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Practical consensus tracking of homogeneous sampled-data multi-agent systems

The aim of this article is to study the robustness of homogeneous sampled-data multi-agent systems including a leader whose dynamic evolution is independent of its followers. We explore the effects caused simultaneously by the sampling and the acceleration of the leader on the system, and show that practical consensus is achieved in this case. The results are illustrated in simulations.

I. INTRODUCTION

The multi-agent consensus control has been a wide field of study in these two last decades [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF], [START_REF] Ren | Distributed coordination of multi-agent networks: emergent problems, models, and issues[END_REF], [START_REF] Bhatia | Stability theory of dynamical systems[END_REF]. A lot of articles focus on sampled-data multi-agents systems (MAS) which involve wireless communications, see for instance [START_REF] Ge | A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems[END_REF], [START_REF] Oh | A survey of multi-agent formation control: Position-, displacement-, and distance-based approaches[END_REF], [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF] and the references therein. Various frameworks have been considered in order to study consensus of MAS: considering centralized [START_REF] Dimuro | Exchange values and self-regulation of exchanges in multi-agent systems: the provisory, centralized model[END_REF] or decentralized [START_REF] De Gennaro | Decentralized control of connectivity for multi-agent systems[END_REF], [START_REF] Claes | A decentralized approach for anticipatory vehicle routing using delegate multiagent systems[END_REF] approach, fixed or switching topology [START_REF] Gao | Consensus of multi-agent systems based on sampled-data control[END_REF], [START_REF] Qin | Stationary consensus of asynchronous discrete-time second-order multi-agent systems under switching topology[END_REF], [START_REF] Hong | Tracking control for multi-agent consensus with an active leader and variable topology[END_REF], including communication time-delays [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF], using synchronous [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF], [START_REF] Nesic | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF] or asynchronous sampling [START_REF] Cao | Agreeing asynchronously[END_REF], [START_REF] Qin | Stationary consensus of asynchronous discrete-time second-order multi-agent systems under switching topology[END_REF], [START_REF] Fang | Information consensus of asynchronous discrete-time multi-agent systems[END_REF], dealing with finite-time consensus [START_REF] Wang | Finite-time consensus for multi-agent networks with second-order agent dynamics[END_REF], [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF]. With linear control laws, consensus of sampled-data MAS with synchronous sampling is ensured within a limited framework [START_REF] Gao | Consensus of multi-agent systems based on sampled-data control[END_REF]: indeed, consensus is lost when a sampling time limit, called the Schur threshold, is reached. For more details on the stability of systems with aperiodic sampling and the Schur property, readers may refer to [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF]. In order to overcome this difficulty, it is possible to use nonlinear homogeneous systems [START_REF] Polyakov | Generalized Homogeneity in Systems and Control[END_REF]. Homogeneity [START_REF] Kawski | Geometric homogeneity and stabilization[END_REF] is a powerful tool which allows to maintain the Lyapunov stability of systems with sampled-data inputs even with a high sampling period [START_REF] Bernuau | Stability of homogeneous nonlinear systems with sampled-data inputs[END_REF], [START_REF]Stability of discontinuous homogeneous nonlinear sampleddata systems[END_REF]. The main drawback of such a technique is that we lose asymptotic stability and we arrive at practical stability instead. A previous study in [START_REF] Bernuau | Practical consensus of homogeneous sampled-data multi-agent systems[END_REF] showed that practical consensus is achieved for a homogeneous sampled-data MAS with a negative homogeneity degree in a synchronous sampling framework. This study is formulated as an application of the theoretical and more general case originated from [START_REF] Bernuau | Stability of homogeneous nonlinear systems with sampled-data inputs[END_REF], which encompasses the broader field of control networks. According to [START_REF] Bernuau | Stability of homogeneous nonlinear systems with sampled-data inputs[END_REF], it turns out that, F. Josse and E. Moulay are with XLIM (UMR CNRS 7252), Université de Poitiers, 11 bd Marie et Pierre Curie, 86962 Futuroscope Chasseneuil Cedex, France (e-mail: florence.josse@univ-poitiers.fr, emmanuel.moulay@univpoitiers.fr).

