that all instructions in all threads are executed in
lock-step. A SM contains thousand of registers in order to run a large number of threads simultaneously and perform
fast "context switching" between different warps. Typically a SM is a assigned 8 thread blocks, consisting of tens of
warps, a warp being composed of 32 threads (from the compute capability 2.x, the number of threads in a thread block
may exceed 1024).

The SM is oversubscribed with thousand of threads (for tens of cores) in order to hide the memory latency: the warp
scheduler of the SM switch quickly from warps stalled due to memory latency to resume warps for which the data are
ready; hence the need of rapid context switching.

The accesses to the GPGPU main memory are coalesced within the threads of a warp. The load and store from
and to the main memory are organized in chunks of contiguous memory addresses, this chunks being aimed at feeding
all the threads of a warp. To minimize the number of transactions with the main memory, strided memory accesses
within the block shall be ordered to amximize performance: the : Cℎ thread in a warp shall access the : Cℎ element in
the memory chunk.

Several programming languages are available for programmers who want to use GPU resources to accelerate general
computational applications, the most widespread being the Compute Unified Device Architecture (CUDA) [37, 9, 7],
specific to Nvidia GPUs. However, with the appearance of modern GPUs from competitive brands such as AMD or
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Intel the restriction to Nvidia GPUs could reveal limiting. Thus, other languages such as OpenMP 4., OpenCL [34] or
OpenACC [29] have recently become popular. In the present paper, we implement our code with OpenACC which is
an Application Programming Interface (API) written in C, C++, Fortran. OpenACC is a directive-based host driven
language, meaning that the host (CPU) is responsible for launching every operations executed on the device (GPU)
including execution of kernels (code running on a GPU), allocation of memory and data transfers. OpenACC is a not a
low-level programming language like CUDA but it allows more portability of the code. It also exposes the three levels
of parallelism available on an accelerator, namely coarse-grain, fine-grain and SIMD. Gang parallelism is the highest
level of parallelism (coarse-grain), equivalent to CUDA thread block, where gangs work independently of each other
without synchronization. The worker level (fine-grain) involves workers, similar to CUDA warps, who may share data
within a gang. The innermost level of parallelism, equivalent to CUDA thread concept, is based on SIMT execution
model, where a vector instruction works on multiple data.

3.1.1. Memory hierarchy. The memory architecture of a GPU also differs from that of a CPU in several aspects. The
Nvidia Tesla V100 memory architecture is considered as a representative example in the following. Within GPGPU
applications, the device (GPU) does not operate on the host (CPU) main memory but is connected to its own off-chip
memory (DRAM). The data have to be transferred from the host global memory to the GPU specific memory. The
bandwidth between the device (GPU) and its specific memory is much higher (897 GB/s) than the bandwidth between
host memory (CPU) and device memory (16 GB/s)*. Hence, for best overall performance, it is capital to minimize
data transfer between the host and the device, even if that means running kernels on the GPU that do not demonstrate
any speedup compared with running them on the host CPU. this is the policy followed within this work. Compared to
a CPU, a GPU works with fewer, and relatively small, memory cache layers. The memory hierarchy is sketched in the
following lines:

• The main memory (DRAM) consisting of 16GB accessed with a theoretical peak bandwidth of 897GB/s.
Global memory can be read and written by all the threads on the GPU.
• The constant memory (64 KB read-only memory) which is faster than global memory because it is cached.
Constant memory can be read by all the threads on the GPU.
• The L2 cache of 6.3MB shared by all SMs with a theoretical peak bandwidth of 4.1TB/s can be read and written
by all threads.
• The L1 data cache, up to of 128KB per SM, made of shared memory and texture memory. Shared memory
provides high bandwidth and low latency but can only be read and written by the threads belonging to the same
thread block (in CUDA terminology). It has a theoretical peak bandwidth of approximately 14TB/s.
• The register file of 256KB for each SM (16,384 32-bit registers on each processing block, 4 per SM). It allows
fast read-write operations to the data stored in it. Registers are private to one thread and can only be accessed
by the owning threads.

As mentioned before, the memory architecture is designed in a way to optimize the coalesced data transfer with the
main memory. Consecutive threads from the same warp should access consecutive blocks of memory address in order
to fully exploits the memory bandwidth with the device memory.

As a summary, in order to conceive an efficient GPU algorithm, the following policies shall be respected:
• Limit the transfers between host (CPU) and device (GPU).
• Favor the locality of the data.
• Encourage coalesced data accesses with the memory.
• Create as many independent task as possible to mask the memory latency.

3.2. Data management. Sparse-PIC methods dramatically reduce the memory footprint of PIC computations thanks
to the significant diminution of the number of particles necessary to maintain an appropriate statistical noise. Let
us investigate the memory requirements of both methods. The amount of data to handle resulting from # numerical
particles is given by:

�0C0%0AC82;4B [�] = # ∗ 3 ∗ ((8I4%>B8C8>=�0C0 + (8I4+4;>28CH�0C0 + (8I4�224;4A0C8>=�0C0).(21)
Position, velocity and acceleration data are double precision, requiring 8B. The data size for a contribution (charge
density or electric potential) of all the component grids can be bounded by:

�0C0�><?>=4=C�A83 [�] = (8I4�0C0 ∗
∑
l∈!

©«
3∏
9=1
(2; 9 + 1)ª®¬

≤ (8I4�0C0 ∗ #B6 ∗ 9 ∗ (2= + 1).(22)

*For the Nvidia Tesla V100.
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For instance for = ranging from 7 to 10, corresponding to configurations equivalent to 1283 and 10243 grids with respect
to the standard method (ℎ7 = 1/128 to ℎ10 = 1/1024), the data size of the component grid ranges from 594KB to
10MB. It results in a significant reduction of data size compared to the cartesian grid:

�0C0�0AC4B80=�A83 [�] = (8I4�0C0 ∗ (2= + 1)3,(23)

which requires 17MB to 8GB for = ranging from 7 to 10. A comparison of the particle data requirements, relative to
the number of particle per cell (defined in equations (19), (20)) and the grid data sizes is provided on figure 3.

The main advantage of GPU-based Sparse-PIC computations over standard ones is that the whole data necessary
during the simulation fit on the device memory of most accelerators (tens of GB capacity), even for configurations
equivalent to 10243 grids with respect to the standard method. Therefore our data management strategy shall be based
on this observation. In order to avoid as much as possible data transfers between the host and the device, the data shall
stay on the device memory throughout the whole simulation. One unique data transfer is realized at the initialization to
send all the data on the device.

