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In this paper, we establish a new composition theorem for (ω, c)asymptotically periodic functions. Then, we use the Banach contraction principle to investigate the existence and uniqueness of (ω, c)-asymptotically periodic mild solutions to the fractional integro-differential equation u

where B(X) is a linear space of functions defined from (-∞, 0] -→ X and A is a closed but not necessarily bounded linear operator of sectorial type < 0.

Introduction

Let X be a Banach space with the norm • X , and let A : D(A) ⊆ X -→ X be a closed (not necessarily bounded) linear operator of sectorial type < 0. We consider the following semilinear fractional integro-differential equation:

       u (t) = 1 Γ(α -1) t 0 (t -τ ) α-2 Au(τ )dτ + F (t, u t ), t ≥ 0 u 0 = φ, (1) 
where 1 < α < 2, the Euler's Gamma function is given by Γ(σ) = ∞ 0 t σ-1 e -t dt for σ > 0, φ belongs to a space B(X) to be specified later, F : R + × B(X) -→ X is a jointly continuous function. For any u : R -→ X, the associated history function t -→ u t for t ≥ 0 is defined as

u t : (-∞, 0] -→ X θ -→ u t (θ) = u(t + θ).
One of the most attractive topics in qualitative theory is the study of the existence of periodic-type solutions to differential equations; this is due to the mathematics interest of qualitative theory and applications in many scientific fields, such as physics, biology and control theory. However, some phenomena in real world are not necessarily periodic, but rather asymptotically periodic.

A periodic function is a function that repeats its values at regular intervals, and is used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity (see for example [START_REF] Cazenave | Oscillatory phenomena associated to semilinear wave equations in one spatial dimension[END_REF]). Many authors have been interested in the concept of almost periodic functions and their applications (see [START_REF] Diagana | Almost automorphic type and almost periodic type functions in abstract spaces[END_REF][START_REF] Fink | Almost periodic differential equations[END_REF][START_REF] Kostić | Almost periodic and almost automorphic type solutions to integro-differential equations[END_REF][START_REF] Levitan | Almost periodic functions[END_REF][START_REF] Zaidman | Almost-periodic functions in abstract spaces[END_REF]). Recently in 2019, the concept of (ω, c)-asymptotically periodic functions was introduced by Edgardo Alvarez et al. [START_REF] Alvarez | ω, c)-Asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells[END_REF]. The authors proved that the set of such functions, denoted AP ωc (X) is a Banach space with the norm h aωc := sup t∈R + |c| ∧ (-t)h(t) X . A continuous function h is said to be (ω, c)-asymptotically periodic if it can be written as h = h 1 + h 2 , where h 1 is an (ω, c)-periodic function and h 2 is c-asymptotic. Prior to this new theory, the authors introduced in 2018 the notion of (ω, c)-periodicity [START_REF] Alvarez | Periodic functions and mild solutions to abstract fractional integro-differential equations[END_REF] and since then, it attracted many researchers.

In 2018, Mengmeng Li et al. [START_REF] Li | ω, c)-Periodic solutions for impulsive differential systems[END_REF] proved the existence of (ω, c)-periodic solutions for a nonhomogeneous linear impulsive system by constructing Green functions and adjoint systems, respectively. In the same paper, they studied the existence and uniqueness of (ω, c)-periodic solutions for a semilinear impulsive system via fixed point approach. Recently in 2020, Gisèle Mophou and Gaston M. N'Guérékata [START_REF] Mophou | An existence result of (ω, c)-periodic mild solutions to some fractional differential equation[END_REF] studied an existence result of (ω, c)-periodic mild solutions to some fractional differential equation with order 1 < α < 2. For more results on the (ω, c)-periodicity of solutions we refer to [START_REF] Abadias | Periodic mild solutions to nonautonomous abstract differential equations[END_REF][START_REF] Alvarez | ω, c)-Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells[END_REF][START_REF] Alvarez | ω, c)-Asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells[END_REF][START_REF] Kéré | Oueama-Guengai An existence result of (ω, c)-almost periodic mild solutions to some fractional differential equations[END_REF][START_REF] Liu | A new class of (ω, c)periodic non-instantaneous impulsive differential equations[END_REF][START_REF] Wang | Periodic solutions for time varying impulsive differential equations[END_REF] and the references therein.