E. for positive degree, we can obtain local asymptotic stability; however, in practice, the convergence zone is too small to be useful and consequently are not of practical interest. In order to pursue the work made in [START_REF] Bernuau | Stability of homogeneous nonlinear systems with sampled-data inputs[END_REF], the results in [START_REF] Josse | Robustness of sampled-data homogeneous systems[END_REF] deal with the robustness of homogeneous sampleddata systems on which an external disturbance is applied. This study reveals that the external disturbance and the perturbation due to sampling affect the system separately, and their combined influence does not change the intrinsic behavior of the system, in contrast to the results obtained in [START_REF] Bernuau | Stability of homogeneous nonlinear systems with sampled-data inputs[END_REF]. Indeed, practical convergence is maintained, while the difference lies in the size of the practical convergence zone. This size depends on both the sampling rate and the maximum intensity of the external disturbance. The aim of this article is to apply the theoretical results obtained in [START_REF] Josse | Robustness of sampled-data homogeneous systems[END_REF] to the case of MAS. We consider a homogeneous sampleddata MAS with synchronous sampling constituted by agents following a leader whose dynamics is independent of them. This configuration fits exactly with the case studied in [START_REF] Josse | Robustness of sampled-data homogeneous systems[END_REF], since the acceleration of the leader can be considered as an external disturbance applied on the systems. We expect to have a larger attractive set than in [START_REF] Bernuau | Practical consensus of homogeneous sampled-data multi-agent systems[END_REF], since we take into account the influence of both endogenous (due to sampling) and exogenous perturbations (due to the leader).

This paper is organized as follows. After preliminaries given in Section II, the main result is stated in Section III, which consists of applying the main theorem of [START_REF] Josse | Robustness of sampled-data homogeneous systems[END_REF] to MAS. Then some simulations illustrate the consensus tracking by varying the sampling rate and the acceleration of the leader in Section IV. Finally, a conclusion is reached in Section V.

II. PRELIMINARIES

Below let us introduce several notations used in the paper. 

• R + = {x ∈ R : x ≥ 0},
n = (1, 1, . . . , 1) T ∈ R n and ∆ n = Span(1 n ) ⊂ R n . • r = (r 1 , r 2 , . . . , r n ) is called a generalized weight if its
components are positive numbers.

• Diag(r 1 , . . . , r n ) denotes the diagonal matrix of dimension n × n with kth diagonal entry r k . • For x = (x 1 , . . . , x n ) T and α > 0, we denote

x α = (|x 1 | α sign(x 1 ), . . . , |x n | α sign(x n )). • If A is a m × n matrix
and B is a p × q matrix, then the Kronecker product A ⊗ B is the mp × nq matrix

A ⊗ B =    a 11 B • • • a 1n B . . . . . . . . . a n1 B • • • a nn B    .
• I n denotes the unit matrix of size n.

• A continuous function α : R + → R + belongs to the class K if α(0) = 0 and the function is strictly increasing. A function α : R + → R + belongs to the class K ∞ if α ∈ K and it is unbounded.

• A continuous function β : R + × R + → R + belongs to the class KL if β(•, t) ∈ K ∞ for each fixed t ∈ R + and if for each fixed s ∈ R + the function t → β(s, t)
is decreasing to 0.

A. Graph theory

Let us recall some basic definitions in graph theory given for instance in [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF]Appendix B].

A directed graph

G N = (V N , E N ) consists of a finite nonempty set of nodes V N = {1, 2, . . . , N } and a set of edges E N ⊂ V N × V N which is a set of ordered pairs of nodes. An edge (i, j) ∈ E N in a directed graph G N denotes that node i communicates with node j, but not conversely. An undirected graph G N = (V N , E N ) also consists of a set of nodes V N = {1, . . . , N } and a set of edges E N ⊂ V N × V N
which is an unordered set of pairs of nodes. An edge (i, j) ∈ E N in an undirected graph G N denotes that nodes i and j obtain information from each other. An undirected path is a sequence of edges in an undirected graph of the form (i 1 , i 2 ), (i 2 , i 3 ),• • • . An undirected graph is connected if there is an undirected path between every pair of distinct nodes.