G

H
I

8 = 0 8 = 1
9 = 0

9 = 3

9 = 7

ℎ = 0

9 = 0

ℎ = 0

9 = 3 9 = 7

8 = 0 8 = 1

Figure 2. One-dimensional structure array of the component grid Ωℎl ,
l = (1, 3, 1). Indexes ranges from 8 = 0, 1, 9 = 0, 7, ℎ = 0, 1. The cells
of the three-dimensional grid are arranged in a one-dimensional array
where the I-dimension is the fast axis and the G-dimension is the slow
axis.
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Figure 3. The storage size of data
(particle data, Cartesian grid data
and component grid data) is repre-
sented as a function of the number
of grid nodes and particles per cell.
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3.3. Data structure. The state of each numerical particle is described by its position, velocity and acceleration
(corresponding to the electric field component) and is represented by the tuple 〈G, H, I, EG , EH , EI , 0G , 0H , 0I〉. The
position, velocity and acceleration coordinates are represented by double-precision floats. The particle data are
represented by a two-dimensional array where the ids of the particle in the global population are stored in the fast axis
dimension, e.g. in Fortran:

3>D1;4 x? [1 : #, 1 : 3], v? [1 : #, 1 : 3], a? [1 : #, 1 : 3];

and the second dimension is dedicated to the three-dimensional coordinate.
In order to represent the set of component grids, a three dimensional array (standing for one component grid) is

required for all the grids. Since the size of the component grids differs from one to another, a more complex data
structure than a four-dimensional array is required. In this paper, two different data structures policies representing the
set of component grids are considered. The component grids are either represented by an Array of Structure (AoS) or
a two-dimensional array.

The first policy, being the most natural and consisting in an AoS, has been introduced in [16] specifically for the
parallelization of Sparse-PIC method on shared memory architecture CPUs. With this policy, a data structure is created
to store the dimensions and contributions (charge density, electric potential) of a component grid:

CH?4 2><?>=4=C_6A83
8=C464A :: :, ;, <;

3>D1;4 :: d(0 : 2: , 0 : 2; , 0 : 2<),Φ(0 : 2: , 0 : 2; , 0 : 2<);
4=3 CH?4

where :, ;, < are the dimension of the component grid and d, Φ are the arrays containing the charge density and the
electric potential contributions. All the information of the component grids are stored in a single array whose elements
are component grid data structures:

CH?4(2><?>=4=C_6A83) :: 2><?_6A83 [1 : #B6],

where #B6 is the number of component grids, given by equation (8). Let us recall that for Sparse-PIC parallelization
strategies designed for CPUs, the particle properties are accumulated onto a component grid for all the particles,
repeating for each component grid (see [16] for details). This strategy, together with the AoS data structure, entails
locality of the data. For the deposition of the particle density onto a component grid, the array used to store one
component grid being small enough to be nursed in L1 cache of a CPU core. However, in the following, a GPU
implementation based on the converse strategy, consisting in the accumulation of one particle property onto all the
component grids, repeated for each particle, is introduced. Therefore, in order to preserve a good locality of the data
between the component grids, a novel data structure has to be introduced.

This second policy is based on a transformation of the component grids from a three-dimensional structure into a
one-dimensional structure. Each component grid is reshaped into a one-dimensional array (see figure 2) and all the
one-dimensional component grid contributions are stored in an array of size #B6:

3>D1;4 :: d[1 : #B6, 0 : 9 ∗ (2= + 1)],Φ[1 : #B6, 0 : 9 ∗ (2= + 1)],

where 9 ∗ (2= + 1) is an upper bound of the total component grid number of nodes.

3.4. GPGPU charge deposition.

3.4.1. Charge density accumulation algorithm. The accumulation of the particle properties onto the component grids
accounts for more than 90% of a time iteration (for a sequential execution on CPU). This step is therefore anticipated
to be the key point to obtain an efficient parallel implementation on GPGPU. It consists mainly in reading one particle
coordinates, computing the grid cell it is contained in, and accumulate the contribution onto the 8 nodes of this cell.
These operations are repeated for each grid. During the procedure, two consecutive particles (with regard to their indices
in the particle coordinate array) may contribute to different cells in the density array. Therefore either a contiguous
memory access in the particle array or in the density (grid) array occurs. Standard implementations usually entail
random memory accesses in the density array. In addition, the paralellization of the density accumulation may lead to
race conditions when threads associated to different particles add their contributions to the same grid cell and write at
the same memory address. This issue is usually bypassed with private copies of grid arrays and reduction operations
or atomic operations.
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3.4.2. Why Sparse-PIC parallel implementations designed for CPUs are not efficient on GPUs. Let us first recall
the main features of the Sparse-PIC parallel implementation designed for CPUs, then, in the following section, we
introduce the extension of the implementation to GPUs and finally investigate the limitations of the algorithm. Sparse-
PIC parallelization efficiency on CPU is chiefly based on cache memory reuse. The non contiguous memory accesses
to the grid data are mitigated by the large number of cache hits achieved for the smallest cache level. The cache reuse
is maximize by considering the following charge density accumulation policy: the interactions of all the particles are
computed with one component grid and repeated as many times as the number of component grids. Therefore, since
each component grid fits in the L1 cache of the CPU, the number of grid data cache misses is dramatically reduced.

Sparse-PIC parallelizations designed for CPUs entail two levels of parallelism, one based on a component grid
work sharing and another based on a particle sample work sharing. The particle sampling work sharing strategy takes
advantage of the large number of particles, distributing samples of the particle population to the different threads. Each
thread operates on its own sample of particles, accumulating the particle properties onto a private array. Private copies
of the grid data are considered in order to avoid race conditions between threads assigned to different particles. Finally
a reduction operation between the private copies of arrays is performed to gather the different contributions. In our
extension of the algorithm to GPUs, the reduction is performed on the three-dimensional array d corresponding to the
AoS component grid data structure (see section 3.3) via the OpenACC "REDUCTION" clause. However, no parallelism
can be used on the component grids with the CPU-inherited policy (i.e the interactions of all the particles are computed
with one component grid and repeated as many times as the number of component grids) since OpenACC restricts the
reduction clause to be on a gang level loop, which is the coarsest grain parallelism. It results from this implementation
a number of kernels equal to the number of component grids (#B6). Therefore the two-level parallelization strategy,
efficient on CPUs, is limited on GPUs. The implementation details are provided in algorithm 2. In order to mask the
memory latency of the data transfer and achieve the best performance onGPU, one shall run a large number of instruction
streams, characterized by a large number of gangs in OpenACC terminology. Nonetheless the number of gangs cannot
be chosen as large as it shall be to maximize the performance of our implementation because of the reduction operation
requiring copies of the grids for each gang. The memory capacity, as well as the number of reduction operations to
operate the array copies may be a limiting feature for a large number of gangs with this implementation. In addition,
the method does not provide an effective memory access pattern of the component grid structure. The randomness of
the spatial distribution for two consecutive particles in the particle array results in non-coalesced (random) memory
accesses in the component grid array. The cumulative features of non efficient memory accesses and poor number of
gangs (being the result of the reduction operation) may limit the efficiency of CPU inherited implementation on GPU.