In 2013, Gisèle Mophou et al. [START_REF] Mophou | Asymptotic behavior of mild solutions of some fractional functional integro-differential equations[END_REF] studied the asymptotically anti-periodic mild solutions to the fractional integro-differential equation (1) in Banach spaces.

For more results on the asymptotic behavior of solutions of some class of evolutionary systems, see [START_REF] Agarwal | El-Gebeily Asymptotic periodicity for some evolution equations in Banach spaces[END_REF][START_REF] Blot | S-Asymptotically ω-periodic functions and applications to evolution equations[END_REF][START_REF] Caicedo | Asymptotic periodicity for a class of partial integro-differential equations[END_REF][START_REF] Caicedo | Asymptotic behavior of solutions of some semilinear functional differential and integrodifferential equations with infinite delay in Banach spaces[END_REF][START_REF] Cushing | Forced asymptotically periodic solutions of predator-prey systems with or without hereditary effects[END_REF][START_REF] Dimbour | S-Asymptotically periodic solutions for partial differential equations with finite delay[END_REF][START_REF] Dimbour | S-Asymptotically ω-periodic solutions to some classes of partial evolution equations[END_REF][START_REF] Meril | Asymptotic behavior of bounded mild solutions of some functional differential and fractional differential equations[END_REF][START_REF] N'guérékata | Almost periodic and almost automorphic functions in abstract spaces[END_REF][START_REF] N'guérékata | An asymptotic theorem for abstract differential equations[END_REF][START_REF] N'guérékata | Existence and uniqueness of almost automorphic mild solutions to some semilinear abstract differential equations[END_REF][START_REF] N'guérékata | Quelques remarques sur les fonctions asymptotiquement presque-automorphes[END_REF][START_REF] Wei | Asymptotically periodic solution of N-species cooperation system with time delay[END_REF][START_REF] Zhongchao | Asymptotically periodic solutions of a class of second order nonlinear differential equations[END_REF]. The main purpose of this paper is to study the existence and uniqueness of (ω, c)asymptotically periodic mild solution for the system (1) where c ∈ C\{0} and ω > 0. When c = 1, we talk about ω-asymptotically periodicity and several results have been obtained in this case (see [START_REF] Amster | Periodic solutions in general scalar nonautonomous models with delays[END_REF][START_REF] Mawhin | Periodic solutions of nonlinear functional differential equations[END_REF][START_REF] Oueama-Guengai | On S-asymptotically ωperiodic and Bloch periodic mild solutions to some fractional differential equations in abstract spaces[END_REF]) whereas for c = -1, we have the asymptotically anti-periodicity, also widely studied (see [START_REF] Chen | Anti-periodic solutions for semilinear evolution equations[END_REF][START_REF] Haraux | Anti-periodic solutions of some nonlinear evolution equations[END_REF][START_REF] Mophou | Asymptotic behavior of mild solutions of some fractional functional integro-differential equations[END_REF]).

The rest of this paper is organized as follows. Section 2 is devoted to some preliminary results. In particular, we formalize the (ω, c)-asymptotically periodic functions and give some important properties. In Section 3, we establish some important propositions and use the Banach contraction principle to prove that there exists a unique (ω, c)-asymptotically periodic mild solution to the integro-differential equation [START_REF] Abadias | Periodic mild solutions to nonautonomous abstract differential equations[END_REF]. Finally, Section 4 concludes this work.

Some preliminary results

Throughout this paper, (X, • X ) will denote a complex Banach space. We denote by C(R, X) := {h : R -→ X such that h is continuous} the space of all X-valued continuous functions on R, BC(R, X) := {h : R -→ X such that h is bounded and continuous} the space of all X-valued bounded and continuous functions on R and we let

C 0 (X) := {h ∈ BC(R, X) such that lim t-→∞ h(t) = 0}.
In order to describe the phase space, we follow the idea of Gisèle Mophou et al. in [START_REF] Mophou | Asymptotic behavior of mild solutions of some fractional functional integro-differential equations[END_REF]. We denote by (B(X), • B(X) ) a seminormed linear space of functions defined from (-∞, 0] -→ X satisfying the following fundamental axioms due to Kato and Hale:

(P 1 ) If x : (-∞, T ] is continuous on [0, T ] and x 0 ∈ B(X), then for every t ∈ [0, T ] the following conditions hold:

(a) x t ∈ B(X) (b) x(t) X ≤ L x t B(X) (c) x t B(X) ≤ C 1 (t) sup τ ∈[0,t] x(τ ) X + C 2 (t) x 0 B(X) ,
where

L ≥ 0 is a constant, C 1 : [0, ∞) -→ [0, ∞) is continuous, C 2 : [0, ∞) -→ [0, ∞) is locally bounded and L, C 1 , C 2 are independent of x(•).
(P 2 ) For the function x(•) in (P 1 ), x t is a B(X)-valued continuous function on [0, T ].

