
HAL Id: hal-03773216
https://hal.science/hal-03773216v1

Submitted on 9 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient parallelization for 3D-3V sparse grid
Particle-In-Cell: shared memory systems architectures

Fabrice Deluzet, Gwenael Fubiani, Laurent Garrigues, Clément Guillet, Jacek
Narski

To cite this version:
Fabrice Deluzet, Gwenael Fubiani, Laurent Garrigues, Clément Guillet, Jacek Narski. Efficient par-
allelization for 3D-3V sparse grid Particle-In-Cell: shared memory systems architectures. Journal of
Computational Physics, 2023, 480, pp.112022. �10.1016/j.jcp.2023.112022�. �hal-03773216�

https://hal.science/hal-03773216v1
https://hal.archives-ouvertes.fr

EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED
MEMORY SYSTEMS ARCHITECTURES

F. DELUZET†, G. FUBIANI‡, L. GARRIGUES‡, C. GUILLET†‡★, AND J. NARSKI†

Abstract. Particle-In-Cell (PIC) schemes are ones of the most broadly used numerical methods in kinetic simulation of
plasmas. The contribution of the present paper is dedicated to the introduction of parallelization strategies specific to shared
memory architectures tailored for Particle-In-Cell methods implementing sparse grid reconstructions. These strategies operate
the different parallelisms genuine to Sparse-PIC methods to obtain speed-up exceeding 100 on 128 cores. On top of that
substantial gains are introduced for sequential as well as parallel implementations thanks to the hierarchization procedure.
It consists in decomposing the information carried by sparse grids onto hierarchical basis functions, entailing a significantly
reduced number of operations.

Keywords. Plasma physics, Particle-In-Cell (PIC), sparse grids, sparse grid combination technique, parallelization ,
OpenMP

1. Introduction

Among the most successful models for computer simulation of kinetic plasma problems are particle methods,
Particle-In-Cell (PIC) being one of the most used for years [8, 9, 30, 35], still being carried on [16, 17, 21, 38]. The
method consists in a coupling between a Lagrangian discretization for the Vlasov equation, based on the integration
of numerical particle trajectories and a mesh-based discretization of Poisson’s equation for the computation of the
self-consistent electrostatic field. The major hurdle of the method is the statistical error originating from the sampling
of the distribution function by a limited number of numerical particles. Therefore, noise reduction strategies such as
variance reduction methods [18], filtering methods [24], or more recently sparse grid techniques [17, 22, 23, 36, 39]
have received a lot of attention. Sparse grids, originally developed for the interpolation of high dimensional functions
[11, 12, 13, 29], then extended to the approximation of partial differential equations [26, 27, 41, 40] have lately been
applied to PIC in the framework of the sparse grid combination technique [10, 25]. The use of sparse grids within PIC
methods offers a significant mitigation of the statistical noise and a reduction of the grid operation complexity (e.g. the
resolution of Poisson equation).

The present paper extends the work of [17] to three dimensional framework with a particular focus on optimization
and parallelization of the Sparse-PIC methods on shared memory architectures. Sparse-PIC methods are particularly
memory efficient, with respect to the size of the sparse grids used to accumulate the density and compute the electric
field as well as the array used to store the particles properties. The number of those numerical particles is significantly
reduced, compared to standardmethods, owing to the better control of the statistical noise. This limitedmemory footprint
calls for the development of parallel implementations on shared memory architectures. Though these platforms offer a
limited amount of memory compared to distributed architectures, this limitation is not an issue for Sparse-PIC methods.
Therefore implementations of these methods scalable on tens (and tomorrow thousands) of cores open the way to 3D-3V
simulations on simple and inexpensive platforms. Beyond this first objective, an efficient implementation on shared
memory architectures provide a building block for porting these methods on many cores (CPU) platforms consisting of
multiple distributed nodes, one node being a shared memory platform with tens of cores.

The scope of the present paper is therefore dedicated to CPU shared memory architectures, the porting to GPU will
be addressed in a forthcoming paper.

Standard PIC methods are not well suited for scalable implementations onto shared memory architectures. This is
mainly due to the fact that PIC methods are globally memory bound. Thus the multiplication of the cores without any
significant increase of the memory bandwidth brings a poor speed-up. This issue is analysed in [43] and received a lot
of attention for years [4, 5, 7]. Different workarounds are proposed to favor the locality of the data, increasing the cache
reuse, therefore mitigating the number of requests to the main memory. Strategies are also proposed for Non-Uniform
Memory Acces (NUMA) architecture platforms. The purpose there is to take advantage of pieces of memory, local to a
subset of cores, to enhance the scalability of the algorithm. This is achieved thanks to a decomposition of the population

★ Corrresponding author
† Université de Toulouse; UPS, INSA, UT1, UTM,, Institut de Mathématiques de Toulouse,, CNRS, Institut de Mathématiques de

Toulouse UMR 5219,, F-31062 Toulouse, France
‡LAPLACE, Université de Toulouse, CNRS, INPT, UPS,, 118 Route de Narbonne, 31062 Toulouse, France

1

2 EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES

of particles into samples, each of which being assigned to a NUMA domain and the related operations performed by
the local subset of cores.

The purpose of the present paper is to propose a first efficient implementation of Sparse-PIC methods, combining
sound memory management and parallelization strategies exploiting the genuine properties of Sparse-PIC methods.
The sparse grid reconstructions require the operations of each particles with numerous (tens) anisotropic grids, with
coarse discretizations and different sparsity patterns. These grids are referred to as component grids. The set of
nodes of all the component grids is designated by the sparse grid terminology. The sparsity of these grids reduces
their memory footprint to few kilobytes (KB) which is small enough to be contained in the highest level of the cache
hierarchy common to any modern CPU core. Furthermore, the interaction of the particles with two different grids are
independent and can therefore be processed concurrently. This defines a new level of parallelism, specific to Sparse-PIC
methods, that is central in obtaining a good scalability. The issue there lies in the load balancing, the number of grids
being not necessarily a multiple of the number of cores. A strategy is therefore proposed to preserve the scalability
close to optimal and finally obtain speed-up larger than 100 on 128 cores.

On top of that a hierarchization of the data accumulated on the component grids is introduced. It amounts to
decompose the information onto a basis of hierarchical functions, with in the end, a very significant reduction of the
complexity of the Sparse-PIC algorithm. As an illustration, a non-linear Landau damping simulation with sparse grid
reconstructions, equivalent in classical framework to a grid with 5123 cells and more than 4000 particles per cell, is
performed on a portable device with eight cores and 32GB of memory. This configuration is utterly unreachable on
most hardware with standard methods, the number of particles necessary being then roughly 1012, requiring 40TB.

The organization of the paper is the following. In section 2, the PIC scheme is presented in its classical formulation.
After introducing a necessary background on sparse grids, the combination technique is specifically applied to Sparse-
PIC methods in both nodal and hierarchical representations. The section 3 is devoted to the parallelization of the
methods, chiefly the sparse grid scheme introduced in the previous section. Efficient strategies tailored to non-uniform
memory architectures are developed in order to maximize memory re-use. Finally in section 4, the efficiency of the
parallelization strategies and the hierarchical representation are assessed on three dimensional classical test cases:
the non-linear Landau damping and the diocotron instability using three different hardware: an uniform memory
architecture and two non-uniform memory architectures (cc-NUMA platforms).

2. Particle-In-Cell and sparse grid reconstructions

2.1. Notations. Let us introduce some definitions and notations for the rest of the paper. Let 3 be the dimension of
the problem considered, l = (;1, ..., ;3) ∈ N3 a multi-index denoting the level, i.e. the discretization resolution in a
multivariate sense and i = (81, ..., 83) ∈ N3 be a multi-index denoting spatial positions. We define the following order
relations on multi-indices:

k ≤ l ⇔ ∀ 9 ∈ {1, ...3} : 9 ≤ ; 9 ,(1)
k < l ⇔ k ≤ l and ∃ 9 ∈ {1, ..., 3} B.C. : 9 < ; 9 ,(2)

and discrete l1 norm and l∞ norm by:

|l|1 :=
3∑
9=1
|; 9 |, ‖l‖∞ := max

9∈{1,...,3 }
|; 9 |.(3)

Let us consider the family of d-dimensional anisotropic grids on the unit interval Ω = [0, 1]3 called component grids,
or sub-grids:

Ωℎl :=
{
iℎl | i ∈ �ℎl

}
, �ℎl := È0, ℎ−1

;1
É × ... × È0, ℎ−1

;3
É ⊂ N3 ,(4)

and parameterized by the multi-index level l ∈ !:

! :=
⋃

9∈È0,3−1É
! 9 , ! 9 := {l ∈ N3 | |l|1 = = + 3 − 1 − 9 , l ≥ 1},(5)

where ℎl := (ℎ;1 , ..., ℎ;3) := 2−l is called the grid discretization. We consider also a regular isotropic grid, named
Cartesian grid, denotedΩ(∞)

ℎ=
corresponding to a component grid of level n = = ·1with discretization ℎ= in all directions,

which is typically the underlying grid in PIC methods. An illustration of the full grid, the component grid of level
l = (5, 1, 1) and the sparse grid [13], composed of the set of nodes of all the component grids, is provided on figure 1.

EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES 3

0
10

1
0

1

a)	Cartesian	grid	of	discretization	h5

0
10

1
0

1

b)	Component	grid	of	discretization	(h5,h1,h1)

0
10

1
0

1

c)	Sparse	grid	of	discretization	h5

Figure 1. The discretization parameter is = = 5: Panel a) represents the Cartesian grid of discretiza-
tion ℎ=; panel b) represents the component grid of level l = (5, 1, 1); panel c) represents the sparse
grid, composed of all the nodes of the component grid.

2.2. Particle-In-Cell scheme. The reference scheme for particular methods applied to plasma physic is detailed in this
section. Let us consider the non-relativistic Vlasov-Poisson system with external magnetic field B:

m 5B

mC
+ v · ∇x 5B +

@B

<B
(E + v × B) · ∇v 5B = 0,

∇ · E = d

Y0
, E = −∇Φ,

(6)

where 5B (x, v, C) is the phase-space distribution of the species B; @B , <B are the corresponding charge and mass, E is
the electric field and d is the charge density obtained from the phase-space distribution of each species as follows:

d(x, C) =
∑
B

@B

∫
5B (x, v, C)3v.(7)

The particle distribution 5B is represented by a collection of # numerical particles whose positions and velocities
are denoted (x? , v?), for ? = 1, ..., # and with total charge Q. The Standard Particle-In-Cell scheme (PIC-Std) [14, 15]
consists of four steps repeated at each time iteration, which are detailed in the algorithm 1. The charge density of each
type of particle is accumulated onto the Cartesian grid according to the following equations:

d̂ℎ= (x) =
Q
#

#∑
?=1
Sℎ=

(
x − x?

)
, Sℎ= =

(
ℎ−1
= i

(
ℎ−1
= ·

))⊗ 3

, i(G) = max (1 − |G | , 0) ,(8)

where ℎ= is the discretization of the Cartesian grid, defined in section 2.1.

Algorithm 1 Std-PIC scheme
Require: Particle positions and velocities (x? , v?), ? ∈ È1, #É, time step ΔC, external fixed magnetic field B.

for each time step ΔC do
Accumulate the charge density onto Ω(∞)

ℎ=
according to equations (8).

