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Abstract. This article offers various mathematical contributions to the behavior of

thin films. The common thread is to view thin film behavior as the variational limit of

a three-dimensional domain with a related behavior when the thickness of that domain

vanishes. After a short review in Section 1 of the various regimes that can arise when

such an asymptotic process is performed in the classical elastic case, giving rise to various

well-known models in plate theory (membrane, bending, Von Karmann, etc...), the other

sections address various extensions of those initial results. Section 2 adds brittleness

and delamination and investigates the brittle membrane regime. Sections 4 and 5 focus

on micromagnetics, rather than elasticity, this once again in the membrane regime and

discuss magnetic skyrmions and domain walls, respectively. Finally, Section 3 revisits the

classical setting in a non-Euclidean setting induced by the presence of a pre-strain in the

model.
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1. The Mathematics of Thin Structures – An introduction (by G. Francfort

and I. Fonseca).

1.1. Introduction. This collection of articles attempts to provide a wide ranging, while

not encompassing all views of the current mathematical investigations into thin structures.

Rather than enumerate and detail the various topics that have been either included or

excluded from this volume, we prefer to describe briefly the main historical steps that

have led to the kind of pursuit which is described in the following presentations.

The original concern was a simple one: What happens to a thin three-dimensional

elastic body when its thickness vanishes asymptotically? In other words, consider a

domain of the form Ωε := ω× (−ε/2, ε/2) with ω ⊂ R2 open, bounded, Lipschitz domain,

and ε > 0.

ε/2

ε/2
Ωε

ω

Fig. 1. The thin domain

That domain is occupied by an elastic material with W : R3×3 → R̄ as elastic energy

density, so that the internal energy of the body is

Eε(U
ε) :=

ˆ
Ωε
W (∇Uε) dx,

where Uε is the elastic minimizer of the associated potential energy.1 What is the stored

energy in the limit two dimensional body ω as ε↘ 0?

It was realized early on that the limit stored energy critically depends on the order

of Eε in ε, giving rise to a great variety of asymptotic behaviors. Given a thin domain

and a set of boundary conditions and loads, there is no natural way to guess what the

1In this presentation, as well as in those of the various contributors, a variational attitude is adopted.
It consists in assuming that elastic equilibrium is achieved through minimization of the potential energy
for the relevant boundary conditions and loads. Of course, while this is strictly equivalent to assuming

equilibrium in a linearized context, it is not so in a nonlinear framework and much remains to be done on
that front.
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relevant order is, so the classification is not so useful from a practical standpoint, except

maybe for the potential corrections that the obtained asymptotic models suggest vis à

vis the classical models used by engineers. Nevertheless, this is where the mathematical

effort has concentrated, and our goal in this short introduction is to review the classical

tenet of the theory precisely in terms of the ε-order of the internal energy.

In the sequel and unless otherwise stated, we assume the following on the elastic energy

W , as was first posited in [16],

W : R3×3 → R̄+ is continuous

W (F ) =∞ if detF ≤ 0 (preservation of orientation + non interpenetration)

W (RF ) = W (F ) for all R ∈ SO(3) (frame indifference)

W (Id) = 0 (no pre-stress)

W isC2 near Id

W (F ) ≥ c dist2(F, SO(3)) = c|
√
FTF − Id|2 for some c > 0

(linear behavior near the identity),

(1.1)

which are the classical features of a so-called hyperelastic energy. In (1.1), Id is the

identity matrix.

Remark 1.1. Note that the last property in (1.1) implies that ∂W/∂F (Id) = 0, and

that the quadratic form

Q3(M) :=
∂2W

∂F 2
(Id)M ·M, M symmetric 3× 3 matrix, (1.2)

satisfies Q3(M) ≥ c tr MTM. Further,

W (Id+ hA) ≥ Q3(hA)− o(|hA|2).

The first step in the analysis is always the same. One should rescale the problem so as

to deal with a fixed domain Ω = ω × (−1/2, 1/2). The associated rescaling is x3 7→ x3/ε,

resulting in

Eε(U
ε) = ε

ˆ
Ω

W (∇εuε) dx, (1.3)

where uε(xα, x3) := Uε(xα, εx3) and ∇ε :=

(
∇′, 1/ε ∂

∂x3

)
, ∇′ denoting the in-plane

partial derivatives ∂/∂x1, ∂/∂x2.

We define

Eε(v) :=

ˆ
Ω

W (∇εv) dx

so that Eε(Uε) = εE(uε).

The goal is then to investigate the asymptotic behavior of Eε/ε
β . In mathematical

terms, this amounts to a study of

• The compactness of (approximate) minimizers uε of Eε/εβ−1 under the assumption

that

sup
ε
Eε(uε)/εβ−1 <∞; (1.4)
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• The Γ-convergence, in the topology for which compactness is attained as per the

previous item, of Eε/εβ−1.

It is clear from (1.3) that the first order for which a non trivial limit may be obtained is

β = 1. This will give rise to the so-called membrane regime detailed in Subsection 1.2.1.

Then, the regimes β > 1 will produce a variety of different models that conform more or

less to classical engineering models, as described in Subsections 1.2.3, 1.2.4 and 1.2.5. All

results pertaining to regimes for which β > 1 heavily hinge on an approximate rigidity

theorem established in [91]. Subsection 1.2.2 will detail that result and the way it is used

in establishing the relevant Γ-limits in Subsections 1.2.3, 1.2.4 and 1.2.5.

Each of the following subsections in Section 1.2 is short (and even very short), and

essentially reduces to a mere statement of the most important results pertaining to the

relevant scaling, together with a rapid sketch of some of the underlying mathematical

arguments. The focus is almost exclusively on the derivation of a lower bound for the

Γ− lim inf which, hopefully, will be optimal. In all that follows, we assume familiarity

with the notion of Γ(X)-convergence, X being a metrizable topological space (see [54]).

Finally, in Section 1.3, we address a few of the problems or concerns that can be raised

as to the significance of the models described in Section 1.2 in the hope that some of

those will provide motivation for future research.

Notationwise, if M is a 3 × 3 matrix, we denote by |M | its Frobenius norm, that is

(tr MTM)1/2 (associated to the Frobenius inner product M ·N := tr MTN), and we use

x′ to denote the planar coordinates x1, x2. The rest of the notation is standard.

1.2. The various regimes. In this section, we quickly describe the main regimes that

can be obtained when β varies.

Remark 1.2. In Section 3, Marta Lewicka will offer a similar analysis with the

additional non trivial feature that hers is a non-Euclidean setting induced by the presence

of a pre-strain in the model. In that framework, Eε(Uε) is modified and becomes´
Ωε
W (∇Uεg−1/2) dx where g is the smooth Riemannian metric associated with the

pre-strain of the thin domain.

1.2.1. Membranes (β = 1 ; Le Dret-Raoult). The scaling β = 1 is historically the first

one to be addressed in [137]. Unfortunately, the analysis in that paper does not allow for

an energy satisfying (1.1). Instead, one should have, for some C > 0,

W : R3×3R is continuous, and
1

C
|F |p − C ≤W (F ) ≤ C(|F |p + 1), 1 < p <∞, (1.5)

which of course goes against the requirement that W (F )↗∞ as detF → 0+.

In such a setting, coercivity immediately implies that a sequence {uε} satisfying (1.4)

will have a weak-Lp(Ω;R3×3)-converging subsequence of gradients with, as limit the

gradient of an x3-independent function u = u(x′). With this in mind, a first result is as

follows:

Theorem 1.3. Under assumption (1.5)

• For a subsequence (still indexed by ε), if uε satisfies (1.4), then

weakly in W 1,p(Ω;R3), with u a function of x′ solely;
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• Eε Γ(Lp(Ω;R3))-converges to

Em(u) =

{´
ω
QW (∇′u)dx′, u ∈W 1,p(Ω,R3), u independent of x3

∞, else,

where, for F ∈ R3×2,W (F ) := infz∈R3 W (F, z), and QW is the 3× 2-quasiconvex

envelope of W , that is

QW (F ) := inf
ϕ

{ 
A

W (F +∇′ϕ) : ϕ ∈ C∞c (A;R3)

}
for some (any) bounded open set A ∈ R2 with L2(∂A) = 0.

Remark 1.4. Note that, if W satisfies frame indifference (see (1.1)), then so does QW .

Also, if F ∈ R3×2 is such that |F |2 ≤ 1, then QW (F ) = 0. Indeed, in such a case, the

singular values v1, v2 of F are both in [0, 1]. The affine deformation u = (v1x1, v2x2, 0)T is

such that ∇′uT∇′u = FTF and thus, because of frame indifference, QW (F ) = QW (∇′u).

But the sequence {uε} given by uε := (v1x1 + εθ1(x1/ε), v2x2 + εθ2(x2/ε), 0)T with

θi(t) :=

{
(1− vi)t if 0 ≤ t ≤ (1 + vi)/2,

−(1 + vi)(t− 1) if (1 + vi)/2 ≤ t ≤ 1,

converges strongly to u in L2(Ω;R3), while its reduced gradient ∇′uε only takes the values

J±,± :=

±1 0

0 ±1

0 0

 .

Since QW (J±,±) ≤ W (J±,±), and by (1.1) W (J±,±) = W (Id) = 0, we deduce that

QW (∇′uε) = 0 and, in turn, by lower semicontinuity we conclude that QW (∇′u) ≡ 0.

This shows that the membrane regime does not react to compression, and forces us to

go beyond that scaling in the next subsections.

The previous theorem result, in spite of its intrinsic defect with regard to orientation

preservation and non interpenetration, spurred a plethora of investigations in a variety of

fields ranging from micro-magnetics, optimal design, fracture, to homogenization among

others. We will not dwell upon those here, pointing instead to Section 2 by Jean-François

Babadjian on brittle membranes and of both Section 4 by Giovanni Di Fratta and Section

5 by Cyrill Muratov on micromagnetics in this volume. In Section 2 an additional energy

is added to the elastic energy to account for delamination of the membrane from its

substrate and/or fracture within the membrane, and the author analyzes the competition

between those two processes. In Section 4 elasticity is replaced by magnetism while the

membrane is not a flat one, but a curved one (ω is replaced by a smooth surface embedded

in R3) and the author investigates the appearance of magnetic skyrmions. In Section

5, the emphasis is on the study of magnetic domains in thin films (those regions with

aligned magnetic spins) and on the transition layers between the domains (the magnetic

walls).

To this day, the handling of conditions (1.1) seems to be out of reach. The studies

that come nearest to achieving that goal are those of [50, 207] which investigate the

incompressible case, that is what happens when the energy is infinite if detF 6= 1 and
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satisfies (1.5). In that case, the limit model is exactly that obtained in the previous

theorem and incompressibility is lost in the limit.

Finally, let us emphasize that one could refine the results of Theorem 1.3 in a variety

of ways. As an example, one could also impose that, in the search for a Γ-limit, one

also require that, for a converging sequence {wε}, the weak Lp(Ω;R3)-limit of the term

1/ε∂wε/∂x3 be given (and not only that of the strong Lp(Ω;R3)-limit of wε). In that

case, the results are much more intricate and the limit behavior is most likely nonlocal.

We refer the reader to [27] for details.

1.2.2. Rigidity (Friesecke-James-Müller). Say that u ∈ W 1,2(Ω;Rn) is such that

∇u(x) = R(x) ∈ SO(n), for a.e. x ∈ Ω. Then, since div cof ∇u = 0, we get

0 = div cof R = divR = 4u, and u is harmonic. Hence, we may consider derivatives of u

of any order, and because |R|2 = 1, we have

0 = 4|R|2 = 4(|∇u|2) = |∇2u|2,

(∇2u is the Hessian matrix of each component of u), and thus ∇u is a constant rotation.

This is a classical exact rigidity result à la Liouville. The approximate rigidity result

uncovered in [91] states a similar result, provided that ∇u is L2-close to a rotation,

namely,

Theorem 1.5. Let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain. Then there exists

C(Ω), invariant by translation and dilation, such that, for all u ∈ W 1,2(Ω,Rn), there

exists R ∈ SO(n) with

‖∇u−R‖L2(Ω;Rn×n) ≤ C(Ω)‖dist (∇u, SO(n)‖L2(Ω).

This result has proved a milestone in many fields. For our part, we apply it to the

setting at hand, recalling the bound from below on W (F ) in (1.1). We obtain that, for ε

small, there exists Rε ∈ SO(3) such thatˆ
Sa,ε

|∇εuε −Rε|2 dx ≤ C
ˆ
Sa,ε

dist (∇εu, SO(3))2 dx,

where Sa,ε := (a + (−ε/2, ε/2))2) × (−1/2, 1/2), a ∈ εZ2 and C is independent of a, ε.

Provided that (1.4) holds, the previous estimate gives rise to a piecewise constant rotation

field Rε(x′) such that ˆ
ω×(−1/2,1/2)

|∇εuε −Rε|2 dx ≤ Cεβ−1 (1.6)

and, with a little bit of work, it is not hard to show that, for some C ′ > 0,ˆ
ω

|Rε(x′ + z)−Rε(x′)|2 dx′ ≤ C ′εβ−1

(∣∣∣z
ε

∣∣∣2 + 1

)
. (1.7)

If β ≥ 3, from (1.7), we immediately infer that

lim sup
z→0

sup
ε
‖Rε(·+ z)−Rε(·)‖L2(Ω,R3) = 0

so that, by the Fréchet-Kolmogorov theorem,

Rε
L2(Ω;R3×3)−→ R̄ ∈W 1,2(ω;SO(3))
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and thus, with (1.6),

∇εuε and Rε
L2(Ω;R3×3)−→ R̄ ∈W 1,2(ω, SO(3)). (1.8)

In particular, we get that

∇εuε L
2(Ω;R3×3)−→ (∇′u, b) with b(x′) =

∂u

∂x1
(x′) ∧ ∂u

∂x2
(x′). (1.9)

If β < 3, the only information we derive from (1.6) is that

∇εuε and Rε
weakly in L2(Ω;R3×3)

⇀ (∇′u, b) with |∇′u|2 ≤ 1. (1.10)

In such a case, u is called a short map.