(P 3 ) The space B(X) is complete.

Remark 1 Note that from (P 1 )-(b), we have that

x(0) X ≤ L x 0 B(X) . ( 2 
)
Definition 1 If x : R -→ X is a continuous function on [σ, ∞) with x σ ∈ B(X)
for some σ ∈ R such that x(t) X -→ 0 as t -→ ∞, then x t B(X) -→ 0 as t -→ ∞. In this case, B(X) is called a fading memory.

We recall the following definitions and results from M. Pinto et al. [START_REF] Alvarez | ω, c)-Asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells[END_REF][START_REF] Alvarez | Periodic functions and mild solutions to abstract fractional integro-differential equations[END_REF].

Definition 2 [5] A function h ∈ C(R, X) is said to be (ω, c)-periodic if there exist c ∈ C\{0} and ω > 0 such that h(t + ω) = ch(t) ∀ t ∈ R. (3) 
Remark 2 When (3) is satisfied, ω is called the c-period of h and we denote by P ωc (X), the collection of all functions h ∈ C(R, X) which are (ω, c)-periodic.

Endowed with the norm [START_REF] Alvarez | Periodic functions and mild solutions to abstract fractional integro-differential equations[END_REF]).

h ωc := sup t∈[0,ω] |c| ∧ (-t)h(t) X , P ωc (X) is a Banach space, where |c| ∧ (-t) = |c| -t/ω (see
We have the following result which give a characterization of an (ω, c)-periodic function.

Proposition 1 [START_REF] Alvarez | Periodic functions and mild solutions to abstract fractional integro-differential equations[END_REF] Let c ∈ C\{0} and ω > 0.

A function h ∈ C(R, X) is (ω, c)-periodic if and only if h(t) = c ∧ (t)v(t), (4) 
where c ∧ (t) = c t/ω and v ∈ P ω (X) is called the periodic part of h.

Before giving the definition of an (ω, c)-asymptotically periodic function, we need to define the so-called c-asymptotic function.

Definition 3 [4] Let c ∈ C\{0}. A function h ∈ C(R, X) is said to be c- asymptotic if c ∧ (-t)h(t) ∈ C 0 (X); that is, lim t-→∞ c ∧ (-t)h(t) = 0.
The collection of those functions will be denoted by C 0,c (X).

Definition 4 [4] Let c ∈ C\{0} and ω > 0. A function h ∈ C(R, X) is said to be (ω, c)-asymptotically periodic if h = h 1 + h 2 where h 1 ∈ P ωc (X) and h 2 ∈ C 0,c (X).
The collection of those functions (with the same period ω for the first component) will be denoted by AP ωc (X).

Endowed with the norm

h aωc := sup t∈R + |c| ∧ (-t)h(t) X , (5) 
AP ωc (X) is a Banach space, where |c| ∧ (-t) = |c| -t/ω (see [START_REF] Alvarez | ω, c)-Asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells[END_REF]).

As for the (ω, c)-periodic function, we have the following characterization of an (ω, c)-asymptotically periodic function.

Proposition 2 [4] Let c ∈ C\{0} and ω > 0. A function h ∈ C(R, X
) is said to be (ω, c)-asymptotically periodic if and only if

h(t) = c ∧ (t)v(t), (6) 
where c ∧ (t) = c t/ω and v ∈ AP ωc (X).

We recall the following results on the Nemytskii's superposition operator on (ω, c)-periodic functions obtained in [START_REF] Alvarez | Periodic functions and mild solutions to abstract fractional integro-differential equations[END_REF].

Theorem 1 Let F : R × X -→ X be a continuous function and (ω, c) ∈ R + × (C\{0}) given. For ϕ ∈ P ωc (X), if N (ϕ)(•) = F (•, ϕ(•))
denotes the Nemytskii's superposition operator, then the following are equivalent:

(i) For every ϕ ∈ P ωc (X) we have that N (ϕ) ∈ P ωc (X);

(ii) F (t + ω, cx) = cF (t, x) for all (t, x) ∈ R × X.
Then, we state and prove the following result.