Compute the electric field from the charge density on Ω(∞)
ℎ=

with finite differences according to:

Eℎ= = −∇ℎ=Φℎ= , Δℎ=Φℎ= = −
d̂ℎ=

Y0
,(9)

where ∇ℎ= , Δℎ= are standard finite differences operators (see for instance [17]).
Interpolate the electric field at the particle positions.
Update the particle positions and velocities by integrating Newton’s law:

3x?
3C

= v? ,
3v?
3C

=
@B

<B
(E + v? × B) |x=x? .(10)

end for

4 EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES

The error between the density and its statistical estimator can be decomposed into the bias of the estimator and a
centered random variable, denotedV# ,ℎ= corresponding to the error stemming from the variance of the sampling with
a finite number of particles, the latter’s being the cause of the statistical noise [17]:

(d̂ℎ= − d) (x) = Bias(d̂ℎ=) (x) + V# ,ℎ= (x),(11)

where

Bias(d̂ℎ=) (x) = $
(
ℎ2
=

)
, V(V# ,ℎ= (x))

1
2 = $

((
#ℎ3=

)− 1
2
)
.(12)

The convergence of the estimator, i.e. the bias and the variance, requires respectively:

lim
=→+∞

ℎ= = 0, lim
=,#→+∞

#ℎ3= = +∞,(13)

and thus an extremely large number of particles # is necessary in order to achieve a low statistical error. Practically, the
statistical noise is generally themost detrimental component of the error to the precision of the numerical approximation.
In order to control the amount of statistical noise in the simulation, we refer to %2 , the average number of particles per
cell of the grid. The number of numerical particles is given by:

= %2 ∗ ℎ−3= .(14)

2.3. Sparse grid reconstructions.

2.3.1. Nodal basis or hierarchical basis representation. As a preliminary step to sparse grid techniques, one shall
introduce some interpolation tools. Let l ∈ N3 , i ∈ �ℎl be multi-indexes and consider basis functions defined by tensor
products of one-dimensional hat functions as follows:

iℎl ,i (x) := ©«
3⊗
9=1

iℎ; 9 ,8 9
ª®¬ (x), iℎ;8 ,8 9 (G) := i

(
ℎ−1
; 9
(G 9 − 8 9ℎ; 9)

)
, i(G) = max (1 − |G | , 0) ,(15)

where ℎl is the grid discretization of the component grid Ωℎl defined in section 2.1. These functions verify a partition
of unit property: ∑

i∈�ℎl

iℎl ,i (x) = 1.(16)

The space of d-dimensional hat functions with respect to the component grid Ωℎl , denoted +ℎl , is defined by:

+ℎl := span{iℎl ,i | i ∈ �ℎl },(17)

where {iℎl ,i | i ∈ �ℎl } is called the nodal basis of the space +ℎl and �ℎl the nodal basis index set. Additionally we
introduce hierarchical increments of +ℎl [13, 20], denoted by,ℎl and defined by:

,ℎl := +ℎl\
3⊕
9=1
+ℎl−e 9 , where +ℎl := 0 if ∃ 9 ∈ {1, ..., 3} B.C. ; 9 = −1,(18)

and e 9 ∈ N3 is the unit vector with the 9 Cℎ coordinate equal to one. The hierarchical increment contains all iℎl ,i ∈ +ℎl
that are not included in smaller +ℎk , with k < l. It can also be expressed in the following form:

,ℎl = span{iℎl ,i | i ∈ Bℎl }, Bℎl :=
{
i ∈ N3 | 0 ≤ i ≤ ℎ−1

l , i odd
}
,(19)

where {iℎl ,i | i ∈ Bℎl } is called the hierarchical basis of the space +ℎl and Bℎl the hierarchical basis index set. The
space of piecewise d-linear functions of level l with respect to Ωℎl can be represented with its hierarchical basis:

+ℎl =
⊕
:1≤;1

...
⊕
:3≤;3

,ℎk =
⊕
k≤l

,ℎk ,(20)

Thus, each function Eℎl ∈ +ℎl can be represented identically in the hierarchical (21) or nodal (22) basis of +ℎl :

Eℎl =
∑
k≤l
Êℎk =

∑
k≤l

∑
i∈Bℎk

Uk,iiℎk ,i,(21)

Eℎl =
∑
i∈�ℎl

Vl,jiℎl ,i,(22)

EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES 5

where Uk,i are the coefficients of Eℎl in the hierarchical basis, called hierarchical surplus, that shall be defined later; and
Vl,j are the coefficients of Eℎl in the nodal basis which are the nodal values of the function Eℎl . We introduce the space
of d-dimensional piecewise linear functions with respect to Ω(∞)

ℎ=
, denoted + (∞)

ℎ=
.

+
(∞)
ℎ=

=
⊕
|l |∞≤=

,l = span{iℎn ,i | i ∈ N3 | 0 ≤ i ≤ ℎ−1
n }.(23)

Eventually, we introduce the interpolation operators in nodal and hierarchical basis defined by:

�N+ℎl
5 =

∑
i∈�ℎl

5 (iℎl)iℎl ,i, �H+ℎl
5 =

∑
k≤l

∑
i∈Bℎl

Uk,iiℎk ,i,(24)

2.3.2. Sparse grid combination technique. In this section, the sparse grid combination technique [25] is introduced. It
is a method based on sparse grid representation of functions and using linear combination of contributions from coarse
grids, the component grids, in order to reconstruct a solution on the refined Cartesian grid. The method shall provide
within the PIC scheme a precise reconstruction of the electric potential initially computed with finite differences on
the component grids. The major benefit of the method is a significant reduction of statistical noise resulting from the
deposition of the charge density onto several coarse grids instead of an unique fine grid. An additional gain is to be
expected on the complexity of the linear system issued from the Poisson equation.

Let us consider the set of d-dimensional component grids (Ωℎl)l∈! defined in equation (5) and Φℎl be the solution
of the linear system associated to the Poisson equation on the grid Ωℎl defined by:

Eℎl = −∇ℎlΦℎl , ΔℎlΦℎl = −
d̂ℎl

Y0
,(25)

where ∇ℎl , Δℎl are the finite differences operators (see [17]) associated to the component grid Ωℎl . From this, an
interpolation onto the space +ℎl , denoted �N+ℎlΦℎl , is constructed in its nodal basis representation according to the
relation:

�N+ℎl
Φℎl =

∑
i∈�ℎl

Φℎl (jℎl)iℎl ,i,(26)

From all the contributions on each component grid Ωℎl for l ∈ !, a fine reconstruction of the electric potential on the
Cartesian grid Ω(∞)= , denoted ΦC

ℎ=
, is constructed by linear combination:

ΦC
ℎ=
=

∑
l∈!
2l�
N
+ℎl
Φℎl ,(27)

where 2l = (−1) 9 (3 − 1)!
9!(3 − 1 − 9)! for l ∈ ! 9 are the combination coefficients.

Proposition 2.1. Let Φ and d be sufficiently smooth function, then the function Φℎl defined by equation (25) verifies
the following point-wise error expression for each l ∈ !:

Φ(x) −Φℎl (x) =
3∑
<=1

∑
{ 91 ,..., 9< }
⊂{1,...,3 }
98≠ 9:

0 91 ,..., 9< (x; ℎ; 91 , ..., ℎ; 9<)ℎ
2
; 91
...ℎ2

; 9<
(28)

with bounded ‖0 91 ,..., 9< (·; ℎ; 91 , ..., ℎ; 9<)‖∞ ≤ ^, and the sparse grid reconstruction ΦC
ℎ=

verifies:

‖ΦC
ℎ=
−Φ‖∞ = $

(
ℎ2
= · | log ℎ= |3−1

)
+$

(
(#ℎ=)−

1
2 | log ℎ= |3−1

)
(29)

Proof. We refer to [17] for the proof of this proposition. �

One shall recall that, for the standard scheme, the approximation error of the electric potential scales with ℎ2
= which

is of the same order, save a negligible logarithmic term (| log ℎ= |3−1), than the sparse grid approximation according to
the above theorem.

6 EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES

2.3.3. Nodal basis Sparse-PIC scheme. Let us now introduce a scheme taking advantages of these sparse grid techniques
in order to achieve a reduction of the computational time. The scheme is referred to as the Nodal basis Sparse grid
Particle-In-Cell scheme (PIC-NSg) [17] and presented in the algorithm 2. Within this scheme the grid operations
(charge deposition and field solver) are considered separately and independently on the component grids Ωℎl . After
being computed on each component grid, the electric potential is reconstructed on the full grid Ω(∞)

ℎ=
by combining

all the contributions according to equations (26), (27). Eventually the electric potential is differentiated, interpolated
from the full grid to the particles positions and the particle positions and velocities are updated similarly to the standard
scheme.

Algorithm 2 PIC-NSg scheme
Require: Particle positions and velocities (x? , v?), time step ΔC, external magnetic field B.
for each time step ΔC do

for each component grid of index l ∈ ! do
Accumulate the charge density onto Ωℎl according to:

d̂ℎl (x) =
Q
#

#∑
?=1
Sℎl

(
x − x?

)
, Sℎl =

3⊗
9=1

(
ℎ−1
; 9
i

(
ℎ−1
; 9
·
))
, i(G) = max (1 − |G | , 0)(30)

Compute the electric potential from the charge density on Ωℎl according to equation (25).
Interpolate the electric potential onto +ℎl (26).

end for
Combine the electric potential onto Ω(∞)

ℎ=
(27) in nodal basis.

Differentiate the electric potential on Ω(∞)
ℎ=

.
Interpolate the electric field at the particle positions.
Update the particle positions and velocities (10).

end for

It has already been established in [17] that the statistical noise on the charge density is bounded by | log ℎ= |3−1 ·
(#ℎ=)−

1
2 which is a significant improvement relative to the standard scheme estimate (#ℎ3=)−

1
2 .

Let us recall the average number of particles per cell for standard schemes, denoted %2 and introduced in equation
(14). We are interested in determining the number of numerical particles required for Sparse-PIC simulation to set an
equivalent amount of statistical noise with respect to the standard scheme. It can be estimated by considering the sum
of all component grid cells as follows:

= %2 ∗
(∑
l∈!
|2l |ℎ−1

;1
...ℎ−1

;3

)
= %2 ∗ ℎ−1

= ∗
(
9
2
=2 − 3

2
= + 1

)
, for 3 = 3.(31)

What follows is that the same amount of statistical noise as in the standard scheme is obtained for much less particles
(because 9

2=
2 − 3

2= + 1 � ℎ−2
= for large =), drastically reducing memory requirements of three dimensional simulations.

2.3.4. Combination in hierarchical basis. In the present paper, an alternative representation of the sparse grid based
on the hierarchical decomposition of the basis functions, yielding the same reconstruction than the previous method,
is introduced in order to reduce the complexity of the combination operations. The coefficients in the hierarchical
basis (Uk,i)i∈Bℎk ,k≤l of the function Φℎl ∈ +ℎl are determined by a transformation from the nodal basis (whose
coefficients are plainly the values of Φℎl on the nodes of the full grid) to the hierarchical basis and the transformation
is called hierarchization. Hierarchization is done by applying a d-dimensional stencil constructed by tensor product of
one-dimensional stencil [13]:

Hiℎk ,k =
3⊗
9=1
H8 9ℎ: 9 ,: 9 , H8 9ℎ: 9 ,: 9 =

[
−1

2
1 − 1

2

]
8 9ℎ: 9 ,: 9

,(32)

where the one-dimensional stencil stands for:

H8 9ℎ: 9 ,: 9 5 = 5 (8 9ℎ: 9) −
1
2

[
5

(
8 9 − 1

2
ℎ: 9−1

)
+ 5

(
8 9 + 1

2
ℎ: 9−1

)]
.(33)

EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES 7

The hierarchical surpluses of a function are given by:

Uk,i := Hiℎk ,k 5 , i ∈ Bℎk , k ∈ N3 .(34)

A matrix representation of the hierarchization is also provided in the A. The inverse operation consisting in a transfor-
mation from the hierarchical basis to the nodal basis is named dehierarchization [28] and is also done by applying a
d-dimensional stencil:

Diℎk ,k =
3⊗
9=1
D8 9ℎ: 9 ,: 9 , D8 9ℎ: 9 ,: 9 =

[
1
2

1
1
2

]
8 9ℎ: 9 ,: 9

,(35)

where the one-dimensional stencil is defined by:

D8 9ℎ: 9 ,: 9 5 = 5 (8 9ℎ: 9) +
1
2

[
5

(
8 9 − 1

2
ℎ: 9−1

)
+ 5

(
8 9 + 1

2
ℎ: 9−1

)]
.(36)

Proposition 2.2. The sparse grid reconstruction defined in equation (27) can be expressed in the following form:

ΦC
ℎ=
=

∑
|k |∞≤=

∑
i∈Bℎl

Wk,iiℎk ,i,(37)

where:

Wk,i =
∑
l∈!