3.4.3. Why CPU and GPU implementations of standard PIC methods are not suitable for Sparse-PIC methods. The
main objective of an efficient parallelization strategy for the charge density accumulation within PIC methods is to
mitigate the randomness of the data access (see section 3.4.1) and entail contiguous (CPU) or coalesced (GPU) memory
accesses.

Themost natural strategy to deal with randomness of data accesses is inspired from parallelization strategies designed
for CPUs and consists in a sorting of the particle population and distribution into clusters. Usually, on CPUs, the particle
population is sorted so that mot of the time consecutive particles write their contributions in the same density array
cells, enabling efficient cache memory reuse.

CPU particle sorting is not applicable to Sparse-PIC computations on GPUs though, because, in order to optimize
memory transfer, one shall fetch data from the device memory in a coalesced fashion. Therefore, an effective sorting
shall result in a particle array where consecutive particle correspond to consecutive grid cells, i.e. one sorted particle
array for each component grid, which is a way too cumbersome data constraint.

The most efficient GPGPU parallelization strategy to reduce the effects of the irregular memory accesses is to
consider the shared memory of the device [30, 6, 20, 44]. With this approach, a private copy of the density array is
created in the shared memory of each SM (actually each gang). The accumulation of the particles properties onto the
grid is performed with shared-memory atomic operations for threads from the same gang. Finally, a global reduction
operates between the different copies of the density array from each gang. This strategy is usually performed along
with a particle cluster work sharing strategy, where the particle population is divided into clusters of particles, each
assigned to a thread block. In order to ensure that all particles in a cluster are stored contiguously and can deposit to the
accumulating density array in the shared memory, a sorting based on the cluster index every time step may be necessary
[31, 13].

Whereas CUDA provides a simple and effective way to use the shared memory of the GPU, this features is not
available in a transparent and straightforward way on OpenACC. The "CACHE" directive allows to access the shared
memory but only for simple memory access patterns and does not suit the algorithm specificity .
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Algorithm 2 GPGPU implementation of the CPU-inherited charge accumualtion algorithm.
Require: Particle position array x? [1 : #, 1 : 3], AoS 2><?_6A83 [1 : #B6], weight of particles l.

Variables: Integer: 8G , 8H , 8I , real: 8GA , 8HA , 8IA , BG1, BG2, BH1, BH2, BI1, BI2
for each component grid 8 ∈ È1, #B6É do

: ← 2><?_6A83 [8]%: ; ; ← 2><?_6A83 [8]%; ;< ← 2><?_6A83 [8]%<
!$ACC PARALLEL NUM_GANGS() VECTOR_LENGHT()
!$ACC LOOP REDUCTION (+:d) //Parallelism on the SMs and the cores of the SMs
for each particle 8? ∈ È1, #É do

// Read particle data
8GA ← x? [8?, 1]/2=−: ;
8HA ← x? [8?, 2]/2=−;;
8IA ← x? [8?, 3]/2=−<;
// Determine grid cell containing particle
8G ← 8GA ; 8GA ← 8GA − 8G ;
8H ← 8HA ; 8HA ← 8HA − 8H;
8I ← 8IA ; 8IA ← 8IA − 8I ;
// Determine charge contribution of particle
BG1 ← (1 − 8GA ) ∗ 2: ; BG2 ← 8GA ∗ 2: ;
BH1 ← (1 − 8HA ) ∗ 2; ; BH2 ← 8HA ∗ 2;;
BG1 ← (1 − 8IA ) ∗ 2< ; BI2 ← 8IA ∗ 2<;
// Add contribution to the grid
2><?_6A83 [8]%d[8G , 8H , 8I] ← 2><?_6A83 [8]%d[8G , 8H , 8I] + BG1 ∗ BH1 ∗ BI1 ∗ l;
2><?_6A83 [8]%d[8G + 1, 8H , 8I] ← 2><?_6A83 [8]%d[8G + 1, 8H , 8I] + BG2 ∗ BH1 ∗ BI1 ∗ l;
2><?_6A83 [8]%d[8G , 8H + 1, 8I] ← 2><?_6A83 [8]%d[8G , 8H + 1, 8I] + BG1 ∗ BH2 ∗ BI1 ∗ l;
2><?_6A83 [8]%d[8G + 1, 8H + 1, 8I] ← 2><?_6A83 [8]%d[8G + 1, 8H + 1, 8I] + BG2 ∗ BH2 ∗ BI1 ∗ l;
2><?_6A83 [8]%d[8G , 8H , 8I + 1] ← 2><?_6A83 [8]%d[8G , 8H , 8I + 1] + BG1 ∗ BH1 ∗ BI2 ∗ l;
2><?_6A83 [8]%d[8G + 1, 8H , 8I + 1] ← 2><?_6A83 [8]%d[8G + 1, 8H , 8I + 1] + BG2 ∗ BH1 ∗ BI2 ∗ l;
2><?_6A83 [8]%d[8G , 8H + 1, 8I + 1] ← 2><?_6A83 [8]%d[8G , 8H + 1, 8I + 1] + BG1 ∗ BH2 ∗ BI2 ∗ l;
2><?_6A83 [8]%d[8G + 1, 8H + 1, 8I + 1] ← 2><?_6A83 [8]%d[8G + 1, 8H + 1, 8I + 1] + BG2 ∗ BH2 ∗ BI2 ∗ l;

end for
!$ACC END LOOP
!$ACC END PARALLEL

end for

3.4.4. Sparse-PIC implementation for GPGPUs. The extension to GPU of the implementation designed for CPUs
reveals an inefficient use of the computational capacities since the kernels (each dedicated to the accumulation of the
particle properties onto one component grid) are executed in sequential, one after the others. This is the result of the
CPU-inherited policy and OpenACC restrictions. We therefore propose a second implementation of the accumulation
step for GPGPUS, taking advantage of the independent computations between the component grids.