Theorem 2 Let F : R × B(X) -→ X be a continuous function such that

(H 1 ) ∃(ω, c) ∈ R + × (C\{0}) such that F (t + ω, cx) = cF (t, x) for all (t, x) ∈ R × B(X); (H 2 ) ∃K > 0 such that F (t, x) -F (t, y) X ≤ K x -y B(X) for all (t, x, y) ∈ R × B(X) × B(X). Then N (AP ωc (B(X))) ⊂ AP ωc (X), (7) 
where

N (ϕ)(•) := F (•, ϕ(•))
denotes the Nemytskii's superposition operator.

Proof. Let ϕ ∈ AP ωc (B(X)). Then there exist ϕ 1 ∈ P ωc (B(X)) and ϕ 2 ∈ C 0,c (B(X)) such that ϕ = ϕ 1 + ϕ 2 . We note that

N (ϕ)(•) = N (ϕ 1 )(•) + N (ϕ)(•) -N (ϕ 1 )(•). ( 8 
)
According to the hypothesis (H 2 ) we have:

c ∧ (-t) (N (ϕ)(t) -N (ϕ 1 )(t)) X = |c ∧ (-t)| (F (t, ϕ(t)) -F (t, ϕ 1 (t))) X ≤ K |c ∧ (-t)| ϕ(t) -ϕ 1 (t) B(X) = K c ∧ (-t)ϕ 2 (t) B(X) -→ 0 as t -→ ∞ because ϕ 2 ∈ C 0,c (B(X)). So, lim t-→∞ c ∧ (-t) (N (ϕ)(t) -N (ϕ 1 )(t)) = 0 and we deduce that N (ϕ)(•) -N (ϕ 1 )(•) ∈ C 0,c (X). (9) 
In addition, according to Theorem 1 we have

N (ϕ 1 )(•) ∈ P ωc (X). ( 10 
)
Hence, from ( 8), ( 9) and ( 10) we deduce that N (ϕ)(•) ∈ AP ωc (X) and this concludes the proof of our theorem. Now, let's recall some definitions of sectorial type operator and its generated solution operator.

Definition 5 [START_REF] Cuesta | Asymptotic behaviour of the solutions of fractional integrodifferential equations and some time discretizations[END_REF] A closed linear operator A with domain D(A) dense in a Banach space (X, • X ) is said to be sectorial of type and angle θ if there exist constants , M > 0 and an angle θ ∈ 0, π 2 such that its resolvent exists outside the sector

+ S θ := {λ + such that λ ∈ C and |arg(-λ)| < θ} , (11) 
(λ -A) -1 X ≤ M |λ -| , λ / ∈ + S θ . (12) 
Definition 6 [START_REF] Cuesta | Asymptotic behaviour of the solutions of fractional integrodifferential equations and some time discretizations[END_REF] Let α > 0 and A be a closed linear operator densely defined in X. Let ρ(A) be the resolvent set of A. Then A is called the generator of a solution operator if there exist ∈ R and a strongly continuous function

E α : R + -→ B(X) such that {λ α : Reλ > } ⊂ ρ(A) and λ α-1 (λ α -A) -1 x = ∞ 0 e -λt E α (t)xdt, Reλ > , x ∈ X. ( 13 
)
In this case, E α is called the solution operator generated by A.

If we assume that A is sectorial with

0 ≤ θ ≤ π 1 - α 2 
, then A is the generator of the following solution operator:

E α (t) = γ e λt λ α-1 (λ α -A) -1 dλ, t ≥ 0, ( 14 
)
where γ is a suitable path outside the sector + S θ .

Proposition 3 [START_REF] Cuesta | Asymptotic behaviour of the solutions of fractional integrodifferential equations and some time discretizations[END_REF] Let 1 < α < 2 and let A : D(A) ⊂ X -→ X be a sectorial operator in a complex Banach space (X, • X ), satisfying [START_REF] Chen | Anti-periodic solutions for semilinear evolution equations[END_REF] and ( 12) for some

M > 0, < 0 and 0 ≤ θ < π 1 - α 2 .
Then there exists Λ(θ, α) > 0 depending only on θ and α such that

E α (t) L(X) ≤ Λ(θ, α)M 1 + | |t α , t ≥ 0. ( 15 
)
To prove the existence and uniqueness of (ω, c)-asymptotically periodic solution to (1), we use the following fixed-point theorem.