2lVk,i, Vk,i :=
{
Hiℎk ,kΦℎk , if k ≤ l,
0 else.(38)

Proof. See A. �

The result of proposition 2.2 allows us to conceive an algorithm for the combination of the electric potential based
on the hierarchical basis representation, which is presented in algorithm 3.

Algorithm 3 Combination in hierarchical basis (PIC-HSg)
Require: Approximation of the electric potential Φℎl on the component grid.

for each component grid of index l ∈ ! do
for each node of the component grid i ∈ �l do

Apply the transformation into the hierarchical basis:
Ul,i ←Hiℎl ,lΦℎl .(39)

Determine the full grid index node j corresponding to the index node i.
Add the contribution Wn,j := 2lUl,i to Ω(∞)ℎ=

at the node jℎ=.
end for

end for
for each node of the full grid j ∈ �= do

Apply the transformation into the nodal basis:
ΦC
ℎ=
(jℎ=) ← H−1

jℎn ,nWn,j.(40)

end for

2.3.5. Undirectional principle. The undirectional principle is a way to perform hierarchization of a multiple dimension
function by a series of one-dimensional hierarchization and is detailed in [31, 32, 33]. We briefly recall the principle
of the method in this section. The principle exploits the tensor structure of the basis functions; for the d-dimensional
hierarchization is done by hierarchize each dimension one after the other. The hierarchization with the unidirectional
principle is presented in 3 dimensions in algorithm 4. The outer loop iterates over the 3 dimensions and constitutes
the unidirectional principle. For a specific dimension 8, the data are split into one-dimension poles upon which the
operations are made. A pole in dimension 8 consists of all points of the grid which only differ in the 8Cℎ component,
that is which lie on a line parallel to the 8Cℎ coordinate axis. For each pole, the operation is solely the one-dimensional
hierarchization introduced in equation (33).

8 EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES

Algorithm 4 Hierarchization with unidirectional principle
Require: l = (;1, ..., ;3) ≥ 0 level, nodal coefficients stored in array[:]
Ensure: hierarchical coefficients stored in array [:]

for 8 from 1 to 3 do
for ? = ;8 downto 0 do

l̃← (..., ;8−1, ?, ;8+1, ...)
for all nodes x of level l̃ do

Let x; be the left hierarchical ancestor of x in dimension 8
Let xA be the right hierarchical ancestor of x in dimension 8
array[x]← array[x] − 1

2 (array[x;]+array[xA])
end for

end for
end for

2.3.6. Complexity of the different combinations. In the previous section, the sparse grid reconstruction of the solution
from the component grid contributions has been equivalently exposed in nodal or hierarchical basis. The methods,
though providing equivalent results, differ on the operations involved and thus an investigation of the complexity of
both approaches is provided in the present section. The combination technique in the hierarchical basis follows four
steps:

• Hierarchization: For each component grid Ωℎl , l ∈ !, a transformation to the hierarchical basis is performed
by applying Hl. According to the unidirectional principle, the hierarchization of each grid Ωℎl amounts to a
number of operations =>? (l)[31]:

=>? (l) = 2 ·
3∑
8=1

©«(2
;8+1 − 2 · ;8 − 2) ·

3∏
<=1
<≠8

(2;< − 1)
ª®®®¬ ,(41)

then, the complexity of the hierarchization is:∑
l∈!

=>? (l) = $
(
=3−1 · 2=

)
.(42)

• Prolongation: Since every component grid involved in the combination is included in the full grid, the
hierarchical surplus of each component grid are prolongated onto the full grid. This step yields no computation
operation.
• Combination: The hierarchical surplus from each component grid are combined onto the full grid.The number
of operations =>? (l) for each component grid Ωℎl is:

=>? (l) = 2 ·
3∏
<=1
(2;< + 1),

and the complexity is similar to equation (42).
• Dehierarchization: A transformation from the hierarchical basis to the nodal basis is performed on the full grid
to recover the values of the sparse grid reconstruction. Applying equation (41) to the full grid, the number of
operations for the dehierarchization on the full grid scales with $

(
2=3

)
.

The complexities of the hierarchization and combination steps are negligible and thus the complexity of the method is
dominated by the dehierarchization complexity, that is O(2=3). On the other side, the combination in the nodal basis
consists of the following steps:

• Interpolation: For each component grid, an interpolation ofΦℎl onto the space+ℎl is considered in nodal basis
according to the relation (26). The number of operations =>? for each component grid is:

=>? (l) = (63 + 323) (2= + 1)3 .

Since there are$
(
=3−1)

* component grids in the combination, the number of operations for all the grids scales
with $

(
=3−1 · 2=3

)
.

*There are =(=+1)2 + =(=−1)
2 + (=−1) (=−2)

2 component grids for 3 = 3.

EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES 9

• Combination: The contribution from each component grid is added to the full grid. The number of operations
=>? (l) for each component grid Ωℎl is

=>? (l) = 2 · (2= + 1)3 ,
and the complexity is similar to the interpolation.

From this investigation upon complexity, it is manifest that the hierarchical representation leading to$
(
2=3

)
operations

shall provide a more efficient method than the nodal representation with $
(
=3−1 · 2=3

)
operations.

3. Parallelization

3.1. A non exhaustive overview of optimizations and parallelizations of PIC methods on shared memory archi-
tectures. In PIC simulations, the implementations are usually memory-bounded rather than compute-bounded [4, 43].
The performance of the implementation, with respect to the computational time, is limited by the number of memory
accesses. For these kind of applications, multiplying the number of cores involved in the computation increases the
memory contention and in the end deteriorates the efficiency.

This feature of PIC methods lies in the interaction of the particles and the array used to accumulate their properties.
A particle contributes to the values stored on a limited sub-set of array indices corresponding to the cell it is contained
in. The particle being randomly distributed onto the computational domain and free to move during the simulation,
a naive implementation of PIC methods does not secure a contiguous access to both the array containing the particle
properties and the (grid) array accumulating the density (see figure 2). Indeed, the charge density accumulation,
sketched in algorithm 5, consists mainly in loading one particle coordinates, computing the grid cell it is contained in,
and accumulate the contribution to the 8 nodes of this cell. Two consecutive particles (with regard to their indices in the
particle coordinate array) may contribute to different cells in the density array. This entails either a contiguous memory
access in the particle array or in the density (grid) array. A similar issue characterizes the interpolation of the forces
from the grid onto the position of the particles. Though, the density accumulation and the field interpolation are only
two steps of the complete algorithm they account for a significant part of the computational time due to the tremendous
number of particles mandatory to mitigate the statistical noise.

Different workarounds are proposed, mainly based on a so-called sorting [7] of the particles. To this end, each
cell of the grid receive a rank, two cells contiguous in memory being associated to consecutive ranks. The particles
properties (position, velocity, etc.) are then stored in the particle arrays by rank of the cell they are contained in. By
this means, both the grid and the particle arrays may be accessed contiguously providing a better cache reuse for the
density accumulation and the field interpolation. Nonetheless, the particles shall be periodically sorted, since during the
computation they are likely to cross the cell boundary. This is thus a trade-off between the cost of re-sorting the particle
population and increasing the cache-miss rate during iterations. Different elaborated data structures are proposed to
alleviate the cost of the periodic particle sorting (see [4, 44] and [5, 6]). Another approach to mitigate the randomness
of the memory accesses is to consider domain decomposition [19, 42, 45] with subdomains so small that they can fit in
the cache system.

From the parallelization point of view, the parallelization of the particle-grid interaction (density accumulation) may
give rise to race conditions. The most obvious strategy consists in organizing the particles into clusters and distribute
these clusters onto the available cores. Different particles are then likely to provide contributions to a same grid node
which entails a race condition between different cores when writing at the samememory address. This issue is overcome
thanks to private copies of grid arrays and reduction operations.

Regarding the field interpolation and the particle pusher the operations related to different particles are independent.
Therefore the parallelization is quite straightforward but the scalability may be limited by the poor arithmetic intensity
of these steps. On NUMA architectures, the multiplication of core number comes with an increase of the memory
bandwidth: the cores are organized in NUMA domains associated to a local memory for which the access is faster
compared to that of an other NUMA domain. The parallelization strategy is tuned to cope with the hardware topology.
A SPMD (Single ProgramMultiple Data) is commonly deployed. The particle population is split into multiple samples,
one sample being stored in the memory of one NUMA domain and the related operations computed by the cores with
a fast access to this memory. The operations on each of the samples are finally reduced over the NUMA domains to
recover the complete statistic.

3.2. Sparse-PIC parallelization. Sparse grid applications to PIC methods are rather recent [17, 22, 39] and, to date,
no efficient implementation combining sound memory management and tailored parallelization strategies has been
provided. It is therefore the purpose of the present article. From equation (31), it is manifest that the number of particles
required to achieve a given statistical error is much smaller, by hundreds, for the sparse reconstruction. The consequence
is that the particle operations (particle pusher) or the operations interacting between the full grid and the particles (field
interpolation) are no longer the most time consuming operations. The interactions between the component grids and

10 EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES

Algorithm 5 Projection or charge accumulation
Require: Array particle[:]
Ensure: Array grid[:] containing the charge density

for all particles do
Read positions of particles in particle array [:]
Determine ξ1, ..., ξ8 the eight nodes of the cell containing the particle
for i from 1 to 8 do

Determine the charge contribution d8 of the particle at the node ξ8
Add the contribution d8 in the grid array at position ξ8: grid[ξ8]← d8

end for
end for

fa
st

ax
is

cached grid data

•
1

•
2

•
3

a) full grid, particles not sorted

fa
st

ax
is

•
1

•
2

• 3

b) full grid, particles sorted

fa
st

ax
is

•
1

•
2

•3

c) sparse grid, particles not sorted

Figure 2. Cachememorymanagement during charge deposition step [45]. The particles are accessed
in order 1-2-3 . On panel a) the grid data are accessed non-contiguously and must be loaded from
the main memory. On panel b) the grid data are accessed contiguously and can be loaded from the
cache. On panel c) The grid data are accessed non-contiguously but can be load from the cache.

the particles (charge deposition) dominate the computational time because of the large number of these grids (about
one hundred). As a result, the strategies exposed in this section are strongly motivated by the mitigation of the charge
deposition computational load.

3.2.1. Sparse-PIC memory management and shared memory parallelization. The strategy proposed within the present
paper takes advantage of the extremely reduced memory footprint of sparse grids. Indeed the component grids are
stored in tiny array with 2=, 2=+1 or 2=+2 nodes when a full grid requires 23= nodes, = defining the spatial discretization
(ℎ= = 2−=). To emphasize this huge memory savings, consider a discretization parameter = ranging from 7 to 9
(corresponding to Cartesian grids with 1283 to 5123 nodes), the storage of the Cartesian grid requires 17MB, 134MB,
1GB which hardly fit in the last level cache memory. Conversely, the storage of the larger component grid requires then
4KB, 8KB, 16KB which fits in the L1 data cache memory of the cores of modern CPUs, 32KB being the standard for
the L1 data cache. Therefore two memory management policies, depicted in the algorithm 6, both deprived from any
particle sorting, may be proposed. Contrariwise, the array used to store the component grids are assumed to fit in the
highest level of cache memory, with random accesses to these arrays while the particle arrays are access contiguously.
However, these random accesses will not generate cache misses since the whole component grid fits in the L1-cache
(see figure 2).