This strategy is based on a component grid work sharing principle in a SIMT pattern, i.e. the operations on the
component grids are realized in a SIMT fashion: each thread within a gang operates on a different component grid.
This strategy is coupled with a particle work sharing strategy at the gang level, where the particle population is divided
into clusters and distributed into the gangs similarly to the CPU-inherited implementation (see figure 4):

• The first level (coarse-grain) of parallelism is based on the distribution of the particle population into clusters.
The gangs (or thread blocks) are associated to the clusters and distributed to the SMs in a Single Program
Multiple Data (SPMD) fashion.
• The second level (SIMT) of parallelism is based on the component grid work sharing principle. Within each
gang, the threads operate on the component grid at the same time in a SIMT fashion. E.g. if there are 32
threads in a gang, the particle properties of the particle cluster are accumulated onto the first 32 component
grids simultaneously by the threads.

The number of clusters is expected to be large (a lot larger than the number of SMs) so that a large number of thread
blocks is enabled and the interleave stream strategy is efficient.

The goal of the GPGPU algorithm is to exploit the GPU architecture so that the device is fed with a large number of
similar instructions on multiple data (accumulation of a particle from one cluster onto all the component grids at once).
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Nonetheless, in order to avoid the limitations resulting from the reduction operation, an array shared between the gangs
is considered along with ATOMIC operations. The details of the implementation are given in algorithm 3.

Unlike the CPU-inherited implementation, the interaction of one particle is computed with all the component grids
at once, and repeated for all the particles. It provides an unique particle data memory access for all the component
grids, reducing therefore the number of data transfer with the device memory. The two-dimensional component grid
data structure is considered (see section 3.3) to ensure locality of the data between threads the same gang assigned to
different component grids. Conversely, additional operations are required to translate the three-dimensional grid cells
indexes into one-dimensional indexes which may slow down the method, especially on CPU.

One of the benefits of the method concerns the cache memory reuse. Thanks to the shared status of the density
array, it is mutual to all gangs and thus it can benefit from the large size of the L2 cache to mitigate the detriments of
the random accesses to the grid array, the data size of the component grid ranging from 594KB to 10MB for = = 7 up
to = = 10.
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Figure 4. CPU-inherited (panel a) and GPGPU implementations (panel b) of the charge deposition.
The operation is repeated for all the component grids wihtin the CPU-inherited method. In both
implementations, the particle population is divided into clusters of particles and distributed onto the
SMs (associated to the gangs/thread blocks). In the CPU-inherited algorithm (of the first component
grid), the clusters are again divided ad distributed to the threads of the SM (gangs/thread blocks).
In the GPGPU algorithm, the threads from the same gang operate simultaneously on the component
grids in a SIMT fashion.

3.4.5. Resolution of Poisson equation, field interpolation, particle pusher, etc. algorithms. Sparse-PIC methods offer
a significant alleviation of the grid operations with respect to the standard methods, resulting from a diminution of the
grid nodes constituting the mesh of the method. Grid quantities are computed on each component grids, the operations
being independent from one grid to another. It results in several independent linear systems to solve for the resolution
of Poisson equation and necessitates novels parallelization strategies. It exists GPU-based libraries offering tools for
the resolution of linear system such as AMGx, MAGMA, and CUDA libraries (CuSolver, CuBlas, CuSparse).

Different strategies may be considered: the first strategy consists in solving the linear systems issued from the
dicretization of the Poisson problem on the component grids one after the other. The advantage of this strategy lies in
the very small size of the linear systems. The second strategy consists in gathering all these problems into a single (by
block) linear system. Solving this single system is a more computational expensive task, however it can better benefit
from the computational capacity of the GPU.

For the field interpolation and the particle pusher, a straightforward parallelization, based on a decomposition of
the particle population and distribution onto the threads, is proposed. No competitive memory access between the
threads (attached to different particles) leading to race conditions is involved. For the combination, a similar strategy
to the one introduced in [16] for the dehierarchization principle (transformation from the hierarchical basis to the
nodal basis), is applied both to the hierarchization (transformation from the nodal basis to the hierarchical basis) and
the dehierarchization. It exploits the tensor product structure of the basis functions. One-dimensional operations are
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Algorithm 3 GPU-based algorithm of charge density accumulation.
Require: Particle position array x? [1 : #, 1 : 3], 2d-structure d[1 : #B6, 1 : 9 ∗ (2= + 1)], weight of particles l.

Variables: Integer: 8G , 8H , 8I , 81, 82, 83, 84, 85, 86, 87, 88, real: 8GA , 8HA , 8IA , BG1, BG2, BH1, BH2, BI1, BI2, G? , H? , I?
!$ACC PARALLEL NUM_GANGS() VECTOR_LENGHT()
!$ACC LOOP GANG //Coarse-grain parallelism on SMs, Single Program Multiple Data (SPMD) fashion
for each particle 8? ∈ È1, #É do

// Read particle data from device memory
G? ← x? [8?, 1];
H? ← x? [8?, 2];
I? ← x? [8?, 3];
!$ACC LOOP VECTOR //Fine-grain parallelism on the cores of the SM, SIMT fashion
for each component grid 8 ∈ È1, #B6É do

: ← 2><?_6A83 [8]%: ; ; ← 2><?_6A83 [8]%; ;< ← 2><?_6A83 [8]%<;
// Adapt particle data to the grid
8GA ← G?/2=−: ;
8HA ← H?/2=−;;
8IA ← I?/2=−<;
// Determine grid cell containing particle
8G ← 8GA ; 8GA ← 8GA − 8G ;
8H ← 8HA ; 8HA ← 8HA − 8H;
8I ← 8IA ; 8IA ← 8IA − 8I ;
// Determine charge contribution of particle
BG1 ← (1 − 8GA ) ∗ 2: ; BG2 ← 8GA ∗ 2: ;
BH1 ← (1 − 8HA ) ∗ 2; ; BH2 ← 8HA ∗ 2;;
BG1 ← (1 − 8IA ) ∗ 2< ; BI2 ← 8IA ∗ 2<;
// Determine cell of the 2d-structure
81 ← 8I + 8H ∗ (2< + 1) + 8G ∗ (2< + 1) ∗ (2; + 1);
82 ← 81 + (2< + 1) ∗ (2; + 1);
83 ← 81 + 2< + 1 ; 84 ← 82 + 2< + 1;
85 ← 81 + 1 ; 86 ← 82 + 1 ; 87 ← 83 + 1 ; 88 ←; 84 + 1
// Add contribution to the grid
!$ACC ATOMIC UPDATE
d[8, 81] ← d[8, 81] + BG1 ∗ BH1 ∗ BI1 ∗ l;
!$ACC ATOMIC UPDATE
d[8, 82] ← d[8, 82] + BG1 ∗ BH2 ∗ BI1 ∗ l;
...
!$ACC ATOMIC UPDATE
d[8, 88] ← d[8, 88] + BG2 ∗ BH2 ∗ BI2 ∗ l;

end for
!$ACC END LOOP

end for
!$ACC END LOOP
!$ACC END PARALLEL

performed on a collection of two-dimensional poles (see [16]), which are independent and therefore can be paralllelized.
This parallelization strategy is not optimal but the combination step usually counts for thousandths of one iteration and
therefore a finer parallelization has not proven to be mandatory to obtain a good efficiency.