Theorem 3 [START_REF] Granas | Fixed point theory[END_REF][START_REF] Smart | Fixed point theorems[END_REF] (Banach contraction principle) Assume (U, d) to be a complete metric space, let 0 ≤ K < 1 and let the mapping

F : U -→ U satisfy the inequality d(F u, F v) ≤ Kd(u, v) for every u, v ∈ U.
Then, F has a unique fixed point; that is, there exists a unique u * ∈ U such that F u * = u * . Furthermore, for any u 0 ∈ U , the sequence F j u 0 ∞ j=1 converges to the fixed point u * .

Existence and uniqueness result

In this section, we give the definition of a mild solution to problem (1) and prove under suitable assumptions via the Banach contraction principle that (1) has a unique (ω, c)-asymptotically periodic solution.

Definition 7 [START_REF] Mophou | Asymptotic behavior of mild solutions of some fractional functional integro-differential equations[END_REF] A function u ∈ BC(R, X) is said to be a mild solution to problem (1) if it satisfies the following:

u(t) =    E α (t)φ(0) + t 0 E α (t -τ )F (τ, u τ )dτ, t ∈ R + , φ(t), t ∈ (-∞, 0]. (16) Proposition 4 Let u ∈ P ωc (X). Then the function v(t) := t -∞ E α (t -τ )u(τ )dτ belongs to P ωc (X).
Proof. Let ω > 0 be given. We have

v(t + ω) = t+ω -∞ E α (t + ω -τ )u(τ )dτ.
By the change of variable z = τ -ω we have

v(t + ω) = t -∞ E α (t -z)u(z + ω)dz. ( 17 
)
Since u is an (ω, c)-periodic function, then there exists c ∈ C\{0} such that u(z + ω) = cu(z). So, [START_REF] Fink | Almost periodic differential equations[END_REF] becomes

v(t + ω) = c t -∞ E α (t -z)u(z)dz = cv(t).
Therefore v ∈ P ωc (X).

Proposition 5 Let u ∈ AP ωc (X). Then the function

v(t) := t 0 E α (t -τ )u(τ )dτ belongs to AP ωc (X) if |c| ≥ 1.
Proof. By definition, u ∈ AP ωc (X) means that there exists u 1 ∈ P ωc (X) and

u 2 ∈ C 0,c (X) such that u = u 1 + u 2 . Then, v(t) = t 0 E α (t -τ )(u 1 (τ ) + u 2 (τ ))dτ = t 0 E α (t -τ )u 1 (τ )dτ + t 0 E α (t -τ )u 2 (τ )dτ = t -∞ E α (t -τ )u 1 (τ )dτ - 0 -∞ E α (t -τ )u 1 (τ )dτ + t 0 E α (t -τ )u 2 (τ )dτ = v 1 (t) + v 2 (t),
where

v 1 (t) = t -∞ E α (t -τ )u 1 (τ )dτ, v 2 (t) = t 0 E α (t -τ )u 2 (τ )dτ - 0 -∞ E α (t -τ )u 1 (τ )dτ.
By Proposition 4 we have clearly v 1 ∈ P ωc (X). Now, we need to prove that v 2 ∈ C 0,c (X). Let t > 0 and ε > 0 be given. Since u 2 ∈ C 0,c (X),

∃T > 0 : ∀τ > T, c ∧ (-τ )u 2 (τ ) X < ε. (18) 
Actually, to prove that v 2 ∈ C 0,c (X), we need to consider two cases: t > T and t < -T . We will give the proof for t > T since the second case (t < -T ) can be obtained by using similar arguments. So, for t > T we have

v 2 (t) = T 0 E α (t -τ )u 2 (τ )dτ + t T E α (t -τ )u 2 (τ )dτ - 0 -∞ E α (t -τ )u 1 (τ )dτ (19) and c ∧ (-t)v 2 (t) X ≤ 3 i=1 I i (t), ( 20 
)
where

I 1 (t) = c ∧ (-t) T 0 E α (t -τ )u 2 (τ )dτ X ; I 2 (t) = c ∧ (-t) t T E α (t -τ )u 2 (τ )dτ X ; I 3 (t) = c ∧ (-t) 0 -∞ E α (t -τ )u 1 (τ )dτ X .
Now, we have:

I 1 (t) = T 0 c -(t-τ )/ω E α (t -τ )c -τ /ω u 2 (τ )dτ X ≤ T 0 c -(t-τ )/ω E α (t -τ ) L(X) c -τ /ω u 2 (τ ) X dτ.
We note that t > T , if |c| ≥ 1 and 0 ≤ τ ≤ T implies that c -(t-τ )/ω ≤ 1. So, taking into account [START_REF] Dimbour | S-Asymptotically periodic solutions for partial differential equations with finite delay[END_REF] we obtain

I 1 (t) ≤ sup 0≤τ ≤T c -τ /ω u 2 (τ ) X T 0 Λ(θ, α)M 1 + | |(t -τ ) α dτ ≤ sup 0≤τ ≤T c -τ /ω u 2 (τ ) X T 0 Λ(θ, α)M | |(t -τ ) α dτ = Λ(θ, α)M | | sup 0≤τ ≤T c -τ /ω u 2 (τ ) X T 0 (t -τ ) -α dτ = Λ(θ, α)M | |(α -1) 1 (t -T ) α-1 - 1 t α-1 sup 0≤τ ≤T c -τ /ω u 2 (τ ) X .
Thus,

I 1 (t) ≤ Λ(θ, α)M | |(α -1) 1 (t -T ) α-1 - 1 t α-1 sup 0≤τ ≤T c -τ /ω u 2 (τ ) X .
Observing on the one hand that,

sup 0≤τ ≤T c -τ /ω u 2 (τ ) X < ∞ (because u 2 ∈ C 0,c (X)
), and on the other hand that,

lim t→∞ 1 (t -T ) α-1 - 1 t α-1 = 0, we deduce that lim t→∞ I 1 (t) = 0.
Using [START_REF] Dimbour | S-Asymptotically periodic solutions for partial differential equations with finite delay[END_REF], we have also

I 2 (t) = t T c -(t-τ )/ω E α (t -τ )c -τ /ω u 2 (τ )dτ X ≤ t T c -(t-τ )/ω E α (t -τ ) L(X) c -τ /ω u 2 (τ ) X dτ ≤ t T c -(t-τ )/ω Λ(θ, α)M 1 + | |(t -τ ) α c -τ /ω u 2 (τ ) X dτ
which in view of ( 18) and the fact that 1 + | |(t -τ ) α ≥ 1, gives

I 2 (t) ≤ ε t T c -(t-τ )/ω Λ(θ, α)M 1 + | |(t -τ ) α dτ ≤ εΛ(θ, α)M t T |c| -(t-τ )/ω dτ.
Observing that on the one hand that |c| -(t-τ )/ω = e τ -t ω ln(|c|) and on the other hand that, we deduce that for any ε > 0,

I 2 (t) ≤ εΛ(θ, α)M t T |c| -(t-τ )/ω dτ ≤ ω ln(|c|) εΛ(θ, α)M.
Consequently,

lim t→∞ I 2 (t) = 0 if |c| ≥ 1.
Finally, making the change of variable s = t -τ and using (15), we have:

I 3 (t) = 0 -∞ c -t/ω E α (t -τ )u 1 (τ )dτ X = ∞ t c -t/ω E α (s)u 1 (t -s)ds X ≤ ∞ t |c| -s/ω E α (s) L(X) c -(t-s)/ω u 1 (t -s) X ds ≤ Λ(θ, α)M | | sup s∈[t,∞] c -(t-s)/ω u 1 (t -s) X ∞ t |c| -s/ω s -α ds.
Observing on the one hand that, for |c| ≥ 1, we have |c| -s/ω ≤ 1, and on the other hand that,

sup s∈[t,∞] c -(t-s)/ω u 1 (t -s) X < ∞
because u 1 ∈ P ωc (X); we deduce that

I 3 (t) ≤ Λ(θ, α)M | |(α -1) sup s∈[t,∞] c -(t-s)/ω u 1 (t -s) X 1 t α-1 .

Hence, lim

t→∞

I 3 (t) = 0.
We have just proved that for t > T , v 2 ∈ C 0,c (X). As mentioned above, similar arguments can be made if t < -T . Hence, if |c| ≥ 1, we have v 2 ∈ C 0,c (X) and therefore, v ∈ AP ωc (X).