1.2.3. In between (1 < β < 3 ; Conti-Maggi). Strangely enough, not much is known

about the regime 1 < β < 3 in addition to (1.10). In [52], it is proved that, when β < 8/3

the Γ(L2)-limit of E/εβ−1 is 0 for short maps and ∞ else while, for 8/3 ≤ β ≤ 3, the

Γ(L2)-limit has not been characterized as of yet.

The difficulty in this case lies in the construction of a recovery sequence. This relies upon

the possibility of approaching uniformly a W 1,∞(Ω;R3)-short map u by C1-isometries

uk, that is such that, for some bk, (∇uk, bk) ∈ SO(3); this is the famous Nash-Kuiper

theorem.

In [52], the authors relate their results to Origami constructions and, further, to paper

crumpling, an association which may, or may not be relevant because of the irreversibility

of the folding process.

1.2.4. Bending (β = 3 ; Friesecke-James-Müller). If β = 3, then from (1.6) we immedi-

ately conclude that, up to a subsequence,

Gε := 1/ε((Rε)T∇εuε − Id)
weakly in L2(Ω;R3×3)

⇀ G (1.11)

and thus that, since, by frame indifference, W (∇εuε) = W (Id+ εGε), we get, thanks to

Remark 1.1,

Eε(uε)/ε2 ≥ 1/2

ˆ
Ω

Q3(Gε) dx− o(1)

where Q3 was defined in (1.2). Hence

lim inf
ε
Eε(uε)/ε2 ≥ 1/2

ˆ
Ω

Q2(G′′) dx (1.12)

where, for any M ∈ R2×2,

Q2(M) := inf
z,z′∈R2,z”∈R

Q3

((
M z

z′ z”

))
(1.13)

where we use the notation F ′′ to denote the 2× 2 matrix with entries Fij , 1 ≤ i, j ≤ 2,

while F ′ stands for the 3× 2 matrix with entries Fi,j , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2.

It remains to identify G′′ in (1.12). To that effect, recalling that b = b(x′) is the strong

L2(Ω;R3)-limit of {1/ε ∂uε/∂x3}, we have

1

εz

ˆ x3+z

x3

∂uε

∂x3
dz =

1

εz
(uε(x′, x3 + z)− uε(x′, x3))

L2(Ω;R3)−→ b,
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hence

1

z
((RεGε)′(x′, x3 + z)− (RεGε)′(x′, x3)) =

1

z

[
(∇′uε(x′, x3 + z)−∇′uε(x′, x3))

ε

]
H−1(Ω;R3×3)−→ ∇′b(x′).

Consequently, from (1.8), (1.11),[
R̄

(
G(x′, x3 + z)−G(x′, x3)

z

)]′
= ∇′b,

and, letting z ↘ 0,
[
R̄∂G/∂x3

]′
= ∇′b, from which simple algebra leads to[
∂G

∂x3

]′′
= (∇′u(x′))T∇′b(x′), (1.14)

which is thus an x3-independent quantity. Finally we conclude that

G′′(x′, x3) = G′′(x′, 0) + x3

[
∂G

∂x3

]′′
(x′)

and so, recalling (1.12), (1.14),

lim inf
ε
Eε(uε)/ε2 ≥ 1/2

ˆ
ω

Q2(G′′(x′, 0)) dx+ 1/24

ˆ
ω

Q2

(
(∇′u(x′))T∇′b(x′)

)
dx′

≥ 1/24

ˆ
ω

Q2

(
(∇′u(x′))T∇′b(x′)

)
dx′. (1.15)

Inequality (1.15) actually provides the correct Γ-limit, as could be checked by constructing

a recovery sequence roughly of the form Uε := û(x′) + εx3b̂(x
′) + εx2

3d̂(x′), where û is an

isometry, b̂ := ∂û/∂x1 ∧ ∂û/∂x2, and d̂ is such that Q3(R̂T (∇′b, d)) = Q2((∇′û)T∇′b̂),
with R̂ := (∇′û, b̂).

So we obtain the following:

Theorem 1.6. Under assumption (1.1)

• For a subsequence (still indexed by ε), if uε satisfies (1.4), then ∇εuε −→ (∇′u, b)
strongly in L2(Ω;R3×3), where (∇′u, b) ∈W 1,2(Ω;SO(3)) and is a function of x′

solely;

• Eε/ε2 Γ(L2(Ω;R3))-converges to

Eb(v) :=


1/24

´
ω
Q2((∇′v)T∇′c)dx′, if (∇′v, c) satisfies (∇′v, c) ∈W 1,2(Ω;SO(3))

and is a function of x′ solely

∞, else,

where Q2 was defined in (1.13).

The above regime is usually referred to as that of nonlinear bending.

Remark 1.7. Note that (∇′v, c) ∈ SO(3), therefore c · ∂v
∂x1

= c · ∂v
∂x2

= 0. Differenti-

ating these equations with respect to x1 and to x2, shows that the term (∇′v)T∇′c can

be equivalently written as (∇′)2v · c (the reduced Hessian of u).
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1.2.5. von Kármán like (β > 3 ; Friesecke-James-Müller). First we remark that, when

β > 3, then (1.7) implies that R̄ is a constant. Then, because of frame indifference, we

may as well assume that R̄ = Id. The argument for deriving a Γ-liminf roughly follow

those expounded in the previous subsection, but with β-dependent scalings; for example

the quantity Gε in (1.11) is now

Gε := ε
1−β

2 ((Rε)T∇εuε − Id).

We refer the interested reader to [92, Theorems 2,3] and only detail somewhat the result

in the true von Kármán case, that is that when β = 5.

In the setting of Subsection 1.2.2, we define

yε := (R̄ε)Tuε − cε,

where R̄ε is a constant ε-dependent rotation obtained from Rε defined in (1.6) and cε is

a suitable constant so that
´

Ω
(yε − (x′, εx3)) dx = 0 (see [92, Lemma 1] for details). We

further define the averaged in-plane and out-of-plane displacements
hε1,2 := 1/ε2

ˆ 1/2

−1/2

(yε1,2 − x1,2) dx3,

vε := 1/ε

ˆ 1/2

−1/2

yε3 dx3.

(1.16)

Then it is easily obtained that hε
W 1,2(ω;R2)−→ h,

vε
W 1,2(ω)−→ v.

(1.17)

The Γ-convergence theorem is as follows:

Theorem 1.8. Under assumption (1.1)

• For a subsequence (still indexed by ε), if uε satisfies (1.4), then {hε}, {vε}
constructed through (1.16) from uε satisfy convergences (1.17);

• Eε/ε4 Γ-converges (for the topology associated with the convergences (1.17)) to

Evk(h, v) := 1/2

ˆ
ω

Q2(1/2[∇′h+ (∇′h)T ] +∇′v ⊗∇′v) dx′ + 1/24

ˆ
ω

Q2((∇′)2v) dx,

where Q2 was defined in (1.13).

The von Kármán model has always been contentious. While widely used by engineers,

it has been criticized by many famous scientists, not least among them Clifford Truesdell.2

At worst the above theorem demonstrates that such a model is compatible with the

variational view of nonlinear elasticity under appropriate rescaling.

Remark 1.9. For 3 < β < 5, the obtained regime sits between the nonlinear bending

and the von Kármán regimes, while for β > 5 we recover in the limit the setting of linear

Kirchhoff-Love plate theory which can also be obtained through 3d to 2d dimensional

reduction starting from linear elasticity as first established in [46].

2 “An analyst may regard that theory as handed down by some higher power (a Hungarian wizard,
say) and study it as a matter of pure analysis. To do so for the von Kármán theory is particularly
tempting because nobody can make sense out of the “derivations”. ” [208, Page 601].
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1.3. Boundary conditions, forces and other considerations. From a mathematical

standpoint, the regime β = 1 distinguishes itself from all others on two grounds. On

the one hand, as already explained, it does not allow for energies satisfying (1.1). But,

on the other hand, it gives rise to a model which is local in the sense that the Γ-limit

can be localized to any open subdomain A of ω and remains the same (just replace

Ω by A × (−1/2, 1/2) in the definition of Eε). This is so because, as a function of A,

the integration domain in the plane, that Γ-limit is a measure, as can be established

through what is sometimes called the fundamental estimate (see e.g. [31, Chapter 11]).

In particular, that estimate implies that the obtained membrane model (or, equivalently

the Γ-limit) is impervious to the kind of boundary conditions that are imposed on the

converging sequences. As such, it is a bona fide constitutive model for thin plates.

Not so for the other regimes where the Γ-convergence process cannot be localized, and

where the only kind of boundary conditions that can be imposed are enslaved by the limit

kinematics. For example, in the nonlinear bending regime (β = 3), those must be of the

form

uεb∂ω×(−1/2,1/2) = û(x′) + x3εb̂(x
′)

where û ∈W 2,2(ω;R3) is such that (∇′û, b̂) ∈ SO(3) a.e. in Ω.

If, however, the domain is laterally clamped (uεb∂ω×(−1/2,1/2) = 0), the resulting

model (called Föppl-von Kármán) is completely different for all scalings 1 < β < 5 as

demonstrated in [53].

For this reason, one could possibly wonder whether the obtained Γ-limits are truly

constitutive models, and not only classes of asymptotic solutions to specific boundary

value problems.

In this respect, a related issue is that of forces. Indeed, in most works on dimensional

reduction, the relevant scaling, which cannot, as we just saw, be connected to the boundary

conditions except in the membrane regime, is dictated by the scaling of the forces; this is,

for example, the adopted classification in [92]. Now, the volume forces that allow such a

hierarchy generate an additional contribution to the energy in the unscaled domain of

the form

−
ˆ

Ωε
fε · V dx, (1.18)

the relevant scaling becoming dependent on how fε varies with ε. Those kinds of forces

are referred to as dead forces. However, a contribution to the potential energy of the form

(1.18) is rather useless when contemplating an equilibrium problem in finite elasticity. As

a matter of fact, from an engineering standpoint, the only dead force is gravity, hardly

an ε-dependent load! All other applied forces, be they the representation of volume or

surface loads, are active forces and generate a contribution to the potential energy that

includes non linear terms involving the gradient of the deformation. For example, an

hydrostatic pressure p applied to the boundary of the domain generates an additional

contribution of the form

p

ˆ
Ωε

det∇V dx,

a term which is of the same order of nonlinearity as the elastic energy itself.
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Furthermore, as already alluded to in the introduction, if confronted with a boundary

value problem for a thin domain of thickness ε and a set of boundary conditions and

loads, how is one to decide what the appropriate ε-scaling is for such loads (and boundary

conditions). This conundrum would be resolved if one could somehow establish quanti-

tative error estimates for, e.g., uε − u, uε being a minimizer for the ε-rescaled problem.

Unfortunately, no such results are available.

2. Fracture versus delamination of thin films (by J.F. Babadjian).

2.1. Introduction.

2.1.1. Motivation. Thin films can essentially experience two different fracture modes:

either transverse cracks which split the body into several pieces, or planar cracks leading

to debonding effects and delaminated surfaces. These phenomena can be observed in real

life as, e.g. the stickers identifying research labs at the Ecole Polytechnique in Palaiseau,

France, which was the starting place of this project. A thin vinyl sticker is bonded

to a metal panel and exposed to atmospheric conditions. Among others, the variation

of temperature generates inelastic mismatch strains leading to transverse cracking and

possibly debonding. A few panels relative to numbers in the range “401”–“408”, all of the

same material and subject to similar loading conditions, show recurring crack patterns.

Fig. 2. Cracked lettering at Ecole Polytechnique, Palaiseau, France

Many works have attempted to explain these types of phenomena from mechanical,

mathematical or numerical points of view. A comprehensive review of common fracture

patterns may be found in [162, 215].

From a mathematical standpoint, static fractures in (nonlinearly elastic) thin films

have been investigated by means of a Γ-convergence analysis that allows the identification

of an effective reduced 2D model (see [30, 26, 13]). In [12] a quasi-static evolution model

of cracks in thin films is studied, proving the convergence of the full three-dimensional

evolution to the reduced two-dimensional one (see also [89] in the case of linear elasticity

with topological restrictions on the admissible cracks). The dimension reduction of a

bilayer thin film allowing for debonding at the interface has been investigated in [22],

debonding being penalized by a phenomenological interfacial energy paying for the jump
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of the deformation at the interface. The limit models are discussed according to the

weight of interfacial energy. Rigorous derivations of decohesion-type energies have been

given in [9, 10] by means of a homogenization procedure. In these works the interfacial

energy appears as the limit of a Neumann sieve, debonding being regarded as the effect of

the interaction of two thin films through a suitably periodically distributed contact zone.

More recently, [56, 161, 87] have also derived similar cohesive fracture models by

means of a phase field Ambrosio-Tortorelli approximation involving an internal damage

variable. Finally, several works have focused on the quasi-static evolution of debonding

problems with a prescribed debonding zone. In particular, [194] modeled the debonding

phenomenon through an internal variable representing the volume fraction of adhesive

contact between the layers. However, none of these works is able to rigorously justify the

models used by the engineering fracture mechanics community to model the cracks of

thin film/substrate systems [162].

In [163], a two-dimensional model of a thin film bonded on a thin substrate has been

introduced and studied. In this model, transverse cracks Γ and debonded regions ∆ are

respectively 1-dimensional and 2-dimensional subsets of a given reference configuration

ω ⊂ R2. The kinematic unknown is the planar displacement u : ω → R2 and its associated

elastic strain is given by the symmetric part of its gradient e(u) = (∇u+∇uT )/2. For

external loadings given by an inelastic deformation in the film e0 : ω →M2×2
sym (the set of

2× 2 symmetric matrices) and a prescribed displacement u0 : ω → R2 in the substrate,

the total energy associated to the triple (Γ,∆, u) is given by

E(Γ,∆, u) := P(Γ,∆, u) + S(Γ,∆),

where

P(Γ,∆, u) :=
1

2

ˆ
ω\Γ

A(e(u)− e0) : (e(u)− e0) dx+
1

2

ˆ
ω\∆

K(u− u0) · (u− u0) dx

is the potential energy, and

S(Γ,∆) = H1(Γ) + L2(∆)

is the fracture energy of transverse cracks Γ and delaminated surfaces ∆. In the previous

expressions, the elastic term is interpreted as the energy of a brittle membrane subject

to inelastic strains e0 lying on a brittle elastic foundation of stiffness K, whereas in the

surface term, transverse cracks Γ and debonded regions ∆ are penalized by a Griffith-

type surface energy proportional to their length (through the 1-dimensional Hausdorff

measure H1) and area (through the 2-dimensional Lebesgue measure L2), respectively.