The differentiation is also straightforward to parallelize. The nodes of the Cartesian grid are distributed to the threads
and gangs in a way decided by the compiler. An OpenACC "COLLAPSE(3)" clause is added to fuse the three loops on
the dimensions of the grid. A "CACHE(Φ(8, 9 − 1 : 9 + 1, ℎ − 1 : ℎ + 1))" (where Φ is the array containing the electric
potential on the Cartesian grid) directive is used to mitigate the non-coalesced memory access patterns with the shared
memory of the GPU.
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4. Numerical results

The domain is a periodic cubeΩ = (R/!Z)3, of dimension ! depending on the Debye length _� = (Y0)4:�/@4=0)
1
2 ,

with the following charge, mass and temperature for the electrons @4 = 1.602 × 10−19 C, <4 = 9.109 × 10−31 kg,
)4 = 11600 K, and the Boltzmann constant :� = 1.38×10−23 m2 kg s−2 K−1. The electrons are immersed in a uniform,
immobile, background of ions (d8 = Q4/

∫
3x). The time discretization depends on the plasma frequency: C,ΔC ∝ l−1

? ,
l? = (@4=0/<4Y0)

1
2 . In this paper we consider two classical 3D-3V test cases:

• The 3D-3V non-linear Landau damping: the evolution in time of a perturbation known as the Landau damping
[32] is considered. A perturbation in a maxwellian equilibrium state of the distribution is considered:

54 (x, v) =
1

2c

3∏
8=1

(
1 + U8cos

(
V82cG
!

))
4
−‖v‖22

2 ,(24)

where ‖v‖22 = E2
1 + E

2
2 + E

2
3, U8 is the magnitude and V8 is the period of the perturbation in the 8Cℎ dimension.

Let U8 = 0.15, V8 = 3, 8 = 1, 2, 3 in equation (24), let ! = 160_� , ΔC = 1
20l

−1
? . The system is observed at time

) = 6l−1
? .

• The 3D-3V diocotron instability: a hollow profile is considered in the electron distribution, confined by a
magnetic field B [38], with the following Maxwellian distribution of electrons :

54 (x, v) =
W4
− (‖x−

!
2 ‖2−

!
4 )2

2(0.03!)2

0.03! (2c)2
4
−‖v‖22

2 , W B.C.

∫∫
Ω×R3

5 (x, v)3x3v = 1(25)

where
x − !

2
2

2 = (G −
!
2 )

2 + (H − !
2 )

2 + (I − !
2 )

2. The external magnetic field is considered linear along the
I-axis B(I) = (0, 0, �I + 4I × 10−6) (�I = 2.2 × 10−5 T) and strong enough so that the electron dynamics is
dominated by advection in the self-consistent field E × B. Let the parameters be ! = 22_� , ΔC = 0.1l−1

? , the
system is observed at time ) = 80l−1

? .
To assess the performance of the GPU implementation strategies, we consider two different hardware (see table 6)

consisting of a single GPU and an associated host CPU with which the speed-ups are compared to:
• The first hardware is a laptop equipped with a Quadro T2000 with 32 (FP64) CUDA cores, at a base clock
frequency of 1.575GHz. The size of the DRAM memory is 4.1 GB. The cache memory is divided into a first
level (L1) of 64KB per SM and a second level cache (L2) of 1.024MB. The memory bandwidth between the
device and its specific memory is 112.1GB/s. The GPU is associated to an Intel® Core™ i9-10885H CPU
(host) with 8 cores @2.40 GHz.
• The second GPU considered belongs to a node of the supercomputer OLYMPE from CALMIP: the Tesla
V100 with 2, 560 (FP64) CUDA cores, and a base clock frequency of 1.245GHz. The size of the memory is
16GB. The cache memory is divided into a first level (L1) of 128KB per SM and a second level cache (L2) of
6MB. The memory bandwidth between the device and its specific memory is 897GB/s; the L2 cache memory
bandwidth is 4.2TB/s and the L1 cache memory bandwidth is 14TB/s. It is associated to an Intel® Skylake
CPU with 18 cores @2,3 GHz.

The first hardware is considered with the compiler Nvidia nvhpc version 22.3 compiler with the flags -fast -acc
-ta=tesla and CUDADriver version 11.6. The second hardware is considered with the nvhpc version 22.1 with the flags
-fast -acc -Minfo=all -ta=tesla -Mx,231,0x1, the last flag allowing to correct bugs with atomic and reduction operations
within the 22.1 version, and CUDA Driver version 11.5. The Poisson equation is solved with the CuSolver [37] library
for the first hardware and either with CuSolver or AMGx [36] for the second one. We have noticed a bug in the Fortran
random number generator "random number()", providing not enough randomness in the particle distribution when used
along with the nvhpc compiler. Therefore, the CUDA random number generator CuRand is considered in the following
to initialize the particles.

The roofline performance model [19, 45] is an effective tool to determine the attainable performance of parallel
algorithms, based on metrics provided by the Nvidia Nsight Compute profiler. The theoretical instruction throughput
performance is obtained from the number of cores, the clock frequency of the GPU and the number of instructions per
cycle (1 operation formultiplication or addition and 2 operations per cycles for FusedMultiply-Add (FMA) instructions):

�=CAD2C8>=)ℎA>D6ℎ?DC [��;>?/B] = =1. > 5 2>A4B ∗ 8=BCAD2C8>= ?4A 2H2;4 ∗ 2;>2: 5 A4@D4=2H.(26)

It provides the upper bound of the computing capacity of the hardware. Nonetheless, in most cases the performance
of the hardware is limited by its memory bandwidth. Therefore, the theoretical peak performance of the hardware is
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defined by:
%40:%4A 5 >A<0=24[��;>?/B] = min(�=CAD2C8>=)ℎA>D6ℎ?DC, �0=3F83Cℎ ∗ �A8Cℎ<4C82�=C4=B8CH),(27)

where the arithmetic intensity, a metric characteristics of the algorithm, is defined by:

�A8Cℎ<4C82�=C4=B8CH =
=1. > 5 0A8Cℎ<4C82 >?4A0C8>=B[�!$%]
�0C0'403 [�] + �0C0,A8CC4=[�] .(28)

The program is said to be compute-bound when the minimum in the right side of equation (27) is the instruction
throughput. In this case, peak performance of the hardware can be achieved. Otherwise the program is memory-bound,
that is the theoretical performance of the hardware is deteriorated by the memory accesses and relies upon the memory
bandwidth efficiency of the hardware (see figure 5)�. The peak performance metric shall be compared to the effective
performance of the algorithm, defined by:

� 5 5 42C8E4%4A 5 >A<0=24[��;>?/B] = =1. > 5 0A8Cℎ<4C82 >?4A0C8>=B[�!$%]
C8<4 > 5 4G42DC8>=[B](29)
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Figure 5. DRAM and L2 cache roof-line performance of the Tesla V100 and Quadro T2000. Kernel
with arithmetic intensity below the theoretical instruction throughput peak are memory bounded.