The first strategy relies on computing the interaction of one particle with all the component grids at once, and then
proceed with the next particle. For each particle, the contributions are written successively in every array and thus, in
order to maximize memory reuse, the data of all arrays must fit in the cache memory. The size of all these arrays in
bytes is:

()>C0; =>. > 5 6A83 =>34B) · (B8I4 > 5 30C0CH?4) = 2=
(
7=2 − = + 2

)
· 8(43)

The second strategy is the opposite: first the interactions of all the particles are computed for one component grid
and then the algorithm proceeds with the following component grid. The size of the data that must fit in the cache
memory to maximize memory re-use is bounded by the size of the largest component grid:

(=>. > 5 2><?>=4=C 6A83 =>34B) · (B8I4 > 5 30C0CH?4) ≤ 2=+2 · 8,(44)

EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES 11

which is smaller than in the case of the first policy.

Algorithm 6 Projection or charge accumulation (PIC-Sg)
Option 1: Particles-component grids loops

for all particles do
Read positions of particles in particle array
for all component grids do

Determine ξ1, ..., ξ8 the eight nodes of the cell containing the particle
for i from 1 to 8 do

Determine the charge contribution d8 of the particle at the node ξ8
Add the contribution d8 in the grid array at position ξ8: grid[ξ8]← d8

end for
end for

end for
Option 2: Component grids-particles loops

for all component grids do
for all particles do

Read positions of particles in particle array
Determine ξ1, ..., ξ8 the eight nodes of the cell containing the particle
for i from 1 to 8 do

Determine the charge contribution d8 of the particle at the node ξ8
Add the contribution d8 in the grid array at position ξ8: grid[ξ8]← d8

end for
end for

end for

The number of component grid ranges from 60 to more than 120 for = ranging from 7 to 10. The accumulation
of the density on these component grids is therefore expected to be the most time consuming task of the Sparse-PIC
algorithm. Nonetheless these tasks are arithmetic intensive and are therefore expected to offer a good scalability.

The parallelization strategy for shared memory architectures exploits the genuine parallelism of the accumulation
onto the different component grids. The component grids are arranged into groups and distributed onto the cores.
Each core executes successively the tasks (accumulation, field solver operations) on the component grid assigned to it;
eventually a reduction operation between the cores is performed to complete the combination step. In order to mitigate
the load imbalance for runs with a number of grids that does not match the number of cores, we consider clusters of
particles (i.e sub-samples of the particle population): the population of particle is subdivided into as many clusters as
the number of cores. It results in a number of tasks, a task being the accumulation of one particle cluster onto one
component grid, which is a multiple of the number of cores. Then, the tasks, i.e. the couples component grid-particle
cluster, are distributed onto the cores. Thanks to this procedure, the work load related to the density projection is
distributed onto the cores with an ideal balance irrespective to the number of cores and component grids.

The anisotropy, corollarily the number of grid nodes, takes an important part in the computational time imbalance
during the resolution of Poisson equation: the convergence of iterative methods necessitates more iterations for larger
systems and maximum refinement level ‖l‖∞. As a workaround, the grids are arranged in a decreasing order according
to their complexity in three groups (grid of complexity 2=+2, 2=+1 or 2=); then, in each group, the grids are arranged in
a decreasing order according to their maximum level of discretization ‖l‖∞.

Different strategies may be considered for the resolution of the Poisson equation. Within the Sparse-PIC method,
a Poisson problem shall be solved on each of the component grids. The first strategy consists therefore to distribute
the linear systems issued from the dicretization of the Poisson problem on the component grids onto the cores. The
advantage of this strategy lies in the very small size of the linear systems. Furthermore, the systems are independent.
Nonetheless, the load balance may be poor when the number of component grids is not a multiple of the number of
cores.

The second strategy consists in gathering all these problems inot a single (by block) linear system. Solving this
single system is a more computational expensive task, however it offers a better tuning of the load balance at the level
of the linear system solver.

Let us consider now the parallelization of the hierarchization (depicted in algorithm 4) and dehierarchization.
Although the procedures are similar, different strategies are considered. The former operates on the component grids
Ωℎl whereas the latter operates on the full grid Ω(∞)

ℎ=
. Since the hierarchization of the component grids is independent

12 EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES

of each other, the parallelization is straightforward similarly to the resolution of the Poisson equation. Concerning the
dehierarchization, whose algorithm resembles algorithm 4, one shall notice, when proceeding a specific dimension 8,
that the operations are independent for each pole (see section 2.3.5). Thus an immediate parallelization, consisting
of a distribution of the poles onto the cores, may be conceived from this observation. Though, the access of the data
is not optimal for all but the innermost dimension. Indeed the grid nodes within a pole are potentially in different
cache lines. Different methods such as unrolled unidirectional hierarchization algorithm [31] using blocks of poles
or cache-oblivious hierarchization algorithm [32] subdividing the grid into smaller subproblems that completely fit
into the cache has been conceived in order to circumvent the issue; however such refinements have not proven to be
mandatory to obtain a good efficiency.

3.2.2. Parallelization for NUMA architectures. NUMA refers to non-uniformmemory architectures where the memory
access time depends on the memory location of the processors. The memory resides in separate regions, named NUMA
domains, and is assigned to groups of cores. A core assigned to a NUMA domain accesses data from its local memory
(data stored on the memory of its NUMA domain) much faster than the non-local memory (data stored on another
NUMA domain). In this section, we present a second parallelization strategy, tailored to NUMA architectures and
strongly inspired of the existing SPMD implementations for the standard method. It consists in a subdivision of the
particle population into samples, each associated and bound to one unique core or subset of cores. Private arrays and
reduction operations are used to avoid race conditions (update of the same memory address by different cores). The
efficiency of the strategy is limited by the memory architecture and bandwidth of the hardware since each core accesses
simultaneously to the particle data. Consequently the number of samples of particles shall be chosen accordingly to
the number of NUMA domains and distributed into the memory banks of these NUMA domains. In order to make
efficient use of this strategy, data should be as much as possible accessed within a NUMA domain. Therefore, several
implementation policies shall be respected *.

3.2.3. Embedding the different parallelization strategies. The different parallelization strategies, though presented
independently, shall be merged to define the most effective parallel implementation for a targetted hardware. The
population of particles is subdivided into samples of particles of the same size. The number of samples is intended
to equal the numbers of NUMA domains, each sample being assigned to a single NUMA domain. The parallelization
strategy detailed in 3.2.2 is then implemented in any of the NUMA domains: the local particle sample is decomposed
into clusters and the tasks cluster-component grids are distributed on the cores of the NUMA domain. The pros of this
strategy lies in the good exploitation of the increased memory bandwidth brought by the addition of NUMA domains.
On the opposite, this decomposition entails the reduction operation between different NUMA domains.

4. Numerical results

The domain is a periodic cubeΩ = (R/!Z)3, of dimension ! depending on theDebye length_� = (Y0:�)4/(@4=0))
1
2 ,

with the following charge, mass and temperature for the electrons @4 = 1.602 × 10−19 C, <4 = 9.109 × 10−31 kg,
)4 = 11600 K, and the Boltzmann constant :� = 1.38×10−23 m2 kg s−2 K−1. The electrons are immersed in a uniform,
immobile, background of ions (d8 = Q4/

∫
3x). The time discretization depends on the plasma frequency: C,ΔC ∝ l−1

? ,
l? = (@4=0/<4Y0)

1
2 .

To assess the performance of the parallelization strategies, we consider three different hardware:
• The fist hardware is a laptop equipped with Intel® Core™ i9-10885H CPU with 8 cores @2.40 GHz sharing a
L3 cache memory of 16MB. Random-Access Memory (RAM) size is 32GB. The memory is uniformly shared
by all cores with two memory channels and a maximum memory bandwidth of 45.8GB/s. The cache memory
is divided into a first level (L1 cache) dedicated for instructions (L1 I) and data (L1 D), both of 32KB, an
intermediate level cache for instructions and data (L2 I+D) of 256KB, both three specific for each core; and a
last level cache memory (L3 I+D) of 16MB shared by all the cores.

*The following implementation policies shall be respected:
• In order to access contiguously the particle data, the dimension dedicated to the ids of the particles inside the samples must be the fast

axis, e.g. in Fortran, the particle array must have the following form:

double particle_array[1 : #B , ...];

where #B stands for the number of particles in a sample.
• A thread shall be bound to an unique core throughout the simulation so it always has its data in cache and in the same locality region

(NUMA domain). It is ensured by the OMP_PROC_BIND=TRUE environment variable.
• The data must be initialized in their respective NUMA domain according to the "first touch" data placement policy.
• The cores of a NUMA domain work on the data stored into the memory local to the NUMA domain thanks to the numactl -l command.

EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES 13

• The second hardware is a node of the supercomputer OLYMPE from CALMIP composed of two processors
Intel® Skylake 6140 @2.3 GHz with 18 cores. Each socket has a RAM of 192GB. The memory architecture
is uniform for the cores of one CPU with two controllers, six memory channels and a maximum memory
bandwidth of 119.21GB/s per socket (NUMA domain). The relative memory latency between the different
NUMA nodes is 21 in the Advanced Configuration and Power Interface System Locality Information Table
(ACPI SLIT), that is to say the latency between cores from different NUMA nodes is 2.1 times higher than
the latency between cores from the same node. Within each CPU, the cache memory is divided into a level
L1 cache memories of 32KB dedicated for instructions (L1 I) and data (L1 D), an intermediate level cache for
instructions and data (L2 I+D) of 1MB, the two first level of cache are specific to a core; the last level cache
memory (L3 I+D) of 24.75MB is shared by all the cores.
• The last hardware consists of a single computational server equipped with 128 cores in two AMD EPYC™

7713 Milan CPUs and RAM memory of 512GB. Each Milan socket has a maximum memory bandwidth
of 190.73GB/s (4 controllers, each controller has 2 memory channels). The memory architecture is non-
uniform within a CPU. It consists of four NUMA domains per socket, each containing sixteen cores and
64GB of memory. The relative memory latency is at best 12 between NUMA domains in the same socket
and 32 between domains from different sockets (in the ACPI SLIT). Each NUMA domain contains two Core
Complexes (CCX) of eight AMD ZEN 3 cores @2.0 GHz (altogether 64 cores per socket). Within the CCX,
the compute cores share a 32MB L3 cache, each core has an optimized 32KB L1 write-back cache and private
512 KB Unified (Instruction/Data) L2 cache.

NUMA #0 NUMA #2

NUMA #1

1 3

2

1 17 · · ·

2 18 · · ·
...

...
. . .

...

49 65

16 32 · · · 64

50

#4
#5
#6
#7

#0
#1
#2
#3

CCX #0

L3
ca
ch
e

L3
ca
ch
e

CCX #1#4
#5
#6
#7

#0
#1
#2
#3

1 component grid

1 sample of particles

#0 CPU cores

#1 global memory

high speed link
to global memory

CCX #2

L3
ca
ch
e

#4 #0
...

...

Figure 3. Embedded particle sample and component grids work sharing parallelization strategies
applied to the AMD EPYC™ 7713 Milan architecture. The particles are subdivided into samples, as
many as NUMA domains, and the 65 component grids (considered in this illustration) are distributed
to the cores of the corresponding NUMA domain, e.g. the grids 1, 17, 49 and 65 are distributed to
the core #0 of the CCX #0, one NUMA domain is composed of 2 Core Complex (CCX).

#7
#0
#1
#7

#0
#1
...