The contribution of the elastic foundation is extended only to the bonded portion of the

film ω \∆.

The object of this note is to show that it is possible to rigorously derive the previous

phenomenological model introduced in [163], starting from three-dimensional brittle

fracture in the context of linear elasticity, by letting the thickness of the film tend to zero.

It corresponds to joint works in collaboration with Blaise Bourdin, Duvan Henao, Andres

Leon Baldelli and Corrado Maurini (see [164, 15]).
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2.1.2. Description of the problem. Let us consider a system

Ωε = Ωεf ∪ Ωεb ∪ Ωεs

made of a thin film Ωεf = ω × (0, ε) (ω ⊂ R2 is a smooth bounded open set) deposited on

an infinite substrate Ωεs = ω × (−∞,−ε) through a bonding layer Ωεb = ω × [−ε, 0]. We

assume that Ωε stands for the reference configuration of an isotropic linearly elastic body

allowing for cracks. This body is subjected to two types of planar loadings:

• a prescribed (smooth) planar displacement u0 : ω → R2 in the substrate (identified

with a function u0 : Ωεs → R3 with zero last component);

• a (smooth) inelastic strain e0 = ω → M2×2
sym (identified with a function e0 :

Ωεf ∪ Ωεb →M3×3
sym with zero entries on the third row and the third column).

According to the variational approach to fracture (see [102, 88, 28]), for a given crack

Γ ⊂ Ω
ε

of finite area and a given displacement v : Ωε \Γ→ R3 satisfying v = u0 in Ωεs, we

define the Griffith energy as the sum of the elastic energy (computed outside the crack)

and the surface energy (penalizing the presence of cracks) by

(v,Γ) 7→ 1

2

ˆ
Ωε\Γ

Aε(e(v)− e0) : (e(v)− e0) dx+

ˆ
Γ

κε dH2.

In the previous expression, Aε stands for Hooke’s law and κε is the toughness, which

are ε-dependent material parameters possibly depending on the spatial variable. The

notation Hk stands for the k-dimensional Hausdorff measure which coincides with the

usual notion of surface (for k = 2) or length (for k = 1) for smooth enough geometrical

objects.

Of course, the dependence of Aε and κε on ε can lead to many different limit theories.

In this work, we focus on the following scaling

Aε = Af1Ωεf
+ ε2Ab1Ωεb

, κε = κf1Ωεf
+ εκb1Ωεb

,

where Af and Ab are the (isotropic) Hooke’s law of the film and the bonding layer,

respectively, and κf > 0, κb > 0 are the toughnesses of the film and the bonding layer,

respectively.

The first difficulty is to define a convenient mathematical framework. Since the

displacement v might jump across the crack Γ and following the seminal idea of the

Italian school of De Giorgi for free discontinuity problems, we can identify Γ to the jump

set of v. The previous energy turns out to be well defined in the space SBD2(Ωε) of

special functions of bounded deformation, i.e. integrable vector fields v such that the

distributional symmetric gradient Ev = (Dv+DvT )/2 is a bounded M3×3
sym-valued measure

of the form

Ev = e(v)L3 + (v+ − v−)� νvH2 Jv

(see [206, 203, 8, 14]). In the previous expression, e(v) ∈ L2(Ωε;M3×3
sym) is the absolutely

continuous part of Ev with respect to the Lebesgue measure L3. The jump set Jv is

a countably H2-rectifiable set with H2(Jv) < ∞, on which it is possible to define a

generalized unit normal νv and one-sided traces v± according to this orientation.
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In this context, we define the energy J(ε) : SBD2(Ωε)→ R+ by

J(ε)(v) =
1

2

ˆ
Ωε\Jv

Aε(e(v)− e0) : (e(v)− e0) dx+

ˆ
Jv

κε dH2

=
1

2

ˆ
Ωεf\Jv

Af (e(v)− e0) : (e(v)− e0) dx+ κfH2(Jv ∩ Ωεf )

+
ε2

2

ˆ
Ωεb\Jv

Ab(e(v)− e0) : (e(v)− e0) dx+ εκbH2(Jv ∩ Ωεb).

Note that there is no energetic contribution of the substrate since the displacement is

prescribed and smooth in there. However, cracks are allowed to touch the interface

{x3 = −ε} between the bonding layer and the substrate.

Our objective is to understand the asymptotic behavior of the previous energy functional

as ε → 0 in the sense of Γ-convergence which will give information on the asymptotic

behavior of minimizers and the minimal value of J(ε).

Remark 2.1. In order to simplify the presentation, we will henceforth assume that

e0 = 0 and u0 = 0.

2.1.3. Rescaling. As usual in dimension reduction problems, we reformulate the problem

on a fixed domain independent of ε. Contrary to nonlinear elasticity where one only

rescales the variable, we rescale here both the variables and the components of the

displacement, as commonly done in linear elasticity (see [45]).

To this aim, we set Ω = Ω1, Ωf = Ω1
f , Ωb = Ω1

b and Ωs = Ω1
s. For x = (x1, x2, x3) =

(x′, x3) ∈ Ω, with x′ = (x1, x2), we define for α = 1, 2,

uα(x′, x3) = vα(x′, εx3), u3(x′, x3) = εv3(x′, εx3).

Then, for all u ∈ SBD2(Ω) with u = 0 in Ωs (recall Remark 2.1), we define

Jε(u) = ε−1J(ε)(v) = Jfε (u) + Jbε (u),

where

Jfε (u) :=
1

2

ˆ
Ωf\Ju

Afe
ε(u) : eε(u) dx+ κf

ˆ
Ju∩Ωf

∣∣((νu)′, ε−1(νu)3

)∣∣ dH2,

Jbε (u) :=
ε2

2

ˆ
Ωb\Ju

Abe
ε(u) : eε(u) dx+ κbε

ˆ
Ju∩Ωb

∣∣((νu)′, ε−1(νu)3

)∣∣ dH2,

and

eε(u) :=

 e11(u) e12(u) ε−1e13(u)

e12(u) e22(u) ε−1e23(u)

ε−1e13(u) ε−1e23(u) ε−2e33(u)


is the rescaled elastic strain.

2.2. Dimension reduction in linear elasticity. In this first part, we focus on the energy

in the thin film in the absence of cracks. The problem can be straightforwardly formulated

in the framework of Sobolev space owing to Korn’s inequality: for u ∈ H1(Ωf ;R3), we

only consider the elastic energy

Jfε (u) =
1

2

ˆ
Ωf

Afe
ε(u) : eε(u) dx.
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Denoting by λf and µf the Lamé coefficients of the film (which satisfy the usual ellipticity

conditions µf > 0 and 3λf + 2µf > 0) and recalling the isotropy hypothesis, the previous

energy can be expressed as

Jfε (u) :=

ˆ
Ωf

[λf
2
eαα(u)eββ(u) + µfeαβ(u)eαβ(u)

]
dx

+ε−2

ˆ
Ωf

[
λfeαα(u)e33(u) + 2µfeα3(u)eα3(u)

]
dx

+ε−4

ˆ
Ωf

λf + 2µf
2

e33(u)e33(u) dx,

where, from now on, we use Einstein’s summation convention over repeating indexes. The

diverging coefficients in front of both last integrals imply that if uε ∈ H1(Ωf ;R3) is such

that uε → u in L2(Ωf ;R3) and Jfε (uε) ≤ C, the limit admissible displacement u must

satisfy ei3(u) = 0 for i = 1, 2, 3, which means that

u3(x′, x3) = ū3(x′), uα(x′, x3) = ūα(x′) +

(
1

2
− x3

)
∂αū3(x′) for α = 1, 2.

Such displacements are called Kirchhoff-Love displacements and the space of all Kirchhoff-

Love displacements is denoted by KL(Ωf ).

The following Γ-convergence result can be found e.g. in [29] (see also [45]).

Theorem 2.2. The functional Jfε Γ-convergence in H1(Ωf ;R3), with respect to the

strong L2(Ωf ;R3) topology, to the functional Jf0 : H1(Ωf ;R3)→ [0,∞] given by

Jf0 (u) =


ˆ

Ωf

[ λfµf
λf + 2µf

eαα(u)eββ(u) + µfeαβ(u)eαβ(u)
]
dx if u ∈ KL(Ωf ),

∞ otherwise.

Using the Kirchhoff-Love structure of the displacement u, the previous functional

decouples into

Jf0 (u) =

ˆ
ω

[ λfµf
λf + 2µf

eαα(ū)eββ(ū) + µfeαβ(ū)eαβ(ū)
]
dx′

+
1

12

ˆ
ω

[ λfµf
λf + 2µf

eαα(∇ū3)eββ(∇ū3) + µfeαβ(∇ū3)eαβ(∇ū3)
]
dx′.

The first term is a membrane energy term which accounts for stretching effect, while the

second one stands for a bending energy term involving higher order derivatives. From

the point of view the Euler-Lagrange equation, this last term leads to the biharmonic

equation of plates.

2.3. Winkler elastic foundation. We now enrich the previous analysis by adding the

information on the bonding layer and the substrate, but still assuming the absence of

cracks. In this framework, the space of all kinematically admissible displacements is given

by

A := {v ∈ H1(Ω;R3) : v = 0 in Ωs},
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where we recall that Ω = Ωf ∪ Ωb ∪ Ωs. For u ∈ H1(Ω;R3), the total energy is given by

J̃ε(u) =


1

2

ˆ
Ωf

Afe
ε(u) : eε(u) dx+

ε2

2

ˆ
Ωb

Abe
ε(u) : eε(u) dx if u ∈ A,

∞ otherwise,

or still, using the isotropy hypothesis and denoting by λb and µb the Lamé coefficients of

the bonding layer (which again satisfy the ellipticity conditions µb > 0 and 3λb+2µb > 0),

for u ∈ A,

J̃ε(u) :=

ˆ
Ωf

[λf
2
eαα(u)eββ(u) + µfeαβ(u)eαβ(u)

]
dx

+ε−2

ˆ
Ωf

[
λfeαα(u)e33(u) + 2µfeα3(u)eα3(u)

]
dx

+ε−4

ˆ
Ωf

λf + 2µf
2

e33(u)e33(u) dx

+ε2

ˆ
Ωb

[λb
2
eαα(u)eββ(u) + µbeαβ(u)eαβ(u)

]
dx

+

ˆ
Ωb

[
λbeαα(u)e33(u) + 2µbeα3(u)eα3(u)

]
dx

+ε−2

ˆ
Ωb

λb + 2µb
2

e33(u)e33(u) dx.

According to the analysis of the previous section, if uε ∈ A satisfies uε → u in L2(Ωf ;R3)

and J̃ε(uε) ≤ C, the limit admissible displacement u must at least be of Kirchhoff-Love

type. Using further the condition uε = 0 in Ωs in the substrate as well as, from the third

and last terms of the energy,ˆ
Ωf∪Ωb

|∂3(uε)3|2 dx =

ˆ
Ωf∪Ωb

|e33(uε)|2 dx ∼ ε2,

we infer that u must also satisfy u3 = 0. Inserting this information in the Kirchhoff-Love

structure yields u(x′, x3) = (ū(x′), 0) which means that u is a planar displacement. As a

consequence all flexural terms appearing in Jf0 (in Theorem 2.2) cancel and there only

remain the membrane termsˆ
ω

[ λfµf
λf + 2µf

eαα(ū)eββ(ū) + µfeαβ(ū)eαβ(ū)
]
dx′.

The bonding layer does not only contribute to specifying limit admissible displacements,

but also to an additional energetic term which arises from the only first order term in the

bonding layer,

2µb

ˆ
Ωb

eα3(uε)eα3(uε) dx.

In the ε→ 0 limit, this term leads to a cohesive type energy of the form

µb
2

ˆ
ω

|ū|2 dx′

penalizing the mismatch between the prescribed displacement in the substrate (recall

that from Remark 2.1 we assume u0 = 0) and the displacement in the film.
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In summary, the following Γ-convergence result holds (see [15]) corresponding to the

derivation of a Winkler foundation (see [213]).

Theorem 2.3. The functional J̃ε Γ-convergence in H1(Ω;R3), with respect to the strong

L2(Ωf ;R3) topology, to the functional J̃0 : H1(Ω;R3)→ [0,∞] given by

J̃0(u) =
ˆ
ω

[ λfµf
λf + 2µf

eαα(ū)eββ(ū) + µfeαβ(ū)eαβ(ū)
]
dx′ +

µb
2

ˆ
ω

|ū|2 dx′ if

{
u = (ū, 0),

ū ∈ H1(ω;R2),

∞ otherwise.

2.4. Transerve cracks. We next introduce cracks into the model. We first focus on the

energy in the film Ωf which allows for cracks, without taking care of the bonding layer

and the substrate. For all u ∈ SBD2(Ωf ), the (Griffith) energy is defined by

J̃fε (u) =
1

2

ˆ
Ωf\Ju

Afe
ε(u) : eε(u) dx+ κf

ˆ
Ju∩Ωf

∣∣((νu)′, ε−1(νu)3

)∣∣ dH2

=

ˆ
Ωf\Ju

[λf
2
eαα(u)eββ(u) + µfeαβ(u)eαβ(u)

]
dx

+ε−2

ˆ
Ωf\Ju

[
λfeαα(u)e33(u) + 2µfeα3(u)eα3(u)

]
dx

+ε−4

ˆ
Ωf\Ju

λf + 2µf
2

e33(u)e33(u) dx+ κf

ˆ
Ju∩Ωf

∣∣((νu)′, ε−1(νu)3

)∣∣ dH2.

In order to guess what kind of limit admissible displacement one should expect, let

us consider a sequence of displacements {uε} in SBD2(Ωf ) such that J̃fε (uε) ≤ C.