Table 6. Performance characteristics of the GPU hardware.
GPU FP64 cores Instruction throughput (FP64) DRAM bandwidth L2 cache bandwidth L1 cache bandwidth

Quadro T2000 32 103.7 GFLOP/s 112.1 GB/s × ×
Tesla V100 2560 7,800 GFLOP/s 897 GB/s 4.2 TB/s 14 TB/s

4.1. Qualitative results of the 3D-3V test cases. The Sparse-PIC GPU-based implementation results are compared
to a sequential CPU implementation of the standard scheme, because of the memory limitation of the hardware and the
substantial memory requirement of the standard method (see figure 3). The architecture considered for the standard PIC
simulations consists of a single computational server equipped with two AMD EPYC™ 7713 Milan CPUs and RAM
memory of 512GB. The standard scheme is considered with a particle population sorted beforehand, which provides
an upper bound of the method efficiency. As a first investigation, let us consider first the 3D-3V Landau damping in a

�These metrics are available with the following command line:

>=2D − −<4CA82B 3A0<__1HC4B.BD<, ;CB__C_1HC4B.BD<, ;1C4G__C_1HC4B.BD<,
B<__B0BB_CℎA403_8=BC_4G42DC43_>?_3033_?A43_>=.BD<,
B<__B0BB_CℎA403_8=BC_4G42DC43_>?_3 5 <0_?A43_>=.BD<,
B<__B0BB_CℎA403_8=BC_4G42DC43_>?_3<D;_?A43_>=.BD<,

where 3A0<__1HC4B.BD< provides the data transfer with the device memory, ;CB__C_1HC4B.BD< the data transfer with the L2 cache and
;1C4G__C_1HC4B.BD< the data transfer with the L1 cache. The last three metrics provide the total number of double precision floating point
operations (addition, multiplication and fused multiply-add operations).
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configuration of a 1283 grid with 1000 particles per cell for the standard scheme, which is considered as a reference.
Sparse-PIC configurations of a 1283 grid and a 5123 grid with 128 particles per cell are considered as a comparison.
It has been proven heuristically in [16] that it provides an equivalent amount of statistical noise with respect to the
standard configuration with 1000 particles per cell. It results in a substantial reduction of the number of particles
(three orders of magnitude) and thus of the memory footprint (from GB to MB). Besides the significant gain on the
memory footprint offered by the Sparse-PIC method, the computational time is dramatically reduced (by two orders of
magnitude in that configuration, see table 8). The three dimensional representation of the electron density is provided
for the two methods on figure 9. The two simulations seem to perform with an equivalent amount of statistical noise,
as predicted by the results of [16].

The computational time of the standard method on a single CPU core and the Sparse-PIC method both on a single
CPU core and a GPU are represented as a function of the grid discretization on figure 7. In the following, the sequential
executions of the Sparse-PIC method are provided for the most efficient algorithm on CPU, which is the algorithm 2.
When the mesh is refined in the standard method, the number of particles and the number of Cartesian grid nodes are
multiplied by 8 and therefore so does the computational time. Nonetheless, a significantly larger increase is observed
when the mesh is refined from a 643 grid to a 1283 grid. Actually, it is explained by the non-locality of the data: the
simulation data for the 1283 simulation no longer fit on a single NUMA node of the AMD EPYC computational server.
The computational time of both the CPU and GPU Sparse-PIC simulations is multiplied by 4 when the mesh is refined,
which is twice as much as the standard method.

In [17, 16], sparse grid reconstructions have proven to fail at reproducing solutions with localized support and fine
structures. As an illustration of this feature, we investigate the three-dimensional diocotron test case inwhich instabilities
caused by the magnetic field lead to the formation of a discrete number of vortices exhibiting the weaknesses of the
method. This test case is particularly unfavorable to the sparse grid methods because the number of particles per cells of
the Cartesian grid is very low (e.g. five particles per cells here). In the present paper, the electric field is reconstructed
onto the Cartesian grid before being interpolated onto the particles. However, this step is not mandatory but is a choice
exhibiting the benefits of the hierarchization. An alternative technique, where the electric field is directly reconstructed
at the particle positions (without any use of the Cartesian grid), can be used. The cost and the scalability of the electric
field interpolation from the component grids to the particle positions are similar to the charge accumulation step. The
three dimensional representation of the electron density is represented on figure 10 at C = 80l−1

? , with a 1283 grid and
%2 = 30 for the standard scheme (panel a), with a 2563 grid and %2 = 5 for the sparse grid scheme without (panel
b) and with the offset combination technique (for the parameters (g0, g1) = (3, 6)) (panel c). The offset combination
technique, introduced in [17], is a derivation of the classical combination technique, consisting in an elimination of
the most anisotropic grids from the combination. Though the grid is more refined, the sparse grid scheme with the
classical combination technique fails to reproduce the fine structure of the density. One can see that the sparse grid
reconstruction has a tendency to flatten the steep gradients of the solution. The offset combination technique provides
a significant improvement of the sparse grid reconstructions and a mitigation of the statistical noise in comparison to
the standard approach despite a significantly reduced number of particles.

4.2. Investigation of charge density accumulation algorithms performance. The charge density accumulation is
the most predominant step in Sparse-PIC methods with a computational cost counting for about 90% of the simulation
(for a sequential execution on CPU). Therefore an efficient parallelization of the accumulation is capital to achieve
significant performance on accelerators. In section 3.4, two different implementations of a GPU-based parallelization
have been proposed for the charge deposition. These implementations shall now be investigated and compared. Let us
consider the 3D-3V Landau damping in a configuration equivalent to a 1283 Cartesian grid and 500 particles per cell
(%2) with respect to the standard method, amounting to 1.3 × 107 particles (#). In the CPU-inherited implementation,
one kernel (corresponding to the accumulation onto one component grid) is considered, e.g. the kernel associated to
the component grid of level l = (1, 1, 7). The same conclusions can be drawn for all kernels by extension. The kernel
is compared to the second implementation kernel, dedicated to the accumulation of the particle properties onto all the
component grids.