←− 1 11

←− 2 11

←− 16 11

· · ·
· · ·

· · · 64 11 15 12 · · ·

49 11 65 11 · · ·
50 11 1 12 · · ·

65 116

50 116

51 116

1 component grid
11 cluster of particles

1 11 task (component grid-cluster)

Figure 4. Load balance strategy within a NUMA domain (illustrated here for one NUMA domain
within AMD EPYC™ 7713 Milan architecture composed with 2 CCX with 8 cores in a CCX). The
particle sample associated to a NUMA domain is subdivided into as many clusters as core within
the domain. The number of tasks, i.e. number of component grids*number of clusters (e.g. here
65 ∗ 16 = 1040 tasks), is a multiple of the number of cores in the domain. The work load is equally
distributed onto the cores.

The compilers used for the three hardware are respectively GNU Fortran version 9.4.0, IFORT version 18.0.2
and GNU Fortran version 10.2.1 with options -fopenmp -cpp and optimizations -Ofast or -O3. Frequency boost and

14 EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES

hyperthreading are disabled. The code is executed with PETSc [3, 2] library for Poisson solver, using BiConjugate
Gradient Stabilized (BiCGSTAB) method with Geometric Algebraic MultiGrid (GAMG) preconditioner or MUMPS
[1] library with LU decomposition method. In this paper we consider two classical test cases:

• The 3D-3V non-linear Landau damping: the evolution in time of a perturbation known as the Landau damping
[34] is considered. A perturbation in a maxwellian equilibrium state of the distribution is considered:

54 (x, v) =
1

2c

3∏
8=1

(
1 + U8cos

(
V82cG
!

))
4
−‖v‖22

2 ,(45)

where ‖v‖22 = E2
1 + E

2
2 + E

2
3, U8 is the magnitude and V8 is the period of the perturbation in the 8Cℎ dimension.

Let U8 = 0.15, V8 = 3, 8 = 1, 2, 3 in equation (45), let ! = 160_� , ΔC = 1
20l

−1
? . The system is observed at time

) = 6l−1
? .

• The 3D-3V diocotron instability: a hollow profile is considered in the electron distribution, confined by a
magnetic field B [37], with the following Maxwellian distribution of electrons :

54 (x, v) =
W4
− (‖x−

!
2 ‖2−

!
4)2

2(0.03!)2

0.03! (2c)2
4
−‖v‖22

2 , W B.C.

∫∫
Ω×R3

5 (x, v)3x3v = 1(46)

where
x − !

2
2

2 = (G −
!
2)

2 + (H − !
2)

2 + (I − !
2)

2. The external magnetic field is considered linear along the
I-axis B(I) = (0, 0, �I + 4I × 10−6) (�I = 2.2 × 10−5 T) and strong enough so that the electron dynamics is
dominated by advection in the self-consistent field E × B. Let the parameters be ! = 22_� , ΔC = 0.1l−1

? , the
system is observed at time) = 80l−1

? .
Throughout this section the different methods presented previously, namely the sparse grid schemes with hierarchical

(PIC-HSg) or nodal combination (PIC-NSg), with first (PIC-HSg1) or second option (PIC-HSg2) (see algorithm 6)
and the standard scheme (PIC-Std), are investigated and compared. In order to provide a fair comparison between the
sparse grid methods and the standard methods, we introduce a naive implementation of the method (without sorting
of particles) and an implementation based on sorted particle data beforehand. These implementations provide lower
and upper bounds of the method efficiency. The numerical results upon the computational time consist of a mean of
the first five iterations of the scheme at the end of which only 4% of the particles have moved to a different cell of the
grid containing 1283 cells with 75 particles per cell in the standard case. In the following, the scheme is divided into
six steps, namely the projection of the density (charge accumulation) onto the grid (Proj), the resolution of the Poisson
equation (Pois), the differentiation of the electric potential (Diff), the pusher of particles (Push), the interpolation of
the electric field (F.Inter), the combination of the component grid contributions in either nodal or hierarchical basis
(Comb). An additional step is performed within the scheme for the review of the numerical results; the charge density
is reconstructed from all the component grid contributions and represented on the full grid.

4.1. Sequential performance. The performance of the different schemes carried out with one core (One AMD ZEN
3 core) is investigated. The reconstructions provided by the nodal basis and hierarchical basis are proved to be strictly
similar as foreseen by the proposition 2.2. Therefore, only the hierarchical reconstruction will be provided in the sequel.

First, the results of the computational time of the Poisson solver for each scheme with different methods (direct,
iterative) and configuration of the linear system (one large system or many small systems, see section 3.2.1) are
represented on figure 5. The benefit resulting from the reduction of the grid nodes is manifest on the computational
time of the linear system resolution. Indeed, dividing the mesh size by a factor 2, doubles the time of execution of
the sparse grid scheme with LU decomposition whereas it is multiplied by ten for the standard scheme. It results in a
significant difference between the two approaches, especially for fine spatial discretizations. The difference being of
three order of magnitude for 2563 grids. This efficiency deficit is predicted to deepen to four orders of magnitude for
10243 grids: the resolution lasts more than one hour for the standard method whereas the sparse grid resolution is done
in a tenth of a second. The conclusion is that for the Sparse-PIC methods the most efficient configurations are the LU
decomposition performed either on a large system or independently on each system.

Also, the computational time of one time iteration for the PIC-HSg and PIC-NSg schemes is represented on figure 5
for comparable configurations of grid and number of particles per cell, according to formulae (14), (31). The observation
upon the complexity of the combination in nodal and hierarchical basis presented in section 2.3.6 is verified here: the
computational load of the combination has been drastically mitigated (divided by 122 in the first and 240 in the second
configuration) by the transformation into the hierarchical basis (from 12.5% to 0.11% and 91% to 4% of time of one
iteration computational time). In the second test case, the combination in nodal basis takes a substantial amount of
time because there are more grid nodes (in the Cartesian grid) than particles (about 12 times more grid nodes). As a
result, the more efficient scheme on one core is the sparse grid scheme with the combination in hierarchical basis; and

EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES 15

the combination in nodal basis is put aside of considerations in the following. As predicted in the previous sections,
the projection is by far the most costly operation within the sparse grid scheme (between 80% and 95 % of the time
of the iteration) because of the large number of component grids involved in the charge deposition. The others steps
are less time consuming than in the standard method because of the reduced number of particles and the smaller size
of the linear systems. Theses observations confirm that our efforts should be concentrated into the optimization and
parallelization of the projection.

The projection step is investigated in more details for the sparse grid schemes with both options of algorithm 6 on the
one hand, and the standard scheme with sorted and unsorted particles on the other hand. The computational time of the
step as a function of the grid discretization is represented on the panel a) of figure 6. The percentage of L1 data cache
misses relative to the total number of data accesses during the projection is represented on the panel b) of the figure 6.
An additional feature representing the storage requirements of the density array related to the memory size available on
the different platforms is provided on the panel c) of figure 6. In order to extend the conclusions drawn in this section
to the parallel implementation, in which each thread holds a copy of the (grid) to avoid the concurrent write accesses
between the threads (see section 3.1), the storage requirements of these copies are also represented when the data of
each thread exceed the L2 cache memory (limitation between private and shared memory of the threads). As a result
of better memory reuse, the second option (see algorithm 6) is twice as fast as the first one for any grid discretization.
The data of the second fit in the first level cache memory whereas the second one only fit in the second or last level
cache memory. The number of cache miss during the projection step is a lot more important with the first option than
the second one (especially for fine discretizations). In the latter case, the number of cache miss per memory access is
negligible and corresponds to the ratio of the standard scheme with the particle sorting, in which the data are accessed
contiguously. This result demonstrates that within our approach the cache memory management is close to optimal for
grids up to 10243 cells.

In order to estimate the statistical noise in the simulation, we consider a frozen number of particles per cell and
we examine the error of the density in !2-norm at initial time. Indeed, it is possible to assess precisely the error of
the density projected onto the grid for the different methods by comparison with the analytic expression of the initial
electron density. For grids with more than 643 cells, the grid-based error is negligible compared to the particle sampling
error (statistical noise), therefore the !2-norm of the density error gives us an estimation of the square root variance of
the statistical error V(V# ,ℎl)

1
2 defined by equation (12). The results of the electron density error are represented on the

panel b) of figure 7. The results reveal that the relations given by equations (14), (31) does not provide an equivalent
amount of statistical noise for both the standard and sparse grid schemes. It is indeed manifest on the figure 8 that,
for equivalent configurations, the statistical noise is drastically reduced in the Sparse-PIC computations. Actually, the
statistical error of the density is even slightly superior for the standard scheme with %2 = 500 (resp. %2 = 100) to that
of the sparse grid scheme with %2 = 63 (resp. %2 = 14). The consequence of it being that, for an equivalent amount of
statistical noise in the simulation, the number of particles in the sparse grid scheme can be drastically reduced (e.g. with
a 2563 grid and 100 particles per cell it can be reduced from 1.6 × 109 particles for the standard scheme to 9.9 × 105

particles for the sparse grid scheme, that is to say 1600 less particles). A section in I-direction of the electron density
deposited after two oscillations of the damping, at C = 6l−1

? (60 time steps), on a 1283 grid for the standard (panel a),
sparse grid (panel b) schemes with %2 = 500 and for the sparse grid scheme (panel c) with %2 = 63 is represented on
figure 9. The mitigation of the statistical noise is rather conspicuous for the sparse grid scheme and provides a sharper
representation of the density. Indeed the error seems slightly inferior for the sparse grid scheme with %2 = 63 than the
standard scheme with %2 = 500.

Table 1. Configurations and results of Landau damping test case; the standard PIC method with
particles sorting (first line) is considered as a reference.
Method Figure Nb. of particles Particle memory footprint Grid size Computational time

Reference→ PIC-SStd 9 a) 1.05 × 109 75 GB 1283 (%2 = 500) 100% (306.4s)
PIC-Sg 9 b) 1.3 × 107 (÷80) 936 MB 1283 (%2 = 500) 3% (9.9s)
PIC-Sg 9 c) 1.7 × 106 (÷617) 122 MB 1283 (%2 = 63) 0.4% (1.2s)
PIC-Sg 9 d) 1.05 × 108 6.5 GB 5123 (%2 = 500) \
PIC-Std \ 9.01 × 107 7.5 GB 1283 (%2 = 50) 4% (12s)

The computational time of one time iteration is compared between the standard and sparse grid schemes. The
execution time of an iteration, as well as the proportion of each step is represented on the left panel of figure 7.
The benefit of the sorting of particles is manifest on the grid/particles operations (i.e. the projection and the field
interpolation) for the standard scheme and results in an acceleration of 1.4 upon the time iteration compared to the
scheme without sorting. This is the result of a better cache memory reuse achieved by the sorting. Nonetheless this

16 EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES

	0.001

	0.01

	0.1

	1

	10

	100

	1000

323 643 1283 2563 5123 10243

Ti
m
e	
(s
)

#	grid	nodes

a)	Sequential	time	of	Poisson	solver

PIC-Std	BiCGSTAB	GAMG
PIC-Std	LU

PIC-Sg	1	BiCGSTAB	GAMG
PIC-Sg	1	LU

PIC-Sg	2	BiCGSTAB	GAMG
PIC-Sg	2	LU

	0.0001

	0.001

	0.01

	0.1

	1

	10

	100

	1000

PIC-NSg	
	1283	cells	

PIC-HSg	
	1283	cells	

PIC-NSg	
	5123	cells	

PIC-HSg	
	5123	cells	

Ti
m
e	
[s
]	(
lo
g	
sc
al
e)

b)	Sequential	time	per	iteration

(Comb)
(Proj)

(F.Inter)
(Push)
(Diff)
(Pois)

95%83%

0.4%0.4%

1.5%1.5%
2.5%2.5%

÷122

91%

8%

3%

7%
4%

0.6%

81%

÷240

0.06%

0.3%

0.6%
0.4%

%2=500 %2=500 %2=63 %2=63

Figure 5. On panel a) the sequential time of Poisson solver: Direct (LU) and iterative BiConjugate
Gradient STABilized (BiCGSTAB) with Geometric Algebric MultiGrid (GAMG) preconditioner
methods. PIC-Sg 1: The resolution of all sub-grids has been gathered in one large linear system.
PIC-Sg 2: The linear systems issued from the component grids are solved independently one after
another. On panel b) the sequential time of one time iteration (in logarithmic scale) for the PIC-NSg
and PIC-Hsg schemes. The use of the hierarchical basis shortens the combination step computational
time by hundreds. One AMD ZEN 3 core @2GHz.