Assuming further the uniform bound ‖uε‖∞ ≤ C, we can apply a compactness and

lower semicontinuity result in SBD (see [19]) which ensures that, up to a subsquence,

there exists u ∈ SBD2(Ωf ) such that uε → u in L2(Ωf ;R3), e(uε) ⇀ e(u) weakly in

L2(Ωf ;M3×3
sym) and H2(Ju) ≤ lim infεH2(Juε). Using the energy bound, we infer that

ei3(u) = 0 in Ωf and (νu)3 = 0 on Ju. These last conditions ensure that D3u3 = E33u =

∂3u3L3 + (u+
3 − u

−
3 )(νu)3H2 Ju = 0. Unfortunately, the full displacement u might fail

to be of Kirchhoff-Love type as in the case of pure elasticity (see Theorem 2.2) because

Eα3u =
(u+

3 − u
−
3 )(νu)α
2

H2 Ju 6= 0, α = 1, 2.

However, it has been established in [15], that such displacements enjoy a Kirchhoff-Love

type structure “outside the jump set” in the sense that u3 ∈ SBV 2(ω), the approximate

gradient of u3, denoted by ∇u3 = (∂1u3, ∂2u3) ∈ SBD(ω), ū =
´ 1

0
(u1(·, s), u2(·, s)) ds ∈

SBD(ω) and

uα(x) = ūα(x′) +

(
1

2
− x3

)
∂αu3(x′), Ju = (Jū ∪ Ju3

∪ J∇u3
)× (0, 1).

Thus, the jump set (which is assimilated to the crack) associated with an admissible limit

displacement is transverse in the sense that it is invariant with respect to the vertical

direction.
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The following Γ-convergence result has been proved in [15].

Theorem 2.4. Under a uniform bound assumption, the functional J̃fε Γ-converges

in SBD2(Ω), with respect to the strong L2(Ωf ;R3) topology, to the functional J̃0 :

SBD2(Ωf )→ [0,∞] defined by

J̃0(u) =

ˆ
Ωf\Ju

[ λfµf
λf + 2µf

eαα(u)eββ(u) + µfeαβ(u)eαβ(u)
]
dx+ κfH2(Ju)

=

ˆ
ω\Jū

[ λfµf
λf + 2µf

eαα(ū)eββ(ū) + µfeαβ(ū)eαβ(ū)
]
dx′

+
1

12

ˆ
ω\J∇u3

[ λfµf
λf + 2µf

eαα(∇u3)eββ(∇u3) + µfeαβ(∇u3)eαβ(∇u3)
]
dx′

+κfH1(Jū ∪ Ju3
∪ J∇u3

),

if 
u3 ∈ SBV (ω), ∇u3 ∈ SBD(ω),

ū :=
´ 1

0
(u1(·, x3), u2(·, x3)) dx3 ∈ SBD(ω),

uα(x) = ūα(x′) +
(

1
2 − x3

)
∂αu3(x′) for α = 1, 2,

Ju = (Jū ∪ Ju3
∪ J∇u3

)× (0, 1)

and J̃0(u) =∞ otherwise.

Remark 2.5. The uniform bound assumption means that we work inside a fixed

“box”, i.e. admissible displacements are required to satisfy ‖u‖∞ ≤ M for some fixed

M > 0. This condition is necessary to apply the compactness result of [19]. Although this

condition is meaningful from a mechanical point of view (we can suppose without loss of

generality to work in a e.g. 1000 km neighborhood of the earth), it has no mathematical

justification at present. Lately, this condition has been dropped in [4] at the expense of

working in a larger and more sophisticated space called GSBD2(Ω) introduced in [55].

2.5. Fracture, debonding and delamination. We now arrive to our final goal of identify-

ing the Γ-limit of the family of functionals, defined for u ∈ SBD2(Ω), by

Jε(u) :=
1

2

ˆ
Ωf\Ju

Afe
ε(u) : eε(u) dx+ κf

ˆ
Ju∩Ωf

∣∣((νu)′, ε−1(νu)3

)∣∣ dH2,

+
ε2

2

ˆ
Ωb\Ju

Abe
ε(u) : eε(u) dx+ κbε

ˆ
Ju∩Ωb

∣∣((νu)′, ε−1(νu)3

)∣∣ dH2.

Unfortunately, the understanding of the limit behavior of this functional is still an open

question at present in such a generality. We thus simplify the problem by considering a

scalar version of this problem where, now, u ∈ SBV 2(Ω) is scalar valued, and the energy

associated with u is given by

Iε(u) :=
µf
2

ˆ
Ωf\Ju

(|∇′u|2 + ε−2|∂3u|2) dx+ κf

ˆ
Ju∩Ωf

∣∣((νu)′, ε−1(νu)3

)∣∣ dH2,

+
µb
2

ˆ
Ωb\Ju

(ε2|∇′u|2 + |∂3u|2) dx+ κb

ˆ
Ju∩Ωb

|(ε(νu)′, (νu)3)| dH2.
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The scalar nature of this new problem makes the analysis more tractable and we are able

to identify the Γ-limit of the family {Iε}. This is the object of the following result which

has been proved in [164].

Theorem 2.6. The functional Iε Γ-converges in SBV 2(Ω), with respect to the strong

L2(Ωf ) topology, to the functional I0 : SBV 2(Ωf )→ [0,∞] defined by

I0(u) =


µf
2

ˆ
ω\Ju

|∇′u|2 dx+ κfH1(Ju) +
µb
2

ˆ
ω\∆u

|u|2 dx′ + κbL2(∆u) if u ∈ SBV 2(ω),

∞ otherwise,

where ∆u := {|u| >
√

2κb/µb} is the delamination set.

As expected, this result shows the interplay between transverse cracks characterized by

the jump set Ju (which is still invariant with respect to the vertical direction) and delam-

ination surfaces corresponding to the set ∆u. There is a threshold criterion stipulating

that, as long as the displacement is small (less than the material constant
√

2κb/µb), it

is energetically favorable to pay a cohesive energy penalizing the mismatch between the

prescribed displacement in the substrate and the displacement in the film, while if the

displacement overpasses this threshold, it is preferable to create a discontinuity surface

leading a delamination zone.

The generalization of this result to the full vectorial case is still not entirely understood.

However, we expect the following result to be true.

Conjecture 2.1. Under a uniform bound assumption, the functional Jε Γ-converges

in SBD2(Ω), with respect to the strong L2(Ωf ;R3) topology, to the functional J0 :

SBD2(Ωf )→ [0,∞] defined by

J0(u) =

ˆ
ω\Jū

[ λfµf
λf + 2µf

eαα(ū)eββ(ū) + µfeαβ(ū)eαβ(ū)
]
dx′

+
1

12

ˆ
ω\J∇u3

[ λfµf
λf + 2µf

eαα(∇u3)eββ(∇u3) + µfeαβ(∇u3)eαβ(∇u3)
]
dx′

+κfH1(Jū ∪ Ju3 ∪ J∇u3) +
µb
2

ˆ
ω\∆u

|ū|2 dx′ + κbL2(∆u),

if 

u3 ∈ SBV (ω), ∇u3 ∈ SBD(ω),

ū :=
´ 1

0
(u1(·, x3), u2(·, x3)) dx3 ∈ SBD(ω),

uα(x) = ūα(x′) +
(

1
2 − x3

)
∂αu3(x′),

Ju = (Jū ∪ Ju3 ∪ J∇u3)× (0, 1),

∆u := {|ū| >
√

2κb/µb} ∪ {u3 6= 0},
and J0(u) =∞ otherwise.

Right now, this conjecture is not proved. However, in [15] the validity of the upper

bound is established while some insight into the proof of the lower bound is provided.
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3. Geometry and morphogenesis of thin films (by Marta Lewicka). In this

section, we present the author’s choice of topics and results motivated by the mathematical

study of curvature-driven morphogenesis. For brevity, we only include state-of-the-art

analytical results concerning the dimension reduction for prestrained materials, while we

refer the reader to [141] for a larger scope review and a list of open problems which are

ripe for exploration through methods of Differential Equations, Mathematical Analysis

and Geometry.

Prestrained materials arise in science and technology from a range of causes: inhomo-

geneous growth, plastic deformation, swelling or shrinkage by solvent absorption. In all

these situations, the resulting shape is a consequence of the heterogeneous incompatibility

of strains that leads to local elastic stresses. One approach towards understanding the

coupling between residual stress and the ultimate shape of the body relies on the model

of non-Euclidean elasticity, introduced below.

3.1. The set-up of non-Euclidean elasticity. Let g be a smooth Riemannian metric,

given on an open, bounded domain Ω ⊂ R3. Since g(x) is symmetric and positive definite,

it possesses a unique symmetric, positive definite square root A(x) = g(x)
1/2

. Define:

E(u) =

ˆ
Ω

W
(
(∇u)A−1

)
dx ∀u ∈ H1(Ω,R3), (3.1)

where the energy density W : R3×3 → [0,∞] obeys the principles of material frame

invariance (with respect to the special orthogonal group SO(3)), normalisation, non-

degeneracy, and material consistency, valid for all F ∈ R3×3, R ∈ SO(3):

W (RF ) = W (F ), W (Id3) = 0, W (F ) ≥ c dist2(F, SO(3)),

W (F )→ +∞ as detF → 0+, and: ∀detF ≤ 0 W (F ) = +∞.
(3.2)

The model (3.2) postulates that the body Ω seeks to realize a configuration with a pre-

scribed metric g by means of an orientation preserving isometric immersion u : Ω→ R3:

(∇u)T∇u = g and det∇u > 0 in ω,

Although any G always has a Lipschitz u satisfying the first condition above, one can show

that any such immersion changes its orientation in any neighbourhood of a point where

the Riemann curvature [Rij,kl]i,j,k,l=1...3 of G is not zero. Excluding such nonphysical

deformations leads to the energy E in (3.1), that quantifies the total pointwise deviation of

the deformation gradient ∇u from G1/2, modulo rotations. The infimum of E in absence

of forces or boundary conditions is then indeed strictly positive for a non-Euclidean G:

Theorem 3.1. [152] If [Rij,kl] 6≡ 0 in Ω, then inf
{
E(u); u ∈ H1(Ω,R3)

}
> 0.

The above statement points to the dichotomy: either g and E are, by a smooth change

of variable equivalent to the scenario with g = Id3 and min E = 0, or otherwise the zero

energy level cannot be achieved even in the limit of weakly regular H1 deformations. The

latter case points to existence of residual stress at free equilibria.
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3.2. Thin prestrained films. Consider now a family (Ωε, uε, g, A, Eε)ε>0 (or more gen-

erally (Ωε, uε, gε, Aε, Eε)ε>0) given in function of the thickness parameter ε in:

Ωε = ω ×
(
− ε

2
,
ε

2

)
.

The open, bounded set ω ⊂ R2 with Lipschitz boundary is viewed as the midplate of the

thin film Ωε, on which we pose the energy of elastic deformations:

Eε(uε) =
1

ε

ˆ
Ωε
W
(
(∇uε)A−1

)
dx ∀uε ∈ H1(Ωε,R3). (3.3)

The main objective of study is now to predict the scaling of inf Eε as ε→ 0 and to analyze

the asymptotic behaviour of minimizing deformations uε in relation to the curvatures

of the prestrain A = g1/2. Similarly as in Theorem 3.1 there is a connection between

inf Eε and existence of isometric immersions, which is now more subtle. In the context

of dimension reduction, this connection relies on the isometric immersions of the metric

g(·, 0)2×2 on ω into R3, corresponding to parametrised surfaces y : ω → R3 satisfying:

(∇y)T∇y = g(·, 0)2×2 in ω (3.4)

The following result was proved first for g = g(x′) in [152] and was further generalized to

the abstract setting of Riemannian manifolds in [131]:

Theorem 3.2. [23] Let {uε ∈ H1(Ωε,R3)}ε→0 satisfy Eε(uε) ≤ Cε2. Then we have:

(i) (Compactness). There exist {cε ∈ R3, Rε ∈ SO(3)}ε→0 such that the rescaled

deformations {yε(x′, x3) = Rεuε(x′, εx3)− cε}ε→0 converge up to a subsequence

in H1(Ω1,R3), to some y ∈ H2(Ω1,R3) depending only on x′ and satisfying (3.4).

(ii) (Liminf inequality). There holds the lower bound:

lim inf
ε→0

1

ε2
Eε(uε) ≥ I2,g(y) =

1

24

ˆ
ω

Q2

(
x′, (∇y)T∇~b− 1

2
∂3g(·, 0)2×2

)
dx′, (3.5)

where Q2(x′, ·) are nonnegative quadratic forms derived from D2W (Id3), and

where ~b satisfies:
[
∂1y, ∂2y,~b

]
∈ SO(3)g(·, 0)1/2. Equivalently, ~b is the Cosserat

vector comprising the nonzero shear, in addition to ~N that is normal to y(ω):

~b = (∇y)g−1
2×2

[
g13

g23

]
+

√
det g√

det g2×2

~N, ~N =
∂1y × ∂2y

|∂1y × ∂2y|
. (3.6)

Moreover, there holds:

(iii) (Limsup inequality). If y ∈ H2(ω,R3) satisfies (3.4), then convergence as in (i)

holds for some {uε ∈ H1(Ωε,R3)}ε→0 with cε = 0, Rε = Id3, and:

lim
ε→0

1

ε2
Eε(uε) = I2,g(y).

Theorem 3.2 may be restated as the following Γ-convergence:

1

ε2
Eε
(
y(x′, εx3)

) Γ−→
{
I2,g(y) if y ∈ H2(ω,R3) and it satisfies (3.4)

+∞ otherwise,

with respect to convergence in H1(Ω1,R3). Consequently, there is a one-to-one correspon-

dence between (global) approximate minimizers of Eε and (global) minimizers of I2,g,

provided that g(·, 0)2×2 has a H2-regular isometric immersion from ω to R3. We remark
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that, in general, one cannot expect Eε to have a minimizer. The lowersemicontinuity of E
in (3.1) is tied to the quasiconvexity of the energy density, whereas it is known that the

prototypical density F 7→ dist2(F, SO(3)) is not even rank-one convex [217].

From Theorem 3.2, one can also deduce a counterpart of Theorem 3.1, in the context

of thin prestrain films, stating equivalence of existence of a H2 isometric immersion of

a 2-dimensional metric ḡ in R3, with the energy scaling inf Eε ≤ Cε2 for some smooth

(equivalently, for any) metric g on Ω1 such that g(·, 0)2×2 = ḡ.