First, the gang, worker and vector length configurations are investigated. The number of workers is usually advised
to be set to one [29], as Nvidia compilers do. The vector size shall be a multiple of 32 for Nvidia hardware and
the decision is left to the compiler (usually 128) since no significant difference has been noticed with different vector
lengths. Nonetheless, the number of gangs (or block in CUDA) is a capital tuning to achieve good performance.
For the CPU-inherited implementation, the number of gangs is optimal when it is equal to the number of SMs. The
performance drastically decreases when a too large number of gangs is used. This is the consequence of the reduction
operation performed on the three-dimensional grid. For the second implementation, the performance increases with
the number of gangs, facilitating the interleave stream strategy to mask the memory latency. Therefore the number of
gangs is chosen by the compiler.
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are performed on the AMD Zen 3 core and on the Tesla V100.
Table 8. Configurations and results of the 3D-3V Landau damping test case. AMD EPYC™ 7713
Milan with AMD ZEN 3 core @2.0 GHz and Intel® Skylake core @2,3 GHz are considered.

Method Figure Grid/particle per cell (%2) Particles (N) Memory footprint Time (1 iter.)
Ref: Standard (CPU AMD Milan) 8 a) 1283/1000 2.09 × 109 151GB 585 s
Sparse-PIC (CPU Intel® Sylake) × 1283/128 3.45 × 106 248MB 5.4 s (÷108)
Sparse-PIC (CPU AMD Milan) × 1283/128 3.45 × 106 248MB 2.6 s (÷225)
Sparse-PIC (GPU Tesla V100) 8 b) 1283/128 3.45 × 106 248MB 0.05 s (÷11, 700)
Sparse-PIC (GPU Tesla V100) 8 c) 5123/128 2.31 × 107 1.66GB 0.58 s

Let us now consider the optimal configuration of blocks and threads for each method, i.e. to fix the number of gangs
to the number of SM for the CPU-inherited implementation; and to let the compiler decides the number of gangs for
the GPGPU implementation. The number of threads is set to 128 for both methods. First, we observe on table 11 a
non efficient use of the cache memory for the CPU-inherited method since more than one half of the L1 cache requests
has to be fetched from the DRAM memory. The amount of data transferred between the device and DRAM memory
is dramatically reduced for the GPGPU implementation, emphasizing the better cache memory management of the
method. The resulting kernel arithmetic intensity of the algorithm relative to the DRAM data movements is therefore
considerably increased, providing significant performance improvements. The theoretical peak performance can be
determined from the arithmetic intensity of the method and compared to effective performance. For the Quadro T2000,
the kernel of the CPU-inherited algorithm is memory-bound with a theoretical performance about 25.4 GFLOP/s (see
table 11) and effective performance of 12.3 GFLOP/s. The kernel of the GPGPU algorithm is compute-bound with
a theoretical peak performance of 51.85 GLOP/s (since no FMA operation is performed) and effective performance
of 37.4 GFLOP/s. Actually because the peak performance is not reach (72%), the second implementation is rather
latency-bound. This is the consequence of bad memory access patterns, i.e. random and non-coalesced memory
accesses. The reason why the arithmetic intensity of the GPGPU implementation is so high is the cache reuse of the
strategy. Indeed, most of the data necessary in the kernel is fetched from the caches (L1, L2 layers) and a significantly
small proportion of data is transferred to the main memory (0.1% of DRAM movements compared to L2 movements).
For the Tesla V100, the same conclusions can be drawn since the kernel intensity depends mostly on the algorithm and
not on the hardware considered. Nonetheless, the effective performance of the second implementation is far from the
theoretical one (5%). The kernel arithmetic intensity of the second algorithm relative to the L2 cache data movements
is significantly lower than the DRAM arithmetic intensity. The effective performance is about an half (33%) concerning
the L2 cache. Here again this is the consequence of the random accesses of the component grid array.
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a) Standard scheme, grid 1283, %2 = 1000 b) Sparse-PIC scheme, grid 1283, %2 = 128

c) Sparse-PIC scheme, grid 5123, %2 = 128

Figure 9. Representation of the electron density for the 3D-3V Landau damping simulation. Three
dimensional representation after two oscillations (C = 6l−1

? , 120 time steps). Figure a) requires 585
s per iteration on a single core Intel® Skylake. Figure b) requires 0.05 s on a Tesla V100. Figure c)
requires 0.58 s on a Tesla V100. See table 8 for configurations.

Despite the randomness of the memory accesses increasing the latency between the device and its memory, a
significant speed-up is achieved both on the Quadro T2000 and the Tesla V100. Although the computing capacity of
the Quadro T2000 is poor, a speed-up close to 12 is reach, meaning that GPGPU is more efficient than parallelization
with the 8 cores Intel® Core™ i9-10885H of the laptop. The Tesla V100 achieves a speed-up of more than 100 on the
charge deposition, which is significant for such an inexpensive hardware. As a comparison, in [16] a speed-up of 128
is achieved for the charge accumulation on a hardware consisted of 2 sockets AMD EPYC™ 7713 Milan.

4.3. Investigation of the whole scheme. Let us consider the parallelization of all the steps of the Sparse-PIC scheme.
The 3D-3V Landau damping and two configurations are considered, both on a 1283 grid: the Intel® Core™ i9-10885H
with 1 core is compared to the Quadro T2000 run for 100 particles per cell; the Intel® Skylake with 1 core is compared
to the Tesla V100 run for 500 particles per cell. The second implementation, which is the most efficient one, is chosen
for the charge density accumulation.

First, let us investigate the different strategies for the resolution of the Poisson equation, namely: either sovling the
linear systems issued from the discretization of the problem on the component grids one after the other or gathering
all the problems into a single (by block) linear system. The first strategy is considered with the CuSolver dense library
and the second one with the AMGX library. The computational time of both strategies is represented on figure 13 for
different grid discretization (ranging from a 323 grid to a 5123 grid). For coarse discretizations, the first option is the
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a) Standard scheme, grid 1283, %2 = 30 b) Sparse-PIC scheme, grid 2563, %2 = 5

c) Sparse-PIC offset scheme, grid 2563, %2 = 5

Figure 10. Representation of the electron density for the 3D-3V diocotron simulation. Three dimen-
sional representation (C = 80l−1

? , 800 time steps). Figure a) requires 10s per iteration on a single
core Intel® Skylake (# = 6.29 × 107). Figure b) requires 0.046 s per iteration on a Tesla V100
(3.54 × 105). Figure c) requires 0.76 s per iteration on a Tesla V100 (# = 8.68 × 106).

most efficient despise the dense format of the solver. This is caused by the very small size of the linear system, which
are roughly of one-dimension complexity. When the grid is refined, the second option along with the AMGX solver
becomes less time consuming as a result of the increasing work load favorable to the GPU.