The adjacency matrix of an undirected graph

(V N , E N ) is defined by A N = [a ij ] ∈ R N ×N where a ij = a ji = 1 if (i, j) ∈ E N
and a ij = 0 otherwise. The Laplacian matrix associated with adjacency matrix A N is given as

L N = [ ij ] ∈ R N ×N where ii = N j=1,j =i a ij and ij = -a ij if i = j.

B. Lyapunov stability

Consider the following system with continuous f

ẋ = f (x), x ∈ R n . (1) 
Let us recall the definitions of Lyapunov set stability given for instance in [START_REF] Bhatia | Stability theory of dynamical systems[END_REF] for compact sets.

Definition 1: A compact set C ⊂ R n is:

• stable w.r.t. the system (1) if for any ε > 0 there exists η > 0 such that for any maximal solution x(t) of ( 1), if there exists t 0 such that d C (x(t 0 )) < η, then x(t) is defined for all t ≥ t 0 and d C (x(t)) < ε for all t ≥ t 0 ; • locally attractive w.r.t. the system (1) if there exists ε > 0 such that for any maximal solution x(t) of ( 1 

C. Homogeneity

The most common notion of homogeneity is the weighted homogeneity introduced in [START_REF] Rothschild | Hypoelliptic differential operators and nilpotent groups[END_REF], based on a particular choice of the coordinates, while the most generic one is the geometric homogeneity, which is coordinate free [START_REF] Polyakov | Generalized Homogeneity in Systems and Control[END_REF]. Here we place ourselves within the framework of weighted homogeneity.

Definition 2: Let A : R n → R n an endomorphism such that A is anti-Hurwitz. We say that a function

V : R n → R is A-homogeneous of degree d if V (exp(As)x) = e ds V (x), for all s ∈ R and x ∈ R n . A vector field f defined on R n is A-homogeneous of degree d if f (exp(As)x) = e ds exp(As)f (x), for all s ∈ R and x ∈ R n .
Let us now give the definition of a homogeneous norm detailed for instance in [START_REF] Bernuau | Stability of homogeneous nonlinear systems with sampled-data inputs[END_REF].

Definition 3: A A-homogeneous norm is a positive definite and continuous mapping N : R n → R that is Ahomogeneous of degree 1.

Lemma 1: [START_REF]Stability of discontinuous homogeneous nonlinear sampleddata systems[END_REF] Let A be an anti-Hurwitz matrix and N any A-homogeneous norm. Then there exist K ∞ functions α 1 and α 2 such that for all x ∈ R n , we have α 1 (N (x)) ||x|| 2 α 2 (N (x)).

D. Technical result

Let us recall Theorem 1 of [START_REF] Josse | Robustness of sampled-data homogeneous systems[END_REF] used in the following for proving the main result of the article.

We consider the following nonlinear system:

ẋ = f (x, u, d) (2) 
where x ∈ R n is the state, u ∈ R m is the control, d : t → d(t) ∈ R p indicates the perturbation, which is supposed to be essentially bounded and f : R n × R m × R p → R n a continuous function. We consider that a continuous static feedback law u(x) is known for which the following two assumptions hold. Assumption 1: The origin is a globally asymptotically stable equilibrium of the closed-loop system ẋ = f (x, u(x), 0).

Assumption 2: There exist a matrix A ∈ R n×n and a matrix A ∈ R p×p such that A and A are anti-Hurwitz (that is, -A and -A are Hurwitz) and a degree κ < 0 such that f (e As x, u(e As z), e As d) = e κs e As f (x, u(z), d) for all x, z ∈ R n , d ∈ R p and all s ∈ R.

Remark that Assumption 2 is a homogeneity assumption, meaning that the system must have a specific structure. In practice, this assumption can be ensured by a careful selection of the control law, as we will see later.