	0.01

	0.1

	1

	10

	100

	1000

323 643 1283 2563

tim
es

	(s
)

#	grid	nodes

a)	Sequential	time

PIC-Std
PIC-UStd
PIC-SStd
PIC-HSg1
PIC-HSg2

	0

	5

	10

	15

	20

	25

	30

	35

	40

	45

	50

323 643 1283 2563 5123

%
	L
1	
ca
ch
e	
m
is
s

#	grid	nodes

b)	L1	data	cache	miss

PIC-Std
PIC-UStd
PIC-SStd
PIC-HSg1
PIC-HSg2

1KB

L1	D	(32KB)

L2	(512KB)

L3	(32MB)

RAM	(512GB)

323 643 1283 2563 5123 10243

ca
ch
e	
le
ve
ls

#	grid	nodes

c)	Storage	size	of	the	density	arrays

PIC-Std
PIC-HSg1
PIC-HSg2

1	to	8	thread	copies
1	to	8	thread	copies

data private for each
core

Figure 6. The sequential time (panel a), ratio of L1 data cache miss per total data access (panel b)
and storage of grid data (panel c) for the projection step with %2 = 100 are represented. AMD ZEN
3 core @1.7GHz.

optimization concerns only the grid-particles operations, therefore it has no effects on the particle pusher which is the
most costly operation. One of the reason of the large computational time of the standard schemes is the substantial
amount of data to handle. Indeed, such a simulation with a 1283 grid and 500 particles per cell results in more than
70GB of data to store which exceed the memory limitation of one NUMA domain and thus the core that executes the
code has to access to remote memory (from other NUMA domains). As a comparison, a simulation with a 1283 grid
but only 50 particles per cell, so that the data entirely fit in the memory of a single NUMA domain, only requires 12s
(with sorted particle data), which is about 20 times less than the simulation with ten times more particles.

EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES 17

	0.0001

	0.001

	0.01

	0.1

	1

	10

	100

	1000

	10000

PIC-UStd	
	1283	

PIC-SStd	
	1283		

PIC-HSg	
	1283	

PIC-HSg	
	1283	

PIC-HSg	
	5123	

Ti
m
e	
[s
]	(
lo
g	
sc
al
e)

a)	Sequential	time	per	iteration

(Push)
(F.Inter)
(Proj)
(Pois)

(Comb)
(Diff)

÷44

÷340

÷1.4

÷25
84%
7%
4%

5%

<0.1%

95%

0.4%

<0.1%

0.11%

59%
33%
4%

4%

<0.1%

93%

0.7%

0.7%

2%

81%

3.3%

4%

%2=500 %2=500 %2=500 %2=63 %2=63

	0.01

	0.1

323 643 1283 2563 5123

#	grid	nodes

b)	Statistical	noise	at	initialization

PIC-Std	Pc=100
PIC-Sg	Pc=14PIC-Std	Pc=500PIC-Sg	Pc=63

dominant grid error PIC-Sg

1600 times
less particles

figure 6 a)

figure 6 c)

‖d
C =
−
d
‖ !

2

‖d
‖ !

2

Figure 7. Computational time on 1 AMD ZEN 3 core @2GHz of one iteration for the Landau
damping (panel a) and statistical noise at initialization (panel b). The statistical noise is roughly
equivalent for PIC-Std scheme with %2 = 500 (figure 9 a) (resp. %2 = 100) and PIC-Sg with %2 = 63
(figure 9 c) (resp. %2 = 14).

The gain provided by the sparse grid technique on the computational time is outstanding. The execution time of
the sparse grid scheme, with a statistical noise equivalent to the standard scheme, is reduced by more than 300 times.
The substantial gain is due to the reduction of the number of particles in the sparse schemes (about 600 less particles).
The computational time of particles operations, chiefly the field interpolation and the particle pusher, is negligible.
In addition, the sparse grid schemes offer a significant reduction of the grid operations (roughly 100 less grid nodes
for the sparse grid scheme). As a comparison, a simulation with a 5123 grid and %2 = 63, necessitating 25 times
less computational time than the standard one with a 1283 grid, is performed. Apart from the utter impossibility
of simulations in such configuration for standard schemes, because of memory limitations (it would require 5TB of
particle data as illustrated by the left panel of figure 11), the gap in term of complexity and computational time between
the standard and sparse grid schemes deepens as the grid is refined which is a promising feature for very demanding
simulations.

However, as put forward in [17], sparse grid reconstructions may fail to reproduce solutions with localized support
and steep gradients. As an illustration of this feature, we investigate the three-dimensional diocotron test case in which
instabilities caused by the magnetic field lead to the formation of a discrete number of vortices exhibiting the weaknesses
of the method. The three dimensional representation of the electron density, as well as a section in I-direction at the
middle of the domain, is represented on figure 10 at C = 80l−1

? , with a 1283 grid and %2 = 30 for the standard scheme
(panel a), with a 2563 grid and %2 = 5 for the sparse grid scheme without (panel b) and with the offset combination
technique (for the parameters (g0, g1) = (3, 6)) (panel c). The offset combination technique, introduced in [17], is an
alternative to the classical combination technique presented in section 2.3.2, consisting in an elimination of the most
anisotropic grids from the combination. Though the grid is more refined, the sparse grid scheme with the classical
combination technique fails to reproduce the fine structure of the density. One can see that the sparse grid reconstruction
has numerical diffusion and a tendency to flatten the steep gradients of the solution; yet, a finer reproduction of the
instability could be obtained with a refinement of the grid. Nonetheless the offset combination technique provides a
significant improvement of the sparse grid reconstructions and a mitigation of the statistical noise in comparison to the
standard approach, though with a significantly reduced number of particles.

4.2. Parallelization on uniform memory architecture. Let us now consider the parallelization on uniform memory
architecture: the first hardware considered in this paper: the Intel® Core™ i9-10885H CPU with eight cores. In
this section, the different parallelization strategies, namely particle sample and component grid work sharing, are
investigated separately and compared between them. In this section the resolution of the electric potential is not
parallelized. It is assumed to be negligible (see figure 5 a). In this section, we consider few particles per cell in the

18 EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES

•

•

Figure 8. Representation of the electron density for the 3D-3V Landau damping simulation. Three
dimensional representation and section in z-dimension (x = (G1, G2,

!
4)) after two oscillations (C =

6l−1
? , 60 time steps). The simulations have been performed with comparable configurations (grid

with 1283 cells and %2 = 100 particles per cell).

simulation and thus a poor statistical resolution, especially for the standard scheme, as a consequence of hardware
memory limitation. The memory requirements of the methods are illustrated on panel a) of figure 11.

Let us focus on the parallelization strategies for both standard and sparse grid schemes. The strong scaling of the
projection, field interpolation and particle pusher up to eight cores is represented on the panels b) and c) of figure 11
for different configurations of grid ranging from 323 to 5123 grid cells. For the standard scheme, the scalability of
the projection seems rather good for grids with less than a hundred nodes in each dimension, for which it drastically
deteriorates for the non-sorted data. This is caused by the size of all the thread copies of the density array exceeding
the size of the last level (L3) cache memory (see panel c) of figure 6). Indeed, since the data array is accessed with
a random pattern and the data does not fit in the cache, the number of cache misses is large and the multiplication of
the cores increases the memory contention to access the data stored in the RAM. Conversely, the sparse grid scheme
(with option 2 from alg. 6) demonstrates a scalability close to ideal. The grids involved in the projection fit in the first

EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES 19

Figure 9. Representation of the electron density for the 3D-3V Landau damping simulation. Section
in z-dimension (x = (G1, G2,

!
4)) after two oscillations (C = 6l−1

?). Figures a) and c) have the same
statistical error but figure c) has more than 600 less particles than figure a). Figure a) requires 306.4
s per iteration (with sorted data), figure b) 9.9s per iteration and figure c) 1.2s per iteration, both on
one AMD ZEN 3 core @2GHz. Figure d) requires 31.8 s on eight cores Intel® Core™ i9-10885H.

level cache memory (private to each core). Actually the size of the data barely exceeds the first level cache memory
for discretization equivalent to 10243 grid cells (see panel c) of figure 6). The choice of the first option in alg. 6
reveals once more to bet he most effective since within the second option the grid data do not fit in the shared L2 cache
memory for discretizations above 1283 grid nodes. The scalability of the other steps, namely the pusher, combination
and field interpolation is less favorable, similar to the standard scheme, but these operations are negligible for the sparse
grid scheme due to the reduced number of particles and grid nodes. The loss of scalability for the combination step
derived from the access of non-contiguous data within a pole (as explained in section 3.2.1) and small number of poles
to parallelize (roughly 16 000). For the pusher of the particles the poor scalability is due to low arithmetic intensity
characterizing these operations (nine writes and eighteen reads, as a comparison the projection step has only three reads
upon the particle data).

20 EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES

•

•

•

Figure 10. Representation of the electron density for the 3D-3V diocotron instability simulation at
C = 80l−1

? . A section in z-dimension (x = (G1, G2,
!
2)) is also represented. The offset combination

technique [17] is used on figure c) with parameters (g0, g1) = (3, 6). Figure a) requires 10s (4.5 GB,
= 6.2 × 107) per iteration, figure b) 0.49s per iteration (25MB, # = 3.5 × 105) and figure c) 5.1s
per iteration (619MB, # = 8.6 × 106), both on one AMD ZEN 3 core @2GHz.

EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES 21

1MB

10	MB

100	MB

1	GB

10	GB

100	GB

1	TB

10	TB

100	TB

323 643 1283 2563 512310243

si
ze

	(b
yt

es
)

#	grid	nodes

a)	Memory	storage

part.	data	PIC-Std,	100<Pc<1000
part.	data	PIC-Sg,	14<Pc<1000

grid/PETSc	data	PIC-Std
grid/PETSc	data	PIC-Sg

1

2

4

8

1 2 4 8
sp
ee
du
p

#	cores

b)	Projection	Pc=75

ideal
	PIC-Std	n=7	Ns=#coresPIC-Std	n=6	Ns=#coresPIC-Std	n=5	Ns=#coresPIC-Sg	n=7	Ns=#coresPIC-Sg	n=7	Ng=#cores
PIC-Sg	n=9	Ns=#coresPIC-Sg	n=9	Ng=#coresPIC-SStd

PIC-UStd

1

2

4

8

1 2 4 8

sp
ee

du
p

#	cores

c)	Field	interpolation,	push	and	
	combination	grid	1283	Pc=75

ideal
(F.Inter)	PIC-Std
(Push)	PIC-Std
(Comb)	PIC-Sg

(Push)	PIC-SStd
(Push)	PIC-UStd
(F.Inter)	PIC-Sg

(F.Inter)	PIC-SStd
(F.Inter)	PIC-UStd

(Push)	PIC-Sg

Figure 11. On panel a), the storage size of data (particle data, grid data, PETSc objects, etc.) is
represented as a function of the number of grid nodes and particles per cell. On panel b) and c), the
strong scaling of the projection, field interpolation and push steps up to 8 cores on a uniform memory
architecture (Intel® Core™ i9-10885H) are represented.