Proposition 6 Let u ∈ AP ωc (X). Then the function

v(t) := t -∞ E α (t -τ )u(τ )dτ belongs to AP ωc (X) if |c| ≥ 1.
Proof. By definition, u ∈ AP ωc (X) means that there exists u 1 ∈ P ωc (X) and

u 2 ∈ C 0,c (X) such that u = u 1 + u 2 . Then, v(t) = t -∞ E α (t -τ )(u 1 (τ ) + u 2 (τ ))dτ = t -∞ E α (t -τ )u 1 (τ )dτ + t -∞ E α (t -τ )u 2 (τ )dτ = v 1 (t) + v 2 (t),
where

v 1 (t) = t -∞ E α (t -τ )u 1 (τ )dτ, v 2 (t) = t -∞ E α (t -τ )u 2 (τ )dτ.
By Proposition 4, we have clearly v 1 ∈ P ωc (X). Now, we need to prove that v 2 ∈ C 0,c (X). Using [START_REF] Dimbour | S-Asymptotically periodic solutions for partial differential equations with finite delay[END_REF] and the fact that 1 + | |(t -τ ) α ≥ 1, we have:

c ∧ (-t)v 2 (t) X = t -∞ c -(t-τ )/ω E α (t -τ )c -τ /ω u 2 (τ )dτ X ≤ t -∞ c -(t-τ )/ω E α (t -τ ) L(X) c -τ /ω u 2 (τ ) X dτ ≤ sup τ ∈(-∞,t] c -τ /ω u 2 (τ ) X Λ(θ, α)M t -∞ |c| -(t-τ )/ω dτ = sup τ ∈(-∞,t] c -τ /ω u 2 (τ ) X Λ(θ, α)M t -∞ e τ -t
ω ln(|c|) dτ. .

Since

It then follows that

c ∧ (-t)v 2 (t) X ≤ sup τ ∈(-∞,t] c -τ /ω u 2 (τ ) X Λ(θ, α)M t -∞ e τ -t ω ln(|c|) dτ ≤ sup τ ∈(-∞,t] c -τ /ω u 2 (τ ) X Λ(θ, α)M ω ln(|c|)
.

Consequently, lim

t→∞ c ∧ (-t)v 2 (t) X = 0, because u 2 being in C 0,c (X) means that lim t→∞ sup τ ∈(-∞,t] c -τ /ω u 2 (τ ) X = 0.
Therefore, v ∈ AP ωc (X).

Lemma 1 Let B(X) be a fading memory and u ∈ AP ωc (X) such that u 0 ∈ B(X).

Let also c ∈ C\{0} and ω > 0. Then the function R + -→ B(X), t -→ u t is also in AP ωc (X).

Proof. Let u ∈ AP ωc (X). Then there exists x ∈ P ωc (X) and y ∈ C 0,c (X) such that u = x + y. fix t ≥ 0. Then for any θ ≤ 0, u t (θ) = x t (θ) + y t (θ) = x(θ + t) + y(θ + t).

We then have

x t (ω + θ) = x(t + ω + θ) = cx(t + θ) = cx t
This means that x t ∈ P ωc (X). Now, if we set ỹt (θ) = c ∧ (-θ)y t (θ), then

ỹt (θ) = c ∧ (-θ)y(θ + t) = c -θ/ω y(θ + t) = c t/ω c -(θ+t)/ω y(θ + t). But y ∈ C 0,c (X) means that lim θ→-∞ c -(θ+t)/ω y(θ + t) = 0. Consequently, lim θ→-∞ ỹt (θ) = lim θ→-∞ c ∧ (-θ)y t (θ) = 0
This implies that y t ∈ C 0,c (X) and since x t ∈ P ωc (X), we conclude that u t ∈ AP ωc (X).

The following result gives us sufficient conditions to obtain a unique (ω, c)asymptotically periodic mild solution to the fractional integro-differential equation (1).

Theorem 4 Under the assumptions (H 1 ) and (H 2 ) of Theorem 2, suppose also that

C1 := sup 0≤t<∞ C 1 (t) < ∞ and |c| ≥ 1. If K| | -1 α Λ(θ, α)M C1 π α sin( π α ) < 1, (21) 
then Problem (1) has a unique (ω, c)-asymptotically periodic mild solution.