Since in networked communication, the state information is only updated at discrete time instants, we consider a sequence of sampling times (t k ) k∈N such that t 0 = 0, and a maximum sampling period h > 0 and

0 < t k+1 -t k h. (3) 
Due to the sampling, the control is now u SD (t) = u(x(t k )) for all t ∈ [t k , t k+1 ) (sample and hold). The system can therefore be rewritten under the following form

ẋ(t) = f (x(t), u(x(t k )), d(t)), t ∈ [t k , t k+1 ). ( 4 
)
Theorem 1 ( [START_REF] Josse | Robustness of sampled-data homogeneous systems[END_REF]): Assume that the sampled system ( 4) is such that the sampling times satisfy (3) and Assumptions 1 and 2 hold. Consider N as any A-homogeneous norm and N as any A-homogeneous norm. Then there exist constants c 1 > 0, c 2 > 0 such that the set 

x ∈ R n : N (x) c 1 h -1 κ + c 2 d
N (x) ≤ β (N (x 0 ), t) + c 1 h -1 κ + c 2 d max .

III. MAIN RESULT

We consider a MAS constituted by a leader and N followers whose dynamics are described by a double integrator. The goal of the followers is to reach the leader, but the leader follows a trajectory independent of the followers. We assume that the leader sends its position and velocity data to at least one follower. We also assume that a special control law for the followers is already known and proven to achieve consensus tracking in continuous time. However, due to networked communication, the control laws for the N followers must be sampled. Hence, the agents send position and velocity data to the neighbors at some discrete instants according to a connected and static graph. Our aim is to show that the sampled MAS achieves practical consensus tracking under suitable assumptions. For this purpose, we shall apply Theorem 1.

We denote the leader's dynamics by

q0 = p 0 ṗ0 = u 0 (5) 
where q 0 ∈ R n indicates its position, p 0 ∈ R n its velocity, and u 0 ∈ R n its acceleration, which is supposed to be essentially bounded, that is ess sup

t∈R + ||u 0 (t)|| 2 < +∞. For i ∈ {1, .
. . , N }, we denote the ith agent's dynamics by:

qi = p i ṗi = u i (6) 
where q i ∈ R n indicates the position of agent i, p i ∈ R n its velocity, u i its control law, q = (q T 1 , . . . , q T N ) T , and p = (p T 1 , . . . , p T N ) T . Definition 4: We say that the MAS defined by ( 5) and ( 6) achieves practical consensus tracking if there exists a class KL function β and a constant C ≥ 0 such that x ≤ β( x 0 , t) + C, where x = ((q 1 -q 0 ) T , . . . , (q N -q 0 ) T , (p 1 -p 0 ) T , . . . , (p N -p 0 ) T ) T . If C = 0, we say that stable consensus tracking is achieved.

Remark 1: Consensus tracking is usually formulated as saying that, for any i ∈ {1, . . . , N }, q i -q 0 → 0 and p ip 0 → 0 when t → +∞. Definition 4 can be seen as a strengthened version of this classical formulation where the followers not only must asymptotically reach the leader but also have to do it in a stable way. Indeed, it is necessary that q i -q 0 ≤ x → 0 when t → ∞ but not sufficient. We assume that the control laws u i in ( 6) are sampled at times (t k ) k∈N such that (3) holds. We aim to show that consensus tracking is achieved for the MAS if the control laws u i satisfy the following assumptions: Assumption 3: For any i ∈ {1, . . . , N }, the control law u i depends only on q i -q j and on p i -p j for all j ∈ {0, . . . , N } such that agent i receives data from agent j.

Denoting qj = q j -q 0 and pj = p j -p 0 , Assumption 3 implies in particular that each control law u i only depends on q1 , . . . , qN , p1 , . . . , pN . Further on, we will denote q = qT 1 , . . . , qT N ∈ R nN and p = pT 1 . . . , pT N T ∈ R nN and we will write u i = u i (q, p) for the sake of clarity. Assumption 4: In continuous time, if u 0 = 0 then the control laws u i with i ∈ {1, . . . , N } applied to ( 5) and ( 6) achieve stable consensus tracking.