3.3. Other energy scalings. A separate energy bound may be obtained by constructing

deformations uh through the Kirchhoff-Love extension of isometric immersions of regularity

C1,α. Existence of such is guaranteed by techniques of convex integration [60] for all

α < 1/5, and this threshold implies the particular energy scaling bound in:

Theorem 3.3. [141] If ω ⊂ R2 is simply connected with C1,1-regular boundary, then:

inf Eε ≤ Cεβ ∀β < 2

3
.

Not much is known about the asymptotic behaviour of deformations with the energy

scaling Eε(uε) ≤ Cεβ for β < 2. We refer the reader to the list of available results in [141],

where we also point out the connection of the analytical results to experiments. On the

other hand, in the opposite regime where β > 2, the complete information is available.

We start by observing that in view of Theorem 3.2, there holds:

lim
ε→0

1

ε2
inf Eε = 0

iff there exists y ∈ H2(ω,R3) and ~b in (3.6), with:

(∇y)T∇y = g(·, 0)2×2 and sym
(
(∇y)T∇~b

)
=

1

2
∂3g(·, 0)2×2 in ω. (3.7)

The above compatibility of tensors g(·, 0)2×2 and ∂3g(·, 0)2×2 is proved in [155, 23, 140] to

be equivalent to the satisfaction of the Gauss-Codazzi-Mainardi equations for the first and

second fundamental forms: I = (∇y)T∇y, II = (∇y)T∇ ~N =
√
g33
(
sym((∇y)T∇~b) −

1
2∂3g(·, 0)2×2

)
− 1√

g33

[
Γ3
ij(·, 0)

]
i,j=1...2

. These turn out to be precisely expressed by:

R12,12(·, 0) = R12,13(·, 0) = R12,23(·, 0) = 0 in ω. (3.8)

Moreover, if (3.8) holds, then Ker I2,g =
{
Ry0+c; R ∈ SO(3), c ∈ R3

}
where y0 : ω̄ → R3

is the unique “compatible” smooth isometric immersion satisfying (3.7) together with its

corresponding Cosserat vector ~b = ~b1. Further, by a direct construction: inf Eε ≤ Cε4.

These statements may be generalized beyond β = 4: the only viable scalings of

inf Eε ∼ εβ in the regime β ≥ 2 are the even powers β = 2n. Namely, we have:

Theorem 3.4. [139] For every n ≥ 2, if limε→0
1
ε2n inf Eε = 0 then inf Eε ≤ Cε2(n+1).

Moreover, the following three statements are equivalent:

(i) inf Eε ≤ Cε2(n+1).

(ii) R12,12(·, 0) = R12,13(·, 0) = R12,23(·, 0) = 0 and ∂
(k)
3 Ri3,j3(·, 0) = 0 in ω, for all

k = 0 . . . n− 2 and all i, j = 1 . . . 2.
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(iii) There exist smooth fields y0, {~bk}n+1
k=1 : ω̄ → R3, frames B0 =

[
∂1y0, ∂2y0, ~b1

]
,{

Bk =
[
∂1
~bk, ∂2

~bk, ~bk+1

]}n
k=1

: ω̄ → R3×3, such that:

m∑
k=0

(
m

k

)
BTk Bm−k −

∂
(m)
3 g(·, 0) = 0 for all m = 0 . . . n.

Equivalently:
( n∑
k=0

xk3
k!
Bk

)T( n∑
k=0

xk3
k!
Bk

)
= g(x′, x3)+O(εn+1) on Ωε as ε→ 0.

The field y0 is the unique smooth isometric immersion of g(·, 0)2×2 into R3 for

which I2,g(y0) = 0.

We note that if R(·, 0) = 0 and ∂
(m)
3

[
Ri3,j3(·, 0)

]
i,j=1...2

= 0 on ω for all m = 0 . . . n−2,

but ∂
(n−1)
3

[
Ri3,j3(·, 0)

]
i,j=1...2

6= 0, then: cε2(n+1) ≤ inf Eε ≤ Cε2(n+1) for some c, C > 0.

The conformal metrics g(x′, x3) = e2φ(x3)Id3 provide a class of examples for the viability

of all scalings: inf Eε ∼ ε2n by choosing φ(k)(0) = 0 for k = 1 . . . n− 1 and φ(n)(0) 6= 0.

A crucial ingredient in proving compactness of sequences of deformations that satisfy

an energy bound in Theorem 3.4 (i), is the following approximation result:

Theorem 3.5. [139, 155] Assume any of the equivalent conditions in Theorem 3.4, for

some n ≥ 1. Then, given {uε ∈ H1(Ωε,R3)}ε→0 such that Eε(uε) ≤ Cε2(n+1), there

exists {Rε ∈ H1(ω, SO(3))}ε→0 with:

1

ε

ˆ
Ωε

∣∣∇uε −Rε n∑
k=0

xk3
k!
Bk
∣∣2 dx ≤ Cε2(n+1) and

ˆ
ω

|∇Rε(x′)|2 dx′ ≤ Cε2n.

When n = 0, the above bounds are deduced from the celebrated geometric rigidity

estimate in [91], which is the nonlinear version of Korn’s inequality. Dependence of the

optimal constants in these inequalities on the various geometric features of the domains

where they are posed, has been addressed for example in [149, 150, 106, 216].

3.4. The infinite hierarchy of Γ-limits. To derive a counterpart of Theorem 3.2 for

higher energy scalings, one observes the following compactness properties under the

assumption Eε(uε) ≤ Cε2(n+1). First [139], there exist {cε ∈ R3, Rε ∈ SO(3)}ε→0 with:

V ε(x′) =
1

εn

 ε/2

−ε/2
(R̄ε)T

(
uε(x′, x3)− cε

)
−
(
y0(x′) +

n∑
k=1

xk3
k!
~bk(x′)

)
dx3

converging as ε→ 0 in H1(ω,R3), to a limit V that is an infinitesimal isometry:

V ∈ Vy0 =
{
V ∈ H2(ω,R3); sym

(
(∇y0)T∇V

)
= 0
}
.

In particular, there exists ~p ∈ H1(ω,R3) with sym
(
BT0
[
∇V, ~p

])
= 0. Second, the strains:

1

ε
sym

(
(∇y0)T∇V ε

)
converge as ε→ 0, weakly in L2(ω,R2×2) to a limiting S in the finite strain space:

S ∈ Sy0
= closureL2

{
sym((∇y0)T∇w); w ∈ H1(ω,R3)

}
.
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The space Sy0
can be identified, in particular, in the following two cases on ω simply

connected. When y0 = id2, then Sy0
= {S ∈ L2(ω,R2×2

sym); curl curlS = 0}. When Gauss’s

curvature κ((∇y0)T∇y0) = κ
(
g(·, 0)2×2) > 0 in ω̄, then Sy0

= L2(ω,R2×2
sym) [147].

We further have Γ-convergence with respect to the above compactness statements:

Theorem 3.6. [140, 139] In the energy (3.3) scaling regimes in Theorem 3.4, there holds:

(i) For the von Kármán-like regime, we have for all V ∈ Vy0 and S ∈ Sy0 :

1

ε4
Eε Γ−→ I4,g(V,S) =

1

2

ˆ
ω

Q2

(
x′,S(x′) +

1

2
∇V (x′)T∇V (x′) +

1

24
∇~b1(x′)T∇~b1(x′)− 1

48
∂33g(x′, 0)2×2︸ ︷︷ ︸

stretching

)
dx′

+
1

24

ˆ
ω

Q2

(
x′,∇y0(x′)T∇~p(x′) +∇V (x′)T∇~b1(x′)︸ ︷︷ ︸

bending

)
dx′

+
1

1440

ˆ
ω

Q2

(
x′,

[
R13,13 R13,23

R13,23 R23,23

]
︸ ︷︷ ︸

curvature

)
dx′.

When g = Id3 then I4,Id3(V,S) reduces to the classical von Kármán functional, given in

terms of the out-of-plane scalar displacement v in V = (αx⊥+β, v) for which ~p = (−∇v, 0),

and the in-plane displacement w in S = sym∇w:

I4(v, w) =
1

2

ˆ
ω

Q2

(
sym∇w +

1

2
∇v ⊗∇v

)
dx′ +

1

24

ˆ
ω

Q2(∇2v) dx′. (3.9)

(ii) For all n ≥ 2 (which is the case parallel to linear elasticity), we have for all V ∈ Vy0
:

1

ε2(n+1)
Eε Γ−→ I2(n+1),g(V )

=
1

24

ˆ
ω

Q2

(
x′, (∇y0)T∇~p+ (∇V )T∇~b1 + αn

[
∂

(n−1)
3 Ri3,j3

]
i,j=1...2︸ ︷︷ ︸

bending

)
dx′

+ βn

ˆ
ω

Q2

(
x′,PS⊥y0

([
∂

(n−1)
3 Ri3,j3

]
i,j=1...2

))
dx′

+ γn

ˆ
ω

Q2

(
x′,PSy0

([
∂

(n−1)
3 Ri3,j3

]
i,j=1...2

))
dx′.

Above, PSy0 , PS⊥y0 denote orthogonal projections onto Sy0 and onto its L2-orthogonal

complement S⊥y0
. Coefficients αn, βn, γn ≥ 0 are given explicitly and αn 6= 0 iff n is even.

For g = Id3, each I2(n+1),Id3
reduces then to the classical linear elasticity:

I2(n+1)(v) =
1

24

ˆ
ω

Q2

(
∇2v

)
dx′. (3.10)

The functional I4,g consists of stretching and bending (with respect to the unique

isometric immersion y0 that gives the zero energy in the prior Γ-limit (3.5)) plus a new

term, which quantifies the remaining three Riemann curvatures. In the present geometric
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context, the bending term (∇y0)T∇~p + (∇V )T∇~b1 in I2(n+1),g is of order εnx3 and

it interacts with the curvature
[
∂

(n−1)
3 Ri3,j3(·, 0)

]
i,j=1...2

which is of order xn+1
3 . The

interaction occurs iff the two terms have the same parity in x3, namely at even n. The

two remaining terms measure the L2 norm of
[
∂

(n−1)
3 Ri3,j3(·, 0)

]
i,j=1...2

, with distinct

weights assigned to Sy0
and

(
Sy0

)⊥
projections, according to the parity of n.

Corollary 3.7. In the context of Theorem 3.6, there holds:

inf
Vy0
I2(n+1),g ∼

∥∥[∂(n−1)
3 Ri3,j3(·, 0)

]
i,j=1...2

‖2L2(ω).

We gather the findings about the infinite hierarchy of limiting models in Figure 3.

β
asymptotic
expansion

constraint / regularity limiting energy Iβ,g

2
y(x′){
3d: y(x′)+x3

~b(x′)
} y ∈W 2,2

(∇y)T∇y = g(x′, 0)2×2

c‖(∇y)T∇~b− 1
2
∂3g(x′, 0)2×2‖2Q2[

∂3y, ∂2y,~b
]
∈ SO(3)g(x′, 0)1/2

4
y0(x′) + εV (x′)

+ ε2wε(x′)

R12,12, R12,13, R12,23(x′, 0) = 0(
(∇y0)T∇V

)
sym

= 0,(
(∇y0)T∇wh

)
sym
→ S

V ∈W 2,2(ω,R), wε ∈W 1,2(ω,R3)

c1‖ 1
2

(∇V )T∇V + S + 1
24

(∇~b1)T∇~b1

− 1
48
∂33g(x′, 0)2×2‖2Q2

+c2‖(∇y0)T∇~p+ (∇V )T∇~b1‖2Q2

+c3‖
[
Ri3,j3(x′, 0)

]
i,j=1,2

‖2Q2

6

...
y0(x′) + ε2V (x′)

Rab,cd(x′, 0) = 0(
(∇y0)T∇V

)
sym

= 0, V ∈W 2,2

c2‖(∇y0)T∇~p+ (∇V )T∇~b1 + α
[
∂3R

]
‖2Q2

+c3‖PS⊥y0
[
∂3R

]
‖2Q2

+ c4‖PSy0
[
∂3R

]
‖2Q2

2n

...

y0(x′) + εn−1V (x′){
3d: y0+

∑n−1
k=1

xk3
k!
~bk(x′)

+εn−1V (x′)

+εn−1x3~p(x
′)
}

Rab,cd(x′, 0) = 0[
∂

(k)
3 R

]
(x′, 0) = 0 ∀k ≤ n− 3(

(∇y0)T∇V
)
sym

= 0, V ∈W 2,2

c2‖(∇y0)T∇~p+ (∇V )T∇~b1 + α
[
∂

(n−2)
3 R

]
‖2Q2

+c3‖PS⊥y0
[
∂

(n−2)
3 R

]
‖2Q2

+c4‖PSy0
[
∂

(n−2)
3 R

]
‖2Q2

Fig. 3. The infinite hierarchy of Γ-limits for prestrained films (β ≥ 2).

3.5. The weak prestrain. Assume now that the given prestrain Aε = (gε)1/2 on Ωε is

incompatible only through smooth perturbations S,B : ω̄ → R3×3
sym of higher order in:

Aε(x′, x3) = Id3 + εγS(x′) + εγ/2x3B(x′). (3.11)

The correlation of stretching and bending exponents γ, γ/2 may be relaxed [121]. In this

context, the counterpart of Theorem 3.2 is as follows:

Theorem 3.8. [151] Assume that a family deformations {uε ∈ H1(Ωε,R3)}ε→0 satisfies

the energy bound: Eε(uε) ≤ Cεγ+2, for some γ ∈ (1, 2). Then we have:

(i) (Compactness). There exist {Rε ∈ SO(3), cε ∈ R3}ε→0 such that for {yε(x′, x3) =

Rεuε(x′, εx3)−cε}ε→0 the following holds. First, {yε} converge to x′ inH1(Ω1,R3).
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Second, the fields {V ε(x′) = 1
εγ/2

ffl 1/2

−1/2
yε(x′, t)−x′ dt}h→0 converge in H1(ω,R3),

up to a subsequence, to some V of the form V = (0, 0, v)T , and satisfying:

v ∈ H2(ω,R), det∇2v = −curl curlS2×2. (3.12)

(ii) (Γ-convergence). If ω is simply connected with C1,1 boundary, then we have:

1

εγ+2
Eε(uh)

Γ−→ IS,B(v) =
1

12

ˆ
ω

Q2

(
x′,∇2v +B2×2

)
dx′. (3.13)

As before, one can further deduce that the Monge-Ampére problem (3.12) has a H2-

regular solution iff inf Eε ≤ Cεγ+2. Moreover, cεγ+2 ≤ inf Eε ≤ Cεγ+2 for some c, C > 0

is equivalent to the solvability of (3.12) and the simultaneous non-vanishing of the lowest

order terms (i.e. terms of order γ and γ
2 , respectively) in curvatures R12,12(·, 0) and

[R12,i3(·, 0)]i=1,2. This last condition is equivalent to:

curl curlS2×2 + detB2×2 6≡ 0 or curlB2×2 6≡ 0 in ω.