The mean computational time out of 5 iterations is represented on figure 12 for the two host-device configurations,
namely the Quadro T2000 associated to the Intel® Core™ i9-10885H CPU and the Tesla V100 associated to the Intel®
Skylake CPU. The speed-ups obtained on the GPU devices with respect to the host runs for each step, and the total
iteration, are provided in table 14. The Poisson equation resolution is performed on the GPU both for the host and
device runs of the scheme. Therefore, in order to provide a precise quantification of the acceleration for the Poisson
equation step, the GPU execution time is compared to a sequential CPU execution with the MUMPS library on a GNU
compiler.

The charge density accumulation and the field interpolation, which are the most time consuming operations of
the scheme have a significant speed-up. It results in a speed-up for the whole iteration of about 12 on the Quadro
T2000 and 95 on the Tesla V100. Actually the poor performances of the less time consuming operations (combination,
differentiation) have a small impact on the total performance of the Sparse-PIC scheme.
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Table 11. Charge accumulation algorithm characteristics and performance (DRAM and L2 cache
roof-line model) with Quadro T2000 (a.1, a.2), Tesla V100 (b.1, b.2, b.3) and %2 = 500. For the
CPU-inherited algorithm, only the kernel of the component grid Ωℎ(1,1,7) is represented. For the
GPGPU algorithm the kernel of all the component grids is represented. The speed-up is given for all
the component grids with respect to the fastest sequential execution (CPU-inherited algorithm) on an
Intel® Core™ i9-10885H core (a.1, a.2) or an Intel® Skylake core (b.1, b.2, b.3). DRAM, L2 cache
and L1 cache data correspond to the amount of data transferred with respectively the main memory
(DRAM), the L2 cache or the L1 cache during the execution. E.g., the amount of L2 cache miss data
is !2 202ℎ4 30C0 − �'�" 30C0. AI (DRAM) and AI (L2 cache) correspond to the algorithmic
intensity of the kernel based on the main memory transfers (DRAM) or L2 cache memory transfers
(see 28). The peak performance and effective performance are defined in equations (27), (29).

a.1)
Method/ kernel Gangs (blockidx%x) Vector length (threadidx%x) DRAM data L2 cache data L1 cache data

CPU-inherited (Ωℎ(1,1,7) ) 16 128 4.45GB 5.92GB 7.5GB
GPGPU (all grids) 65,535 128 328MB 215GB 229GB

a.2)
Method/ kernel FLOP AI (DRAM) Peak performance (DRAM) Effective performance Execution time (all grids) Speed-up

CPU-inherited (Ωℎ(1,1,7) ) 1.0 × 109 0.226 25.4 GFLOP/s 12.3 GFLOP/s (48%) 0.082 s (7.04 s) 1.47
GPGPU (all grids) 3.28 × 1010 100 51.85 GFLOP/s 37.4 GFLOP/s (72%) 0.874 s 11.8

b.1)
Method/ kernel Gangs (blockidx%x) Vector length (threadidx%x) DRAM data L2 cache data L1 cache data

CPU-inherited (Ωℎ(1,1,7) ) 80 128 4.57GB 6.59GB 8.43GB
GPGPU (all grids) 65,535 128 326MB 215GB 229GB

b.2)
Method/ kernel FLOP AI (DRAM) Peak performance (DRAM) Effective performance Execution time (all grids) Speed-up

CPU-inherited (Ωℎ(1,1,7) ) 1.05 × 109 0.23 206 GFLOP/s 58.6 GFLOP/s (28%) 0.0179 s (1.4 s) 11.7
GPGPU (all grids) 3.28 × 1010 101 3,900 GFLOP/s 213 GFLOP/s (5%) 0.1540 s 106

b.3)
Method/ kernel AI (L2 cache) Peak performance (L2 cache) Effective performance

CPU-inherited (Ωℎ(1,1,7) ) 0.16 672 GFLOP/s 58.6 GFLOP/s (8%)
GPGPU (all grids) 0.15 630 GFLOP/s 213 GFLOP/s (33%)

Conclusions

In this paper, we proposed an efficient GPGPU implementation of the Sparse-PIC methods based on parallelization
strategies specific to sparse grid reconstructions and tailored to GPU architectures.

In [16], a first parallelization dedicated to shared memory CPU architecture for Sparse-PIC methods has been
introduced. The present paper proposed the extension of this implementation to GPGPU, designated by the CPU-
inherited implementation, which has proven to not fully exploit the potential of GPUs. Indeed, the CPU implementation
is mainly based on L1 cache memory reuse which cannot operate on GPUs because of their memory architecture
differences with respect to CPUs. In addition, we have encountered difficulties with the OpenACC standard such that a
coarse/fine grain parallelism cannot be applied.

Therefore we conceived a GPGPU implementation, based on GPU memory architectures, in order to take advantage
of the potential of GPUs. Coarse-grain and SIMT parallelisms are entailed with the GPGPU implementation thanks to
particle sampling and component grid work sharing strategies. The algorithm is also designed to benefit from the large
L2 cache memory of the GPU, mitigating the negative impact of the non-coalesced memory accesses.

Sparse grid reconstructions within PIC methods offer a significant better control of the statistical noise in simulations
and allow to dramatically reduce the number of particle mandatory to reach an appropriate amount of noise. Therefore
Sparse-PIC methods benefit from a substantial reduction of the memory footprint with respect to the standard PIC
methods. Our implementation takes advantage of this feature as all the data lie on the device (a single GPU) throughout
the simulation and the only data transfers between the host and the device occur at the initialization.

The Sparse-PIC GPU implementation achieves speed-ups close to 100 on a Tesla V100 for 3D-3V PIC simulations,
resulting in a computational time diminution of four orders of magnitude with respect to a single core CPU standard
PIC execution.
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Table 14. Speed-ups of the steps for the Quadro T2000 (GPU 1) and Tesla V100 (GPU 2). GPU 1
runs with 100 particles per cells while GPU 2 runs with 500 particles per cell. Poisson speed-up is
provided with respect to a sequential CPU execution with MUMPS library.

GPU Charge accumulation Field Interpolation Pusher Combination Differentiation Poisson Total
Quadro T2000 14.1 12.33 13.7 1.2 4.44 1.4 12.5
Tesla V100 107 139 133 21.8 29.8 1 95
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