Proof. We apply the Banach contraction principle. Let u ∈ AP ωc (X). According to Lemma 1 and Theorem 2, it is clear that for any τ ≥ 0, F (τ, u τ ) ∈ AP ωc (X). In addition, by Proposition 5 we deduce that

t 0 E α (t -τ )F (τ, u τ )dτ ∈ AP ωc (X). Moreover, we note that c ∧ (-t)E α (t)φ(0) X ≤ ||φ(0) X Λ(θ, α)M c t/ω (1 + | |t α ) -→ 0 as t -→ ∞.
This means that E α (t)φ(0) ∈ C 0,c (X) ⊆ AP ωc (X) and hence E α (t)φ(0) ∈ AP ωc (X). Therefore, we have proved that for all t ≥ 0 and u ∈ AP ωc (X),

E α (t)φ(0) + t 0 E α (t -τ )F (τ, u τ )dτ ∈ AP ωc (X).
To prove the uniqueness, it suffices to consider the part of the solution on t ≥ 0. To achieve this, let us define the operator

G : AP ωc (X) -→ AP ωc (X) u -→ (Gu)(t) = E α (t)φ(0) + t 0 E α (t -τ )F (τ, u τ )dτ, t ≥ 0. (22) 
From the above calculations, it is clear that the operator G is well defined. Now, let u, v ∈ AP ωc (X) be solutions of system [START_REF] Abadias | Periodic mild solutions to nonautonomous abstract differential equations[END_REF]. We have u 0 = v 0 = φ and by the hypothesis (H 2 ) and the condition (P 1 )-(c) one has:

|c| ∧ (-t) ((Gu)(t) -(Gv)(t)) X = t 0 |c| -(t-τ )/ω |c| -τ /ω E α (t -τ ) (F (τ, u τ ) -F (τ, v τ )) dτ X ≤ K t 0 |c| -(t-τ )/ω E α (t -τ ) L(X) |c| -τ /ω u τ -v τ B(X) dτ ≤ K t 0 e (-(t-τ )/ω) ln(|c|) E α (t -τ ) L(X) |c| -τ /ω C 1 (τ ) sup 0≤η≤τ u(η) -v(η) X dτ ≤ K t 0 E α (t -τ ) L(X) C 1 (τ ) sup 0≤η≤τ |c| -η/ω (u(η) -v(η)) X dτ
because |c| ≥ 1 implies that e (-(t-τ )/ω) ln(|c|) ≤ 1 and η ≤ τ implies that |c| -τ /ω ≤ |c| -η/ω . So, taking into account [START_REF] Dimbour | S-Asymptotically periodic solutions for partial differential equations with finite delay[END_REF] we obtain |c| ∧ (-t) ((Gu)(t) -(Gv)(t)) X ≤ KΛ(θ, α)M C1 sup By the change of variable z = | |(t -τ ) α , the above inequality gives:

|c| ∧ (-t) ((Gu)(t) -(Gv)(t)) X ≤ 1 α K| | -1 α Λ(θ, α)M C1 u -v aωc | |t α 0 z 1 α -1 1 + z dz ≤ 1 α K| | -1 α Λ(θ, α)M C1 u -v aωc ∞ 0 z 1 α -1
(1 + z) 

1 α +1-1 α dz = 1 α K| | -1 α Λ(θ, α)M C1 u -v aωc B 1 α , 1 - 1 α = 1 α K| | -1 α Λ(θ, α)M C1 u -v aωc Γ 1 α Γ 1 - 1 α = K| | -1 α Λ(θ, α)M C1

Conclusion

This paper presents a fractional integro-differential equation with parameter 1 < α < 2 and a closed (but not necessarily bounded) operator of sectorial type < 0. We have applied the concept of (ω, c)-asymptotically periodic functions and have established some important propositions and lemmas. In our study, we used the latter results and the Banach contraction principle to prove, under some (sufficient) conditions which we have clearly specified, that there exists a unique (ω, c)-asymptotically periodic mild solution to the system (1) provided that |c| ≥ 1. For the fractional integro-differential equation (1), more existence results can be further developed using various fixed point theorems.

0 1 1 + 0 1 1 +

 0101 η∈R + |c| ∧ (-η)(u(η) -v(η)) X t | |(t -τ ) α dτ = KΛ(θ, α)M C1 u -v aωc t | |(t -τ ) α dτ.

u< 1 ,

 1 -v aωc .Consequently,Gu -Gv aωc = sup t∈R + |c| ∧ (-t) ((Gu)(t) -(Gv)(t)) X ≤ K| | -1 α Λ(θ, α)M C1 π α sin( π α ) u -v aωc .Hence when K| | -1 α Λ(θ, α)M C1 we deduce by the Banach contraction principle that G has a unique mild solution u ∈ AP ωc (X). In other words, Problem (1) has a unique (ω, c)-asymptotically periodic mild solution.