We mention that a parallel analysis of the weak prestrain as in (3.11), but imposed on

a shell rather than a plate Ωε, has been carried out in [144]. When the mid-surface

curvature are of order given by a power of ε and hence compete with the order of the

prestrain, the resulting Γ-limit involves a further Monge-Ampère-type constraint.

Construction of the recovery sequence in the proof of Theorem 3.8 suggests to view

the Monge-Ampére equation det∇2v = f through its very weak form, well defined for all

v ∈ H1
loc(ω,R), in the sense of distributions:

Det∇2v
.
= −1

2
curl curl(∇v ⊗∇v) = f in ω. (3.14)

An application of techniques of convex integration [154, 60] assure that for any smooth

f : ω̄ → R and α < 1
5 , the set of C1,α(ω̄) solutions to (3.14) is dense in C0(ω̄). One

consequence of this result is that the operator Det∇2 is weakly discontinuous everywhere

in H1(ω). By an explicit construction, there follows a counterpart of Lemma 3.3:

Theorem 3.9. [121] Assume that ω ⊂ R2 is simply connected with C1,1 boundary. Then:

inf Eε ≤ Cεβ for all γ ∈
[2
7
, 2
]

and β <
5

3
γ +

2

3
,

inf Eε ≤ Cεγ for all γ ∈
(
0,

2

7

)
.

We point out [104], that one can consider the generalization of (3.14) to problems

posed on higher-dimensional domains ω ⊂ RN , in the context of dimension reduction and

isometry matching. The set {sym∇w; H1(ω,RN )} can be shown to coincide with the

kernel of the operator Curl2 , where

Curl2 (A) =
[
Curl2 (A)ab,cd

]
a,b,c,d=1 ...N

,

defined for A ∈ L2(ω,RN×N ), is given as the application of two exterior derivatives in:

Curl2 (A)ab,cd =
[
∂a∂cAbd + ∂b∂dAac − ∂a∂dAbc − ∂b∂cAad

]
a,b,c,d=1 ...N

.

Then: Rab,cd(IdN + δ2A) = − δ
2

2 Curl2 (A)ab,cd + o(δ2 ). Taking A = ∇v ⊗∇v, one can

see that a scalar displacement field v on ω can be matched by a higher order perturbation
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vector field w, so that defining φ̄ε(x′) = x′ +
(
ε2w(x′), εv(x′)

)T
: ω → RN , the metric is

matched in (∇φ̄)T∇φ̄ = IdN + ε2A+O(ε4) iff
[

det(∇2v)ab,cd
]
ab,cd

= −Curl2 (A).

3.6. Classical nonlinear elasticity: case of no prestrain. We now list results concerning

the dimension reduction of thin elastic shells, where instead of the imposed prestrain, the

stored energy is due to the presence of external loads. Consider a family {Sε}ε→0 of thin

shells around an oriented 2d midsurface S with the unit normal vector ~n:

Sε = {x+ t~n(x); x ∈ S, −ε/2 < t < ε/2} ⊂ R3

The elastic energy (with density W that satisfies (1.1)) of deformations and the total

energy in presence of the applied force fε ∈ L2(Sε,R3) are given, respectively, by:

Eε(uε) =
1

ε

ˆ
Sε
W (∇uε), Jε(uε) = Eε(uε)− 1

ε

ˆ
Sε
fεuε ∀uε ∈W 1,2(Sε,R3).

It has been shown [92] that if {fε}ε→0 scale like εα, then Eε(uε) at approximate minimizers

uε of Jε scale like εβ , with β = α for 0 ≤ α ≤ 2 and β = 2α− 2 for α > 2. The dimension

reduction question in this context consists thus of identifying the Γ-limits Iβ,S of the

rescaled energies { 1
εβ
Eε}ε→0. Contrary to the curvature-driven shape formation, there is

no energy quantization and any scaling exponent β > 0 is viable.

In case of S ⊂ R2 i.e. when {Sε}ε→0 is a family of thin plates, such Γ-convergence

was first established for β = 0 [136], and later [92] for all β ≥ 2. This last regime

corresponds to a rigid behavior since the limiting deformations are isometries if β = 2 (in

accordance with the general result in Theorem 3.2), or infinitesimal isometries if β > 2

(see the compactness analysis in subsection 3.4). One particular case is β = 4, where the

derivation yields the von Kármán theory (3.9), then β > 4 with the Γ-limit as in (3.10),

and β ∈ (2, 4) where the result is effectively included in Theorem 3.8. We gather these

results in Figure 4, which should be compared with Figure 3.

3.7. The infinite hierarchy of shell theories and the matching properties. The first result

for the case when S is a surface of arbitrary geometry was given in [136] as the membrane

theory (β = 0) where the limit I0,S depends only on the stretching and shearing. The

case β = 2 was analyzed in [90] and proved to reduce to the flexural shell model, i.e. a

geometrically nonlinear pure bending, constrained to isometric immersions of S. The

energy I2,S depends then on the change of curvature as in Theorem 3.2.

For β = 4 the Γ-limit I4,S , as shown in [145, 146, 147], acts on the first order isometries:

V ∈ V1 = Vid2
=
{
V ∈ H2(S,R3); sym∇V = 0

}
i.e. displacements of S whose covariant derivative is skew-symmetric, and finite strains:

B ∈ S = Sid2 = closureL2{sym∇w; w ∈ H1(S,R3)}

(compare the definitions of Vy0 ,Sy0 in section 3.4). The limiting energy consists of two

terms corresponding to the stretching (second order change in metric) and bending (first

order change in the second fundamental form II = ∇ ~N on S) of a family of deformations:

{φη = id + ηV + η2wη}η→0
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scaling

exponent β

asymptotic

expansion of

minimizing uε|ω

constraint

/ regularity
Γ− limit Iβ,S

β = 2

Kirchhoff

y(x′){
3d: y(x′)+x3~n(x′)

} y ∈W 2,2(ω,R3)

(∇y)T∇y = Id2

c‖(∇y)T∇ ~N‖2Q2

2 < β < 4

linearised Kirchhoff
x′ + εβ/2−1v(x′)x3

v ∈W 2,2(ω,R)

det∇2v = 0
c‖∇2v‖2Q2

β = 4

von Kármán

x′ + εv(x′)x3

+ε2w(x′)

v ∈W 2,2(ω,R)

w ∈W 1,2(ω,R2)

c1‖ 1
2∇v

⊗2 + (∇w)sym‖2Q2

+c2‖∇2v‖2Q2

β > 4

linear elasticity
x′ + εβ/2−1v(x′)x3 v ∈W 2,2(ω,R) c‖∇2v‖2Q2

Fig. 4. The finite hierarchy of Γ-limits for plates (β ≥ 2)

of S, induced by displacements V ∈ V1 and wη satisfying limη→0 sym∇wη = B. The

out-of-plane displacements v present in (3.9) are therefore replaced by the vector fields in

V1, preserving the metric on S up to first order. For β > 4 the limiting energy consists

[145, 146] only of the bending term and it coincides with the linear elasticity.

The form of Iβ,S for any β > 2 and arbitrary S has been conjectured in [153]. Namely,

Iβ,S acts on the space of k-th order infinitesimal isometries Vk, where k is such that:

β ∈ [βk+1, βk) where βn = 2 + 2/n for all n ≥ 1.

The space Vk consists of k-tuples (V1, . . . , Vk) of displacements Vi : S → R3, such that

the deformations {φη = idS +
∑k
i=1 η

iVi}η→0 preserve the metric on S up to order ηk,

i.e. (∇φη)T∇φη − Id2 = O(ηk+1). Further, setting η = εβ/2−1, we have:

(i) When β = βk+1 then Iβ,S '
´
S
Q2 (x, δk+1IS) +

´
S
Q2 (x, δ1IIS), where δk+1IS

is the change of metric on S of the order ηk+1, generated by the family of

deformations {φη}η→0 and δ1IIS is the first order (i.e. order η) change in the

second fundamental form IIS of S.

(ii) When β ∈ (βk+1, βk) then Iβ,S =
´
S
Q2 (x, δ1IIS).

(iii) The constraint of k-th order isometry Vk may be relaxed to that of Vm, m < k,

if S has the following m 7→ k matching property. For every (V1, . . . Vm) ∈ Vm
there exist sequences of corrections V ηm+1, . . . , V

η
k , equibounded in η, such that:

φ̃η = id +
∑m
i=1 η

iVi +
∑k
i=m+1 η

iV ηi preserve the metric on S up to order ηk.

The above is supported by all the rigorously derived models. In particular, plates

enjoy the 2 7→ ∞ matching property [92], i.e. every W 1,∞ ∩H2 element of V2 may be

matched to an exact isometry in the sense of (iii) above. Hence all theories for β ∈ (2, 4)

collapse to a single theory (linearized Kirchhoff model, see Figure 4). Further, elliptic

(i.e. strictly convex up to the boundary) surfaces enjoy [147] a matching property of
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1 7→ ∞, which is stronger than that in case of plates. Namely, on S elliptic and C4,α,

every V ∈ V1 ∩ C2,α, possesses a sequence {wη}η→0, equibounded in C2,α(S̄,R3), and

such that φη = idS + ηV + η2wη is an (exact) isometry for all η � 1. As a consequence,

for elliptic surfaces with sufficient regularity the Γ-limit of the nonlinear elastic energies

ε−βEε for any scaling regime β > 2 is given by the bending functional constrained to the

first order isometries, as in the case β > 4.

In [111] a further matching property of isometries on developable surfaces without affine

regions, has been proved. Namely, on such S of regularity C2k,1, every V ∈ V1 ∩ C2k−1,1

enjoys 1 7→ k matching property. The implication for elasticity of thin shells with smooth

developable mid-surface is that, again, the only small slope theory is the linear theory; a

developable shell transitions directly from the linear regime to fully nonlinear bending

if the applied forces are adequately increased. While the von Kármán theory describes

buckling of thin plates, the equivalent variationally correct theory for developable shells

is the purely nonlinear bending.

3.8. Remarks. The related problem of dynamical viscoelasticity in presence of prestrain

has not been satisfactorily addressed, to date. To understand how growth patterns change

in response to shape, one must turn to experiments. The simple developmental feedback

from shape to growth has been studied in [148], where we initiated this analysis by

showing the local and global in time existence of the classical solutions to a general

class of stress-assisted diffusion systems. As a follow-up, it would be interesting to

tackle the questions of stability of viscoelastic prestrained shock profiles, using the Evans

function-based analysis as in [17]. The inverse design problems in morphogenesis require

a separate attention, for a handful of simple analytical observations see [3]. Finally, we

point out a plethora of parallel discrete problems (e.g. origami, kirigami) both in the

static description as well as in the shape evolution through singular prestrain.
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4. Micromagnetics of curved thin films (By Giovanni Di Fratta). The analysis

of micromagnetic thin films is a subject with a long history. It dates back to the seminal

papers [101, 40], where the authors show that in planar thin films, the effect of the

demagnetizing field operator drops down to an easy-surface anisotropy term. In the last

decade, magnetic systems with the shape of a curved thin film have been subject to

extensive experimental and theoretical research (nanotubes, 3d helices, thin spherical

shells). The wide range of magnetic properties emerging in curved geometries makes them

well-suited for spintronic applications, from racetrack memory devices to spin-wave filters

(see [204, 205] for topical reviews). The embedding of two-dimensional structures in the

three-dimensional space permits altering the system’s magnetic properties by tailoring its

local curvature. It turns out that even in the absence of Dzyaloshinskii-Moriya interaction

(DMI) [81, 175], curved geometries can induce an effective antisymmetric interaction that

supports the emergence of magnetic skyrmions, i.e., of topologically protected states to

which a topological degree can be assigned.

In the next section, we define magnetic skyrmions in the mathematical framework

of the variational theory of micromagnetism, which is also quickly recalled in the same

section. After a brief review of magnetic thin films in planar structures, we present the

recent developments about curved thin films, which are the geometric structures where

magnetic skyrmions naturally emerge. For that, we focus on the general setting of a

bounded C2-surface S ⊆ R3. Then, we concentrate on the analysis of magnetic skyrmions

in spherical thin films (S = S2), and we describe the challenges still open. We conclude

with a section on the analysis of magnetic skyrmions in cylindrical surfaces that highlights

how simpler geometries can be the source of valuable techniques for the analysis of more

complex scenarios.

4.1. Magnetic skyrmions in curved geometries. Skyrmions are a class of solitons,

topologically stable and with quasiparticle properties: they behave like particles, but

they are inherently more complex structures due to their collective nature. They owe

their name to the nuclear physicist Tony Skyrme, who, in 1962, proposed a description of

elementary subatomic particles as geometric twists in a continuous quantum field [199].