Assumption 5: There exists 1 2 < r < 1 such that for all s ∈ R and all i ∈ {1, . . . , N }, we have u i (e s q, e rs p) = e (2r-1)s u i (q, p) (7) Again, Assumption 5 is a homogeneity assumption.Let us now state the main result of this paper.

Theorem 2: We consider the MAS system given by ( 5) and [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF]. We assume that Assumptions 3-5 hold. We consider that the control laws u i are sampled at times (t k ) k∈N verifying (3). Let us denote x = qT , pT T and

A = 1 0 0 r ⊗ I nN , A = (2r -1)I nN .
A and A are both anti-Hurwitz. For all A-homogeneous norm N and A-homogeneous norm N , there exist constants c 1 > 0 and c 2 > 0 such that the compact set

K = x ∈ R 2nN : N (x) c 1 h -1 κ + c 2 d max
is globally asymptotically stable where h denotes the sampling time and d max = ess sup

t∈R + N (u 0 ⊗ 1 N ).
Proof:

We denote u(q, p) = (u 1 (q, p) T , . . . , u N (q, p) T ) T ∈ R nN . By subtracting system (5) to the N systems (6), we have:

q = p ṗ = u(q, p) -u 0 ⊗ 1 N (8) 
Let us denote f the right-hand side of (8):

f (x, u(x), d) = p u(x) + d with d = -u 0 ⊗ 1 N ∈ R nN . u 0 refers
to the acceleration of the leader, its influence on the system will be assimilated to an external disturbance. In order to apply Theorem 1, we need to check the two required assumptions.

First, we show that the origin is a globally asymptotically stable equilibrium for the closed-loop system ẋ = f (x, u(x), 0). This assertion is exactly equivalent to Assumption 4.

Second, we check the homogeneity condition (Assumption 2) for f . Denoting z = (ζ T , ξ T ) T ∈ R 2nN , we have:

f (e As x, u(e As z), e As d)

=

e rs p u(e s ζ, e rs ξ) -e (2r-1)s u 0 ⊗ 1 N = e rs p e (2r-1)s u(ζ, ξ) -e (2r-1)s u 0 ⊗ 1 N by Assumption 5

= e (r-1)s e s 0 0 e rs ⊗ I nN p u(ζ, ξ) -u 0 ⊗ 1 N = e (r-1)s e s 0 0 e rs ⊗ I nN f (x, u(z), d).
This shows that Assumption 2 holds for f with κ = r -1 < 0.

According to Theorem 1, we can conclude that there exists a class KL function β and constants c 1 , c 2 > 0 such that

N (x) ≤ β(N (x 0 , t)) + c 1 h -1 κ + c 2 d max .
Consequently, from Lemma 1, there exist class

K ∞ functions α 1 , α 2 such that x ≤ α 2 (β(α -1 1 ( x 0 ), t) + c 1 h -1 κ + c 2 d max ).
By usual operations on class K functions, we finally obtain practical consensus tracking.

Let us stress that this result holds for any value of the maximum allowable sampling time h > 0.

IV. SIMULATION RESULTS

In this section,we illustrate the performance of the proposed homogeneous control law through numerical simulations. We consider a second-order MAS in the form of ( 5) and ( 6), constituted by 5 followers and a leader, evolving on the plane, whose communication topology is given by Figure 1. We choose constant sampling periods t k = kh with h > 0, k ∈ N. We consider the following linear controller:

u i = - 5 j=1 a ij (q i -q j ) + d ii (q i -q 0 ) - 5 j=1 ij (p i -p j ) + d ii (p i -p 0 ) (9) 
with i ∈ {1, . . . , 5}, where d ii = 1 if the follower i has a direct link with the leader and d ii = 0 otherwise. Note that (9) allows the consensus of the MAS if and only if the leader acceleration is equal to zero. Otherwise, there is only practical consensus tracking. The Schur threshold h schur corresponding to control law ( 9) is equal to 0.48s. Let us now consider the homogeneous controllers from [START_REF] Zhao | Distributed finite-time tracking control for multi-agent systems: an observer based approach[END_REF] given by