4.3. Parallelization onNUMAarchitecture. In this section, the different parallelization strategies, namely the particle
sample and component gridwork sharing, are investigated for the sparse grid scheme. Based on the hardware architecture
and the reflections of section 3, the population of particles is distributed onto the NUMA domains and the component
grids onto the cores of a NUMA domain. The set of component grids is replicated to match the number of particle
samples and accumulate the density carried by the sample. In the following, we denote by #6 the number of groups of
component grids and #B the number of samples of particles. A series of simulations is performed in order to assess the
strong scaling (when adding cores to a fixed discretization) of a time iteration.

Let us now consider a first non-uniform memory architecture: the two sockets Intel® Skylake 6140 @2.3 GHz of
18 cores (36 cores). The numerical results for the choice parallelization strategy on the the projection, as well as other
configurations and the other most costly operations (field interpolation, particle pusher, differentiation) up to 36 cores for
grids with 1283 and 2563 cells, 500 particles per cell are presented on panel b) of figure 12. The parallelization strategies
providing the best efficiency on the projection are the ones that do not stress the memory bandwidth: configurations
with two samples of particles (i.e. as many as NUMA domains) and the one without any sampling of particles. Indeed,
when the number of samples of particles exceeds the number of NUMA domain, the threads access the memory in a
competing way and the scalability is deteriorated. Although the scalability of the projection is close to ideal on 36 cores,
the density projection remains by far the most costly operation within the scheme. As a result, the limited scalability
of other steps such as the pusher, the differentiation or the sequential execution of the Poisson solvers has a marginal
impact on the total speedup (of 27.3).

Then, a second non-uniform memory architecture is considered: the two sockets AMD EPYC™ 7713Milan with 64
cores per socket (128 cores). With this increased number of cores, the sequential Poisson solver is no longer negligible.
Therefore, the parallelization strategy based on the component grid work sharing is implemented. The linear systems
issued from the different component grids are distributed onto the cores. Though this strategy is not optimal, since it
entails a load imbalance, it permits to reduce the cost of this step of this algorithm and obtain a good scalability of the
Sparse-PIC method for tens of cores. A series of simulations is performed in order to assess the strong scaling of the
projection, which is by far the most costly operation of the sparse grid scheme as evidenced by the computational time
of an iteration on one core (see panel a) of figure 13). On this panel, the computational time of the PIC-HSg scheme
with one core and 128 cores, as well as the PIC-SStd scheme with 128 cores are represented. The projection remains
the most costly step (nearly 80 % of the time iteration) of the PIC-HSg scheme on one hundred of cores. Nonetheless,
for the PIC-Std scheme the resolution of the Poisson equation is sequential and counts for 70 % of the time iteration.
Therefore the comparison between the two methods with respect to the computational time of one complete iteration is
not fair in this configuration.

The scalability of the most costly steps within the Sparse-PIC method and the PIC-Std projection up to 128 cores
for grids with 1283 and 2563 cells, 500 particles per cell are presented on panel b) of figure 12. The configuration that

22 EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES

	0.0001

	0.001

	0.01

	0.1

	1

	10

	100

PIC-HSg	
		#cores=1

PIC-HSg	
	#cores=36

Ti
m
e	
(s
)

a)	Time	per	iteration	
	grid	1283	Pc=500

(Proj)
(F.Inter)
(Push)
(Diff)

(Comb)
(Pois)94%

5%

1%

0.1%

0.03%

0.01%

÷27.3

92%

5%
2%
0.2%
0.4%

0.4% 1

	4

8

16
18

36

1 	4 8 1618 36

sp
ee
du
p

#	cores

b)	Strong	scalability	grids	1283-2563,	Pc=500

ideal
(Proj)	n=7	(Ns,Ng)=(1,#cores)(Proj)	n=8		(Ns,Ng)=(1,#cores)(Proj)	n=8	(Ns,Ng)=(2,#cores/2)(Proj)	n=8	(NsNg)=(4,#cores/4)(Proj)	n=8	(Ns,Ng)=(#cores,1)

(F.inter)	n=7
(Push)	n=7
(Diff)	n=7	

Figure 12. On panel a) the computational time per time iteration for the PIC-HSg scheme on one
and 36 cores is represented. On panel b) the strong scaling of the projection step up to 36 cores is rep-
resented. Different configurations of groups of grids and samples of particles are represented(#cores
denotes the number of cores). For the other steps than the projection, the configuration (#B , #6) is
not given since all provide similar results. Two Intel® Skylake 6140 CPUs.

	0.0001

	0.001

	0.01

	0.1

	1

	10

	100

PIC-HSg	
		#cores=1

PIC-HSg	
	#cores=128

PIC-SStd	
	#cores=128

Ti
m
e	
(s
)

a)	Time	per	iteration	
	grid	1283	Pc=500

(Proj)
(Pois)

(F.Inter)
(Push)
(Comb)

(Diff)

96%

3%

1%
<0.1%

<0.1%

÷101

79%
7.3%
4%
3.6%

5.6%
1%

12%

11%
70%

14
8
16

32

64

101

128

148 16 32 64 128

sp
ee
du
p

#	cores

b)	Strong	scalability	grid	1283	Pc=500

ideal
PIC-Std	(Proj)
PIC-SStd	(Proj)
PIC-UStd	(Proj)

(Proj)	(Ns,Ng)=(2,#cores/2)(Proj)	(Ns,Ng)=(4,#cores/4)
(Proj)	(Ns,Ng)=(8,#cores/8)(Proj)	(Ns,Ng)=(16,#cores/16)(Total)	(Ns,Ng)=(8,#cores/8)(F.inter)

(Push)
(Pois)

Figure 13. On panel a) the computational time per time iteration for the PIC-HSg and PIC-SStd
schemes on one and 128 cores is represented. The total iteration has a speedup of 101. On panel b)
the strong scaling of the most costly steps of the PIC-HSg scheme and the projection of the PIC-Std
scheme up to 128 cores is represented. Different configurations of groups of grids and samples of
particles are represented(#cores denotes the number of cores). For the other steps than the projection,
the configuration (#B , #6) is not given since all provide similar results. Two AMD EPYC™ 7713
CPUs.

EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES 23

gives the best results and achieves a speedup of 126 is the one with eight samples of particles (as many as NUMA
domains). For different configurations of samples, the speedup is still close to ideal, which lead to the conclusion
that the parallelization strategy has not reach its scalability limit with one hundred of cores. The total speedup of one
time iteration is 101 with 128 cores. For the standard scheme, the scalability of the projection above 32 cores is poor;
the speedup ranges between 10 without sorting and 28 with sorted particles. The substantial difference between the
standard and the Sparse-PIC schemes can be explained from two observations: first, as already highlighted, the particle
sample work sharing parallelization strategy on its own may lead to increase of memory contention for a large number
of cores sharing the same sample; second, the sparse grid reconstructions offer a more favorable trade-off between
memory accesses and compute operations, resulting in an increased arithmetic intensity. Indeed the charge of one
particle is deposited onto each component grid, the array used to store these grids being nursed in the first level of the
cache memory, the contention of the RAM is alleviated and the scalability of Sparse-PIC algorithms is favored.

The same conclusions than in the uniformmemory architecture case can be drawn for the pusher andfield interpolation
steps. The scalability of the pusher is limited by the number of memory channels, and thus increases with the number
of NUMA domains used. The scalability of the resolution of Poisson is deteriorated by the load imbalance between the
grids (complexity, anisotropy).

5. Conclusions

In this paper, we have proposed parallelization strategies tailored to Sparse-PIC methods on shared memory archi-
tectures. The better control of the statistical error offered by Sparse-PIC reconstructions permits a substantial reduction
of the number of particles (up to 3 orders of magnitude). Conversely, the interactions of one particle (restricted to
the density projection for the algorithm implementing the hierarchization), shall be computed for tens to more than
one hundred component grids containing a very small number of nodes. Compared to standard PIC methods these
features bring significant changes in the ranking of the most consuming steps of the algorithm. The Poisson problem is
discretized on each of the component grid issuing linear system of tiny sizes which dramatically reduces the memory
footprint as well as the computational effort attached to the electric potential approximation. The reduced number of
particles, in addition to reduce massively the memory consumption, lowers the computational cost of the particle pusher
to a marginal contribution. In the end, the very majority of the computations are dedicated to the projection of the
particle properties onto the component grids. These operations are arithmetic intensive. The strategy proposed within
this paper takes profits of the particularly reduced footprint of the arrays storing each of the component grids. These
small arrays are entirely nursed in the first cache level of memory, providing fast access to non contiguous addresses,
thus removing the mandatory particle sorting used in standard PIC methods. The genuine parallelism of sparse grid
reconstructions permits an implementation with a scalability close to optimal (the efficiency reaches 126/128 on 128
cores) providing speed-ups of the global algorithms up to 100 on 128 cores.

From the numerical investigations carried out in this paper, it is manifest that the mean number of particle per cell
(%2) does not furnish an accurate estimator of the noise reduction. The reduction of the number of particles within
Sparse-PIC methods may be significantly strenghen to obtain a comparable numerical noise to that of standard PIC
methods. Therefore, the mathematical analysis of the statistical error within the sparse grid scheme and the number of
particles required to guarantee an equivalent noise in both schemes shall be part of further works.

Acknowledgements

Clément Guillet benefits from a Université de Toulouse/Région Occitanie PhD grant.
This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union
via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union
or the European Commission. Neither the European Union nor the European Commission can be held responsible for
them.
This work has been supported by a public grant from the “Laboratoire d’Excellence Centre International de Math-
ématiques et d’Informatique” (LabEx CIMI) overseen by the French National Research Agency (ANR) as part of
the “Investissements d’Avenir” program (reference ANR-11-LABX-0040) in the frame of the PROMETEUS project
(PRospect of nOvel nuMerical modEls for elecTric propulsion and low tEmperatUre plaSmas).
Support from the FrFCM (Fédération de recherche pour la Fusion par Confinement Magnétique) in the frame of the
SPARCLE project (SParse grid Acceleration for the paRticle-in-CelL mEthod) is also acknowledged.
Jacek Narski was supported by the ANR project MUFFIN (ANR-19-CE46-0004).
This work was granted access to the HPC resources of CALMIP supercomputing center under the allocation 2022-
2022-1125.
Clément Guillet is grateful to Pierre Jolivet for his advice and fruitful discussions.

24 EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES

References
[1] P.R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM

Journal on Matrix Analysis and Applications, 23(1):15–41, 2001.
[2] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown, Peter Brune, Kris Buschelman, Emil M. Constantinescu,

Lisandro Dalcin, Alp Dener, Victor Eijkhout, William D. Gropp, Václav Hapla, Tobin Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik,
Matthew G. Knepley, Fande Kong, Scott Kruger, Dave A. May, Lois Curfman McInnes, Richard Tran Mills, Lawrence Mitchell, Todd Munson,
Jose E. Roman, Karl Rupp, Patrick Sanan, Jason Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang, Hong Zhang, and Junchao Zhang.
PETSc Web page. https://petsc.org/, 2022.

[3] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient management of parallelism in object oriented numerical
software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–202.
Birkhäuser Press, 1997.

[4] Yann Barsamian, Arthur Charguéraud, Sever A. Hirstoaga, and Michel Mehrenberger. Efficient Strict-Binning Particle-in-Cell Algorithm for
Multi-core SIMD Processors. In Marco Aldinucci, Luca Padovani, and Massimo Torquati, editors, Euro-Par 2018: Parallel Processing, volume
11014, pages 749–763. Springer International Publishing, Cham, 2018. Series Title: Lecture Notes in Computer Science.

[5] Yann Barsamian, Sever A. Hirstoaga, and Eric Violard. Efficient Data Structures for a Hybrid Parallel and Vectorized Particle-in-Cell Code.
In 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 1168–1177, Lake Buena Vista, FL,
May 2017. IEEE.

[6] Yann Barsamian, Sever A. Hirstoaga, and Eric Violard. Efficient data layouts for a three-dimensional electrostatic Particle-in-Cell code. Journal
of Computational Science, 27:345–356, July 2018.