From the mathematical perspective, magnetic skyrmions emerge as topologically

protected magnetization textures that carry a specific topological charge, referred to

as the skyrmion number . If M is a compact and smooth hypersurface of Rn+1, and

m :M→ Sn is a sufficiently smooth vector field on M, the skyrmion number of m is

defined by the Kronecker integral [190]

Nsk (m) :=
1

|Sn|

ˆ
M

m∗ωn, (4.1)

with ωn(x) :=
∑n
j=1(−1)j−1xjdx1∧. . .∧d̂xj∧. . .∧dxn the volume form on Sn, and m∗ωn

the pull-back of ωn by m on M. According to Hadamard, Nsk (m) is always an integer

number and coincides with the topological degree of m. Also, by Hopf’s theorem [171],

skyrmions with different topological charges belong to different homotopy classes; therefore,

from the physical point of view, skyrmions are expected to be topologically protected

against external perturbations and thermal fluctuations.
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Since their discovery, magnetic skyrmions have been the object of intense research

work in condensed matter physics. Their stability, reduced size, and the small current

densities sufficient to control them, make magnetic skyrmions extremely attractive for

applications in modern spintronics [85]. An in-depth understanding of their rich structure

(e.g., chirality, topological charge, stability) leads to challenging problems in a subject

area where geometry and continuum mechanics meet topology and analysis, and this has

raised interest in magnetic skyrmions also from a mathematical perspective [11, 21, 57,

72, 74, 76, 82, 83, 115, 117, 132, 156, 157, 166, 169, 170, 179].

4.2. The variational theory of micromagnetism. The appropriate theoretical model

for magnetic phenomena depends on the length scale of interest. Models at the level of

individual atoms are necessarily quantum mechanical. However, for length scales down to

tens of nanometers, there is a well-established continuum theory of micromagnetism [34,

113], which dates back to the seminal work of Landau–Lifshitz on fine ferromagnetic

particles [134]. In this theory, the observable states of a rigid ferromagnetic particle,

occupying a region Ω ⊆ R3, are described by its magnetizationM, a vector field verifying

the fundamental constraint of micromagnetism: there is a material-dependent constant

Ms such that |M| = Ms in Ω. The spontaneous magnetization Ms := Ms(T ) depends only

on the temperature T and vanishes above a critical value Tc, characteristic of each crystal

type, known as the Curie temperature. When the specimen is at a fixed temperature

well below Tc, the function Ms is constant in Ω, and the magnetization takes the form

M := Msm, where m : Ω → S2 is a vector field with values in the unit sphere of R3

(cf. [34, 75, 113]).

Although the length of m is constant in space, this is generally not the case for its

direction. For single crystal ferromagnets (cf. [1, 5, 57]), the observable states of the

magnetization are the local minimizers of the micromagnetic energy functional which,

after normalization, reads as

FΩ (m) :=
1

2

ˆ
Ω

|∇m|2

=:EΩ(m)

+

ˆ
Ω

ϕan (m)

=:AΩ(m)

+
1

2

ˆ
R3

|hd [mχΩ]|2

=:WΩ(m)

−
ˆ

Ω

ha ·m.

=:ZΩ(m)

(4.2)

Here, m ∈ H1(Ω,S2), and mχΩ is the extension by zero of m to R3. The exchange

energy EΩ penalizes nonuniformities in the orientation of the magnetization. The mag-

netocrystalline anisotropy energy AΩ accounts to the existence of preferred directions

of the magnetization: its energy density ϕan : S2 → R+ vanishes only on a finite set

of directions (the so-called easy directions). The magnetostatic self-energy WΩ is the

energy due to the demagnetizing field hd generated by m. From the mathematical point

of view, for every m ∈ L2(R3,R3), hd[m] is the unique solution in L2(R3,R3) of the

Maxwell-Ampére equations of magnetostatics:

curlhd = 0, div b = 0, b = µ0 (hd + m) . (4.3)

Here, b denotes the magnetic flux density, and µ0 is the magnetic permeability of

the vacuum. The Zeeman energy ZΩ models the tendency of a specimen to have the

magnetization aligned with the applied field ha (cf. Figure 5). The energy contributions

AΩ and ZΩ are of fundamental importance in ferromagnetism. However, from the

variational point of view, they typically behave like continuous perturbations, and their
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m ha
m

Fig. 5. Below the Curie temperature (T � Tc), the modulus of

M = Msm is constant in Ω (but not the direction). The direction

of M can be modified/controlled by an external magnetic field ha.

analysis is usually straightforward. To streamline the presentation, we will often neglect

these terms.

The variational problem (4.2) is non-convex, non-local, and contains multiple length

scales. The four terms in the energy functional (4.2) consider effects originating from

different spatial scales, such as short-range exchange forces and long-range magnetostatic

interactions. The competition among the four contributions in (4.2) explains most of the

striking pictures of the magnetization observable in ferromagnetic materials; in particular,

the domain structure suggested by Weiss, i.e., regions of uniform or slowly varying

magnetization (magnetic domains) separated by thin transition layers (domain walls)

(see, e.g., [62, 63, 118, 119, 120, 174, 188], and the references therein).

Recent advances in nanotechnology have led to the fabrication of ultrathin films (and

multilayers) with a thickness down to several atomic layers and a lateral extent down to

tens of nanometers. These structures often display unusual magnetic properties connected

to a prominent influence of interfacial effects; first and foremost, the emergence of magnetic

skyrmions originating from the Dzyaloshinskii-Moriya interaction (DMI) [81, 175]. In

thin films, DMI is closely related to reflection symmetry breaking, whereas a lack of

inversion symmetry is the primary cause in bulk magnetic materials. The bulk DMI

corresponds to the trace of the chirality tensor, which leads to the energy contribution

DΩ (m) := γ

ˆ
Ω

curlm ·m. (4.4)

The normalized constant γ ∈ R is the bulk DMI constant, and its sign affects the chirality

of the ferromagnetic system [25, 181].

However, the main interest in curved geometry relies on the observation that they

can host magnetic skyrmions even when no spin-orbit coupling mechanism (in the guise

of DMI) is considered (cf. [94, 130]). The evidence of these spontaneous states sheds

light on the role of the geometry in magnetism: chiral spin-textures can be stabilized by

curvature effects only, in contrast to the planar case where DMI is required [81, 175]. For

that reason, from now on, we will focus on the micromagnetic energy functional

GΩ (m) :=
1

2

ˆ
Ω

|∇m|2 +
1

2

ˆ
R3

|hd [mχΩ]|2 +

ˆ
Ω

ϕan (m) , (4.5)

and we will be interested in the asymptotic regime of curved thin films.

Remark 4.1. Although we will focus on the variational theory of micromagnetism,

we will need to refer to magnetization dynamics from time to time. We recall that the

motion of non-equilibrium magnetizations is governed by the Landau–Lifshitz–Gilbert
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Fig. 6. The thin shell Ωε is generated by extruding, along the e3
axis, a planar surface ω ⊆ R2 × {0}.

(LLG) equation [99, 134]

∂m

∂t
− αm× ∂m

∂t
= −m× heff [m] in Ω× R+. (4.6)

The LLG equation is driven by the effective field heff [m] := −∂mGΩ (m) and includes

both conservative precessional and dissipative contributions; the constant α is the so-called

Gilbert damping constant.

4.3. The planar thin-film regime. Let ω be a smooth domain in R2. For any ε > 0 the

tubular neighborhood Ωε is defined by (cf. Figure 6)

Ωε :=
{
x ∈ R3 : x = ξ + εe3, ξ ∈ ω

}
.

The micromagnetic energy functional on H1(Ωε,S2) reads as (cf. (4.5))

Gε (mε) :=
1

2

ˆ
Ωε

|∇mε|2 −
1

2

ˆ
Ωε

hd [mεχΩε ] ·mε +

ˆ
Ωε

ϕan (mε) . (4.7)

Here, ω is the planar surface generating the cylindrical surface Ωε := ω × (0, ε), and

e3 = (0, 0, 1) is the normal to the planar surface ω (cf. Figure 6). The existence for any

ε > 0 of at least a minimizer for Gε in H1(Ωε,S2) is easily obtained by the direct method

of the calculus of variations. The interest is in the asymptotic behavior of the energies

(ε−1Gε) as ε → 0, i.e., on the identification of the empty slots in the following typical

Γ-convergence diagram

argmin
mε∈H1(Ωε,S2)

ε−1Gε (mε)
ε→0−→ argmin

�
�. (4.8)

For planar thin films, it is well-known that the demagnetizing field behaves like the

projection of the magnetization onto the plane of the film. The first mathematical

justification of this observation in micromagnetics is in the work of Gioia and James [101],

where it is shown that the role of the demagnetizing field operator reduces to an easy-

surface anisotropy term. Their theory generalizes Stoner and Wohlfarth’s results for flat

ellipsoids [202] to arbitrary-shaped planar thin films. In the language of the scheme in

(4.8), they proved that

argmin
mε∈H1(Ωε,S2)

1

ε
Gε (mε)

ε→0−→ argmin
m∈H1(ω,S2)

G0 (m) , (4.9)
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Fig. 7. The thin shell Ωε is generated by extruding, along the normal

direction n, a surface S embedded in R3.

with

G0 (m) :=
1

2

ˆ
ω

|∇m|2 +
1

2

ˆ
ω

(m · e3)
2

+

ˆ
ω

ϕan (m) . (4.10)

Note that when the magnetocrystalline anisotropy is in-plane, i.e., when ϕan(ξ) = 0 for

every ξ ∈ S1 × {0}, every constant and in-plane magnetization minimizes G0. However,

it is understandable from the Maxwell–Ampére equations of magnetostatics (4.3) that

when ε is sufficiently small, not every constant in-plane configuration is equally favored.

In fact, the direction of the limiting minimizer will depend on the shape anisotropy of ∂ω.

In order to get mathematical evidence of this fact, one can use the methods of potential

theory to obtain higher-order correctors in the energy expansion. This has been done by

Carbou in [40], where it is shown that

min ε−1Gε = minG0 −
1

2
ε ln εminG′′0 + o(ε ln ε)

with

G′′0 (ξ) :=

ˆ
∂ω

(ξ · ν)2, ξ ∈ S1 × {0}.

Here, ν is the normal to ∂ω, and the result has the following interpretation. When the

magnetocrystalline anisotropy is in-plane, among all constant and in-plane magnetization

ξ ∈ S1 × {0} that minimize G0, the limiting magnetization tends to align along the

direction that minimizes G′′0 (ξ). The same result can be obtained using harmonic analysis,

and we refer the reader to [124], which also considers other attractive geometric regimes.

Finally, we mention the results in [58], where the contribution of DMI is taken into

account, again in the geometric setting of planar thin films. It is shown that, in the

limiting thin-film model, part of the DMI behaves like the projection of the magnetic

moment onto the normal to the film, contributing this way to an increase in the shape

anisotropy arising from the magnetostatic self-energy.

4.4. The curved thin film regime. To discuss results about curved thin films, we need to

introduce the proper setup. Let S be a smooth surface admitting a tubular neighborhood

of thickness δ > 0. For any ε ∈ Iδ := (0, δ) the tubular neighborhood Ωε is defined

by Ωε :=
{
x ∈ R3 : x = ξ + εn(ξ), ξ ∈ S

}
, where n(ξ) denotes the normal at ξ ∈ S

(cf. Figure 7).
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The micromagnetic energy functional defined on H1(Ωε,S2) reads as (cf. (4.5))

Gε(mε) :=
1

2

ˆ
Ωε

|∇mε|2 −
1

2

ˆ
Ωε

hd [mεχΩε ] ·mε. (4.11)

The existence of at least a minimizer for Gε in H1(Ωε,S2) is easily obtained by the direct

method of the calculus of variations.

For every ε ∈ Iδ := (0, δ) we denote by ψε the diffeomorphism of M := S × (0, 1) onto

Ωε given by

ψε : (ξ, s) ∈M 7→ ξ + εsn(ξ) ∈ Ωε.

For every ξ ∈ S the symbols τ1(ξ), τ2(ξ) denote an orthonormal basis of TξS made by

its principal directions, i.e., an orthonormal basis consisting of eigenvectors of the shape

operator of S (cf. [79]). We then write κ1(ξ), κ2(ξ) for the principal curvatures at ξ ∈ S.

Note that, for any x ∈ Ωδ the trihedron

(τ1(ξ), τ2(ξ),n(ξ)) with ξ := π(x) , (4.12)

constitutes an orthonormal basis of Tπ(x)Ωδ that depends only on S. Also, we denote by√
gε the metric factor which relates the volume form on Ωε to the volume form on M, by

h1,ε, h2,ε the metric coefficients which link the gradient on Ωε to the gradient on M. A

direct computation shows that (cf., e.g., [182])√
gε(ξ, s) := |1 + 2εsH(ξ) + (εs)2G(ξ)| , hi,ε(ξ, s) :=

1

1 + εsκi(ξ)
(i = 1, 2).

where H(ξ) and G(ξ) are the mean and Gaussian curvature at ξ ∈ S. Also, we denote

by H1(M,R3) the Sobolev space of vector-valued functions defined on M and endowed

with the norm

‖u‖2H1(M) :=

ˆ
M
|u(ξ, s)|2dξds+

ˆ
M
|∇∗ξu(ξ, s)|2 + |∂su(ξ, s)|2dξds. (4.13)

Here, ∇∗ξu is the tangential gradient of u on S, and we write H1(M,S2) for the subset

of H1(M,R3) consisting of vector-valued functions with values in S2.

WithM = S × I, we introduce the following functionals on H1(M,S2). The exchange

energy on M is defined by

EεM(u) :=
1

2

2∑
i=1

ˆ
M
|hi,ε∂τi(ξ)u|

2√gεdξds+
1

2

1

ε2

ˆ
M
|∂su|2

√
gεdξds. (4.14)

The magnetostatic self-energy on M is defined by

Wε
M(u) := −1

2

2∑
i=1

ˆ
M

hε[u](ξ, s) · u(ξ, s)
√
gε(ξ, s)dξds. (4.15)

Here, hε[u] ∈ L2(M,R3) is the demagnetizing filed on M defined by hε[u](ξ, s) :=

hd[(uχI) ◦ ψ−1
ε ] ◦ ψε.

It is imperative to observe that for any ε ∈ Iδ, the minimization problem for Gε in

H1(Ωε,S2) is equivalent to the minimization in H1(M,S) of the functional Fε defined by

Fε(u) := EεM(u) +Wε
M(u),



36J.-F. BABADJIAN, G. DI FRATTA, I. FONSECA, G. A. FRANCFORT, M. LEWICKA, AND C. B. MURATOV

in the sense that the configuration mε ∈ H1(Ωε,S2) minimizes Gε if and only if uε :=

m ◦ ψε ∈ H1(M,S) minimizes εFε.
We can now state a proper generalization of the results in [101] (cf. (4.9)) to the curved

setting.