u i = - 5 j=1 a ij (q i -q j ) + d ii (q i -q 0 ) α - 5 j=1 a ij (p i -p j ) + d ii (p i -p 0 )
2α 1+α [START_REF] Gao | Consensus of multi-agent systems based on sampled-data control[END_REF] with α = 0.5. We can check that Assumptions 2-5 are satisfied with a degree of homogeneity equal to -0.5. We denote q i = (q ix , q iy ) and p i = (p ix , p iy ) the positions and the velocities of the agents for all i ∈ {1, . . . , 5}. We suppose that the initial positions of the agents (q ix (0), q iy (0)) are contained in the square [-1, 1] × [-1, 1] and all the initial velocities of the agents (p ix (0), p iy (0)) are equal to zero. Initial conditions for the leader are q 0 = (0, 0) and p 0 = (0, 0). Let us denote u 0 = (u 0x , u 0y ) the acceleration of the leader. Figure 2 shows the reference acceleration u 0 (t) of the leader. The corresponding velocities never exceed 1.5 in absolute value. Case 1: the sampling time h is fixed to 0.01s. Figure 3a shows trajectories of each agent on the plane when the linear control law ( 9) is applied. The trajectories plotted in Figure 3b are obtained via the homogeneous control law [START_REF] Gao | Consensus of multi-agent systems based on sampled-data control[END_REF]. The coordinate units are given in meters. Figures 4a and4b represent the agents' positions versus time for the reference acceleration given in Figure 2 for both control laws. For the sampling time h = 0.01s, the effects of the discretization of the control are negligible. The practical consensus tracking is reached for both control laws. Only the perturbations due to the leader's accelerations impact the consensus tracking. Homogeneous control gives better results than linear control, in the sense that the trajectories of the agents are closer to the leader one.

Case 2: we consider now a sampling time h = 0.45s closer to h schur = 0.48s to highlight the effects of the discretization the control laws. As expected, the error between the trajectories of the agents and the leader increases as the sampling period increases. This error remains bounded in accordance with Theorem 2 when the homogeneous control law is applied. For the linear case, the system leans toward instability as h approaches h schur , see Figures 5a, 5b, 6a, and 6b. Case 3: the sampling period h = 0.6s is chosen greater than h schur = 0.48s. In Figures 7a and7b, the homogeneous control law is applied. It can be noted that the practical consensus tracking is achieved, although the tracking is less precise. The differences between the trajectories of the agents and the leader remain bounded whereas with the linear control law, the closed-loop system becomes unstable.

V. CONCLUSION

This article dealt with the consensus tracking of homogeneous sampled-data multi-agent systems. By using theoretical results dedicated to homogeneous sampled data systems, we proved a practical stability theorem for homogeneous sampled data multi-agent systems. Homogeneity ensures stability and convergence in the vicinity of the origin even for large sampling periods. The main result was applied to a second-order multi-agent system to show its effectiveness. 
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  where R is the set of real numbers. • | • | denotes the absolute value in R, ||.|| 2 the Euclidean norm on R n , for all p ∈ N * , ||.|| p the p-norm on R n and • ∞ the infinity norm on R n . • For any closed set Z ⊂ R n and any x ∈ R n , we denote d Z (x) = inf z∈Z x -z the distance between x and the closet set Z. • If t → x(t) is a curve in R n , we will say that x(t) → Z as t → +∞ when d

Z (x(t)) → 0 as t → +∞.

• We denote 1

  globally attractive w.r.t. the system (1) if it is locally attractive and if the previous point holds for any ε > 0; • locally (resp. globally) asymptotically stable w.r.t. the system (1) if it is stable and locally (resp. globally) attractive w.r.t. the system (1); • unstable if it is not stable.

), if there exists t 0 such that d C (x(t 0 )) < ε, then x(t) is defined for all t ≥ t 0 and d C (x(t)) → 0 when t → +∞; •

  max is globally asymptotically stable w.r.t. the system (2), where d max = ess sup t∈R

+ N (d(t)). Hence, there exists a class KL function β such that