[7] A. Beck, J. Derouillat, M. Lobet, A. Farjallah, F. Massimo, I. Zemzemi, F. Perez, T. Vinci, and M. Grech. Adaptive SIMD optimizations in
particle-in-cell codes with fine-grain particle sorting. Computer Physics Communications, 244:246–263, November 2019.

[8] Charles K Birdsall and Dieter Fuss. Clouds-in-clouds, clouds-in-cells physics for many-body plasma simulation. Journal of Computational
Physics, 3(4):494–511, April 1969.

[9] C.K. Birdsall and A.B Langdon. Plasma Physics via Computer Simulation. CRC Press, 0 edition, October 1985.
[10] H.-J. Bungartz, M. Griebel, D. Röschke, and C. Zenger. Pointwise Convergence Of The Combination Technique For Laplace’s Equation.

East-West J. Numer. Math, 2:21–45, 1994.
[11] Hans-Joachim Bungartz. Finite elements of higher order on sparse grids. Berichte aus der Informatik. Shaker, Aachen, als ms. gedr edition,

1998.
[12] Hans-Joachim Bungartz and Stefan Dirnstorfer. Higher Order Quadrature on Sparse Grids. In Takeo Kanade, Josef Kittler, Jon M. Kleinberg,

Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos,
Dough Tygar, Moshe Y. Vardi, Gerhard Weikum, Marian Bubak, Geert Dick van Albada, Peter M. A. Sloot, and Jack Dongarra, editors,
Computational Science - ICCS 2004, volume 3039, pages 394–401. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. Series Title: Lecture
Notes in Computer Science.

[13] Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta Numerica, 13:147–269, May 2004.
[14] G.-H. Cottet and P.-A. Raviart. Particle methods for the one-dimensional vlasov-poisson equations. SIAM J. Numer. Anal., 21(1):52–76,

February 1984.
[15] G. H. Cottet and P. A. Raviart. On particle-in-cell methods for the vlasov-poisson equations. Transport Theory and Statistical Physics, 15(1-

2):1–31, February 1986.
[16] Pierre Degond, Fabrice Deluzet, and David Doyen. Asymptotic-preserving Particle-In-Cell methods for the Vlasov-Maxwell system near

quasi-neutrality. arXiv:1509.04235 [physics], September 2015. arXiv: 1509.04235.
[17] F. Deluzet, G. Fubiani, L. Garrigues, C. Guillet, and J. Narski. Sparse grid reconstructions for particle-in-cell methods. Submitted, 2022.
[18] R.E. Denton and M. Kotschenreuther. {delta}f Algorithm. Technical Report DOE/ET/53088–629, IFSR–629, 10105190, nov 1993.
[19] J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé, G. Bouchard, I. Plotnikov, N. Aunai, J. Dargent, C. Riconda, and

M. Grech. Smilei : A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation. Computer Physics Communications,
222:351–373, January 2018.

[20] Jochen Garcke. Sparse Grids in a Nutshell. In Jochen Garcke and Michael Griebel, editors, Sparse Grids and Applications, volume 88, pages
57–80. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. Series Title: Lecture Notes in Computational Science and Engineering.

[21] L. Garrigues, G. Fubiani, and J.P. Boeuf. Negative ion extraction via particle simulation for fusion: critical assessment of recent contributions.
Nucl. Fusion, 57(1):014003, January 2017.

[22] L. Garrigues, B. Tezenas du Montcel, G. Fubiani, F. Bertomeu, F. Deluzet, and J. Narski. Application of sparse grid combination techniques
to low temperature plasmas particle-in-cell simulations. I. Capacitively coupled radio frequency discharges. Journal of Applied Physics,
129(15):153303, April 2021.

[23] L. Garrigues, B. Tezenas du Montcel, G. Fubiani, and B. C. G. Reman. Application of sparse grid combination techniques to low temperature
plasmas Particle-In-Cell simulations. II. Electron drift instability in a Hall thruster. Journal of Applied Physics, 129(15):153304, April 2021.

[24] Salimou Gassama, Eric Sonnendrücker, Kai Schneider, Marie Farge, and Margarete O. Domingues. Wavelet denoising for postprocessing of a
2D Particle - In - Cell code. ESAIM: Proc., 16:195–210, 2007.

[25] Michael Griebel. The combination technique for the sparse grid solution of pde’s on multiprocessor machines. Parallel Process. Lett., 02(01):61–
70, March 1992. Publisher: World Scientific Publishing Co.

[26] Michael Griebel. Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing, 61(2):151–179, June 1998.
[27] Michael Griebel and Jan Hamaekers. Sparse grids for the Schrödinger equation. ESAIM: M2AN, 41(2):215–247, March 2007.
[28] Mario Heene. A massively parallel combination technique for the solution of high-dimensional PDEs. 2018. Publisher: Universität Stuttgart.
[29] M. Hegland. Adaptive sparse grids. ANZIAMJ, 44:335, April 2003.
[30] R Hockney and J Eastwood. Computer Simulation Using Particles. Taylor & Francis, January 1988.
[31] Philipp Hupp. Performance of Unidirectional Hierarchization for Component Grids VirtuallyMaximized. Procedia Computer Science, 29:2272–

2283, 2014.

https://petsc.org/

EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES 25

[32] Philipp Hupp and Riko Jacob. A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm. In Jochen Garcke and Dirk Pflüger,
editors, Sparse Grids and Applications - Stuttgart 2014, volume 109, pages 103–132. Springer International Publishing, Cham, 2016. Series
Title: Lecture Notes in Computational Science and Engineering.

[33] Riko Jacob. Efficient Regular Sparse Grid Hierarchization by a Dynamic Memory Layout. In Jochen Garcke and Dirk Pflüger, editors, Sparse
Grids and Applications - Munich 2012, volume 97, pages 195–219. Springer International Publishing, Cham, 2014. Series Title: Lecture Notes
in Computational Science and Engineering.

[34] Nicholas A. Krall, Alvin W. Trivelpiece, and Robert A. Gross. Principles of Plasma Physics. American Journal of Physics, 41(12):1380–1381,
December 1973.

[35] P. C. Liewer, V. K. Decyk, J. M. Dawson, and G. C. Fox. A universal concurrent algorithm for plasma particle-in-cell simulation codes. In
Proceedings of the third conference on Hypercube concurrent computers and applications -, volume 2, pages 1101–1107, Pasadena, California,
United States, 1988. ACM Press.

[36] Sriramkrishnan Muralikrishnan, Antoine J. Cerfon, Matthias Frey, Lee F. Ricketson, and Andreas Adelmann. Sparse grid-based adaptive noise
reduction strategy for particle-in-cell schemes. Journal of Computational Physics: X, 11:100094, June 2021.

[37] J. Petri. Non-linear evolution of the diocotron instability in a pulsar electrosphere: 2D PIC simulations. A&A, 503(1):1–12, August 2009.
arXiv: 0905.1076.

[38] Alexander A. Philippov and Anatoly Spitkovsky. AB INITIO PULSARMAGNETOSPHERE: THREE-DIMENSIONAL PARTICLE-IN-CELL
SIMULATIONS OF AXISYMMETRIC PULSARS. ApJ, 785(2):L33, April 2014.

[39] L F Ricketson and A J Cerfon. Sparse grid techniques for particle-in-cell schemes. Plasma Phys. Control. Fusion, 59(2):024002, February 2017.
[40] Stephen Russell and Niall Madden. An Introduction to the Analysis and Implementation of Sparse Grid Finite Element Methods. Computational

Methods in Applied Mathematics, 17(2):299–322, April 2017.
[41] Jie Shen andHaijun Yu. Efficient Spectral Sparse GridMethods andApplications to High-Dimensional Elliptic Problems. SIAM J. Sci. Comput.,

32(6):3228–3250, January 2010.
[42] Igor Surmin, Sergey Bastrakov, Zakhar Matveev, Evgeny Efimenko, Arkady Gonoskov, and Iosif Meyerov. Co-design of a Particle-in-Cell

Plasma Simulation Code for Intel Xeon Phi: A First Look at Knights Landing. In Jesus Carretero, Javier Garcia-Blas, Victor Gergel, Vladimir
Voevodin, Iosif Meyerov, Juan A. Rico-Gallego, Juan C. Díaz-Martín, Pedro Alonso, Juan Durillo, José Daniel Garcia Sánchez, Alexey L.
Lastovetsky, Fabrizio Marozzo, Qin Liu, Zakirul Alam Bhuiyan, Karl Fürlinger, Josef Weidendorfer, and José Gracia, editors, Algorithms and
Architectures for Parallel Processing, volume 10049, pages 319–329. Springer International Publishing, Cham, 2016. Series Title: Lecture
Notes in Computer Science.

[43] William Tang, Bei Wang, Stephane Ethier, Grzegorz Kwasniewski, Torsten Hoefler, Khaled Z. Ibrahim, Kamesh Madduri, Samuel Williams,
LeonidOliker, Carlos Rosales-Fernandez, and TimWilliams. Extreme Scale PlasmaTurbulence Simulations on Top SupercomputersWorldwide.
In SC16: International Conference for High Performance Computing, Networking, Storage and Analysis, pages 502–513, Salt Lake City, UT,
USA, November 2016. IEEE.

[44] D. Tskhakaya and R. Schneider. Optimization of PIC codes by improved memory management. Journal of Computational Physics, 225(1):829–
839, July 2007.

[45] H. Vincenti, M. Lobet, R. Lehe, R. Sasanka, and J.-L. Vay. An efficient and portable SIMD algorithm for charge/current deposition in
Particle-In-Cell codes. Computer Physics Communications, 210:145–154, January 2017.

Appendix A. Appendix

proof of proposition 2.2. From the hierarchical basis representation of functions, it holds:

ΦC= =
∑
l∈!
2l�
H
+ℎl
Φℎl

=
∑
l∈!
2l
∑
k≤l

∑
i∈Bℎk

Uk,iiℎk ,i

=
∑
l∈!
2l

∑
|k |∞≤=

∑
i∈Bℎk

Vk,iiℎk ,i, where Vk,i =
{
Uk,i if k ≤ l,
0 else.

=
∑
|k |∞≤=

∑
i∈Bℎk

(∑
l∈!
2lVk,j

)
iℎk ,i.

�

Let us introduce the transformation from the nodal basis to the hierarchical basis in matrix formulation. Let
αl = (Uk,i)i∈Bℎk ,k≤l, �l = (Φℎl (jℎl))i∈�ℎl ∈

⊗3

9=1 R
2; 9 +1 be vectors with coordinates arranged in ascending order

according to their global position in each dimension, which are of the same size because of the definitions of Bℎl and
�ℎl . The hierarchization can thus be written as follows:

αl =Hl�l, Hl =

©«
H;1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 H;3

ª®®®®®¬
, H; =H

(;−1)
;

...H
(1)
;

(47)

26 EFFICIENT PARALLELIZATION FOR 3D-3V SPARSE GRID PARTICLE-IN-CELL: SHARED MEMORY SYSTEMS ARCHITECTURES

where H (:)
;
∈ M2;+1 (R), : ∈ {1, ..., ; − 1} is defined by:

(H (:)
;
)8, 9 =

1 if 9 = 8
1
2 if 9 = 8 ± 2:−1 and 8 ∈ 2:Z/{0, 2;}
0 else

.(48)

	1. Introduction
	2. Particle-In-Cell and sparse grid reconstructions
	2.1. Notations
	2.2. Particle-In-Cell scheme
	2.3. Sparse grid reconstructions

	3. Parallelization
	3.1. A non exhaustive overview of optimizations and parallelizations of PIC methods on shared memory architectures
	3.2. Sparse-PIC parallelization

	4. Numerical results
	4.1. Sequential performance
	4.2. Parallelization on uniform memory architecture
	4.3. Parallelization on NUMA architecture

	5. Conclusions
	Acknowledgements
	References
	Appendix A. Appendix