Theorem 4.2 ([40, 75, 72]). The family (Fε) is equicoercive in the weak H1(M,S2) and

(Fε)
Γ−→ F ′0 in the sense of Γ-convergence, with F ′0 given by

F ′0(u) :=
1

2

ˆ
S

|∇∗ξu|2dξ +
1

2

ˆ
S

(u · n)
2

dξ (4.16)

if ∂su = 0, and F ′0(u) = +∞ otherwise. Here, ∇∗ξu is the tangential gradient of u on S.

Also, by the fundamental theorem of Γ-convergence

min
H1(Ωε,S2)

ε−1Gε = min
H1(M,S2)

F ′0 + o(ε),

and if (uε)ε∈Iδ is a minimizing family for (Fε)ε∈Iδ , there exists a subsequence of (uε)ε∈Iδ
which strongly converges in H1(M,S2) to a minimum point of F ′0.

Remark 4.3. Theorem 4.2 applies to bounded surfaces that admit a tubular neighbor-

hood. The range of such surfaces is broad. Indeed, any compact and smooth surface is

orientable and admits a tubular neighborhood (of uniform thickness) [79]. In particular,

the analysis holds for bounded convex surfaces (e.g., planar surfaces, the sphere, the

ellipsoid) and non-convex ones (e.g., the torus). Also, it covers the class of bounded

surfaces that are diffeomorphic to an open subset of a compact surface (e.g., the finite

cylinder or the graph of a C2-function).

Fig. 8. • (Left) The thin shell Ωε is generated by extruding, along
the normal direction ν, a surface S whose closure is diffeomorphic

to the closed unit disk D1 of R2. • (Right) A pillow-like thin shell:
Ωε :=

{
(x, z) ∈ ω × R2 : εγ1(x) 6 z 6 εγ2(x)

}
where ω ⊆ R2 is a

planar surface and γ1, γ2 functions vanishing on the boundary of ω.
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Theorem 4.2 states that in the curved thin-film regime, the magnetostatic self-energy

tends to favor tangential vector fields. The first analysis of the curved thin-film limit is

addressed in Carbou [40], where Theorem 4.2 is established under the assumption that

the thin geometry is generated by a surface diffeomorphic to the closed unit disk of R2

(cf. Figure 8). Also, in [200], a Γ-convergence analysis is performed on pillow-like shells,

i.e., on shells of small thickness ε > 0 having the form

Ωε := {(x, z) ∈ ω × R : εγ1(x) 6 z 6 εγ2(x)}

with ω ⊆ R2 and γ1, γ2 functions vanishing on the boundary of ω.

The inherent local character of the results in [40] and [200] does not cover significant

scenarios like the one of a spherical thin film [198, 201, 76]. After all, it is on compact

surfaces that topological protection can be exploited through the mathematical concept

of degree. The lack of mathematical justifications in this context motivated the results

in [75], where three distinct variational principles for the magnetostatic self-energy are

introduced. Through them and the explicit construction of suitable families of scalar

and vector potentials, one can circumvent the technical difficulties in [40], at least in

the stationary case. Indeed, the approach in [75], dealing with energy estimates rather

than with the asymptotic behavior of the demagnetizing field operator, is not suitable for

analyzing the time-dependent case governed by the LLG. The results in [72] hold in the

more general framework of smooth (C2 is sufficient) and bounded orientable surfaces in

R3 (in particular, they cover the class of compact surfaces). The proofs in [40] and [72]

cover both the stationary case, which is governed by the micromagnetic energy functional,

and the time-dependent case driven by the LLG. They are based on a characterization

of the limiting demagnetizing field operator on curved thin films, which states that the

demagnetizing field behaves like the projection of the magnetization on the normal to the

film. In other words, one has strong L2-convergence of hε[u](ξ, s) to [n(ξ)⊗ n(ξ)]u(ξ).

Strong convergence in L2 is crucial for extending these results to the LLG equation

(see [72]).

In the curved setting, the problem of identifying higher-order correctors in the energy

expansion of the magnetostatic energy is still open. For a compact surface with boundary,

the question is whether the next order term in the expansion Wε
M(u) reduces to a shape

anisotropy term on the boundary of the surface (of the order (ε| ln ε|)−1 if ε is the thickness

of the thin film). For compact surfaces without a boundary (e.g., S2), the analysis should

benefit from the absence of a lateral surface in the curved thin shell, which is what

contributes at the (ε| ln ε|)−1 order in the planar case; yet, even for S2 the question has

not been investigated.

4.5. Topologically protected states in spherical thin films. Spherical thin films are

currently of interest due to their capability to host spontaneous skyrmion solutions [94,

130] even when no spin-orbit coupling mechanism (DMI) is considered. In addition to

fundamental reasons, the interest in these geometries is triggered by recent advances

in the fabrication of magnetic spherical hollow nanoparticles, which lead to artificial

materials with unexpected characteristics and numerous applications ranging from logic

devices to biomedicine (cf. [197]).
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From Theorem 4.2, we know that for a spherical magnetic thin film, the energy

functional reads as:

Fκ : m ∈ H1(S2,S2) 7→
ˆ
S2

∣∣∇∗ξm(ξ)
∣∣2 + κ (m(ξ) · n(ξ))

2
dξ. (4.17)

Here, n(ξ) ≡ ξ and, as before, ∇∗ξ is the surface gradient at ξ ∈ S2. The parameter κ ∈ R
summarizes the contribution of crystal and shape anisotropy. The role of κ ∈ R is easily

understood. Uniform states are the only local minimizers of Fκ when κ = 0. For κ > 0,

tangential vector fields are energetically favored, and this corresponds to the case of

in-plane crystal anisotropy in planar thin films. When κ < 0, energy minimization prefers

normal vector fields, which compares to the case of perpendicular crystal anisotropy in

planar thin films, or, to be more precise, to the situation where shape anisotropy prevails

over perpendicular crystal anisotropy.

An exact characterization of the minimizers of Fκ is a challenging task with far-reaching

consequences in modern storage technologies [198]. Recently, a partial answer has been

given for the case κ < 0. In [76], the following result is proved.

Proposition 1 ([76]). For every κ ∈ R, the normal vector fields ±n(ξ) are stationary

points of the micromagnetic energy functional Fκ on the space H1(S2,S2). Moreover,

they are strict local minimizers for every κ < 0 and are unstable for κ > 0. If κ 6 −4,

the normal vector fields are the only global minimizers of Fκ.

Also, in [170], it is shown that for κ� 0, skyrmionic solutions topologically distinct

from the ground state emerge as excited states.

The interest in results of this type is in the topological remark that ±n carry different

skyrmion numbers. Indeed, since deg(±n) = ±1, by Hopf theorem, these two configura-

tions cannot be homotopically mapped one into the other and are, therefore, topologically

protected against external perturbations and thermal fluctuations. These considerations

make the two ground states ±n promising in view of novel spintronic devices [85].

Remark 4.4. It is worth pointing out a correspondence between Proposition 1 and

Brown’s fundamental theorem on small ferromagnetic particles, which states the existence

of a critical value of the radius of a spherical particle below which all local minimizers

are constant in space [36, 70, 71, 6]. Indeed, a simple scaling argument shows that the

constant κ in (4.17) can also be interpreted as a measure of the size of the particle.

The proof of Proposition 1 is based on the derivation of sharp Poincaré inequalities

arising when the pointwise constraint m ∈ S2 is relaxed to the energy constraint

1

4π

ˆ
S2

|m(ξ)|2dξ = 1. (4.18)

Depending on the value of κ, minimizers of the relaxed problem may turn out to be

minimizers of the original problem (i.e., S2-valued). This is indeed the case for the normal

vector fields ±n when κ 6 −4.

Theorem 4.5 (Sharp Poincaré-type inequality on S2, [76]). Let κ ∈ R. For every

u ∈ H1(S2,R3) the following inequality holdsˆ
S
|∇∗ξu(ξ)|2dξ + |κ|

ˆ
S
|u(ξ)× n(ξ)|2dξ > (|κ|+ γ(κ))

ˆ
S
|u(ξ)|2dξ. (4.19)
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Fig. 9. Examples of vector fields for which the equality sign is

reached in the Poincaré inequality (4.19). Minimizers for κ negative.
• (Left) κ = −8 • (Center) κ = −4 • (Right) κ = −2.

with best constant γ(κ) given by

γ(κ) :=

{
κ+ 2 if κ 6 −4,
1
2

(
(κ+ 6)−

√
κ2 + 4κ+ 36

)
if κ > −4.

Moreover, for any κ ∈ R, the equality sign is reached if, and only if,

u(ξ) = c0y
(1)
0,0(ξ) +

1∑
j=−1

ηjy
(1)
1,j + σjy

(2)
1,j .

Here, y
(i)
n,j are the vector spherical harmonics of degree n and order j, with |j| 6 n

(cf. [18, 76]) while the coefficients c0, (η, σ) := (ηj , σj)|j|61 are defined as follows. If

κ < −4 then c0 = ±
√

4π, and η = σ = 0; in particular, ±n are the unique minimizers. If

κ > −4 then

c0 = 0, σ =
−2
√

2

(γ(κ)− 2)
η, |η|2 = 2π

−(κ+ 2) +
√
κ2 + 4κ+ 36√

κ2 + 4κ+ 36
.

If κ = −4 then

σ =

√
2

2
η, 2c20 + 3|η|2 = 8π.

Remark 4.6. Recall that, y
(1)
n,j are normal vector fields, while y

(2)
n,j and y

(3)
n,j are

tangential vector fields (cf. [18, 76]). Also, note that for κ→ 0− the minimizers tend to

be constant. A plot of vector fields u ∈ H1(S2,R3) for which the equality sign is reached

in the Poincaré inequality (4.19) is reported in Figure 9.

For κ > 0, the energy landscape of Fκ is hard to describe analytically and is still an

open question. Although tangential vector fields are energetically favored when κ > 0,

topological obstructions (hairy ball theorem) prevent the existence of purely tangential

vector fields in H1(S2,S2). The primary interest here is in the study of energy minimizers

within prescribed homotopy classes. More specifically, on the characterizations of the

global minimizers of Fκ in H1(S2,S2) under the constraint (cf. (4.1))

1

4π

ˆ
S2

m · (∂τ1m× ∂τ2m) = n ∈ Z, (4.20)
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Fig. 10. Numerics suggest that when κ > 0, the energy Fκ can
exhibit magnetic states with skyrmion number 0 or ±1. Also, within
the homotopy class {Nsk = 0}, the energy Fκ favors the so-called

onion state if κ is sufficiently small and the vortex state otherwise.

for some prescribed integer n, which uniquely identifies the homotopy class of m. Numerics

suggest that when κ > 0, the energy Fκ can exhibit magnetic states with skyrmion number

0 or ±1 (cf. Figure 10, and [130, 198, 201]). Also, within the homotopy class {Nsk = 0},
the energy Fκ favors the so-called onion state if κ is sufficiently small, and the vortex

state otherwise (cf. Figure 10). Moreover, in analogy with well-known results for harmonic

maps into spheres, the minimizers of F appear axially symmetric. However, to turn

these observations into quantitative statements can be particularly tricky because of the

complete rotational symmetry of the underlying Euler-Lagrange equations, which requires

capturing the emergence of breaking symmetry phenomena in the energy minimizers.

4.6. Conclusions and further outlook. In the previous sections, we reviewed some of

the main results in the theory of magnetic curved thin films and stressed how these

achievements allow further investigations on the profile of energy minimizers in specific

geometries. We presented a characterization of the ground states in spherical thin films

when the anisotropy constant κ is negative (see (4.17)), and we also pointed out that the

situation appears more involved when κ > 0. However, careful consideration reveals that

similar symmetry-breaking phenomena already emerge in the analysis of the ground states

for a more tractable geometry like the one of a cylinder. This led to the developments

in [73], where different strategies are introduced that seem promising to tackle similar

questions in more complex geometries.

Consider the circular cylinder C = I × S1, I := [−1, 1] and the energy functional

Eα (m) :=

ˆ
C
|∇ξm|2 dξ + α2

ˆ
C
|m× n|2 dξ, m ∈ H1(C,S2). (4.21)

First, it is possible to show that for any α2 > 0, minimizers of the energy Eα are z-

invariant, i.e., if m minimizes Eα then m(z, ζ) = m(ζ) for every (z, ζ) ∈ C. Actually,

z-invariance of the minimizers holds under the more general assumption of cylindrical

surfaces of the type C := I × Γ where I := [−1, 1] and Γ ⊆ R2 is the image of a smooth
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Jordan curve ζ : [0, 2π]→ Γ. Then, one realizes that when C = I × S1, special attention

must be deserved to weakly axially symmetric configurations. These are defined by the

condition that ˆ
S1

m⊥(z, γ)dγ = 0 ∀z ∈ I, (4.22)

where m⊥ := m − (m · e3) e3. It is simple to prove that every axially symmetric

configuration satisfies (4.22). The relevant observation here is that every minimizer of E
in the class of weakly axially symmetric competitors is, in fact, axially symmetric. The

proof is based on a symmetrization argument in conjunction with the classical Poincaré-

Wirtinger inequality for null average and periodic functions. We believe that these results

can be transposed to the context of spherical thin films to prove similar results for the

energy functional (4.17) in the unexplored regime κ > 0.

Fig. 11. A plot of the vector fields minimizing the energy (4.21) in
H1(S1, S1). There is a critical value κ2

∗ of the anisotropy parameter,
κ2
∗ ≈ 2.31742, below which the global minimizers of (4.21) have

degree zero, and above which the only two global minimizers are the

normal vector fields ±n (and have degree one). From left to right,
we plot the minimizers for κ2 = 0.25, κ2 = 1, and κ2 = 2.25.

One can further analyze global minimizers of the energy E in the unrestricted class

H1(C,S2), i.e., when no weak axial symmetry is assumed on the competitors. Then, by

deriving a family of sharp Poincaré-type inequalities, one obtains that for α2 > 3, the

normal vector fields ±n are the only global minimizers of the energy functional E in

H1(C,S2). Precisely, the following result holds.

Proposition 2 (see [73]). For every value α2 > 0 of the anisotropy, the normal vector

fields ±n are stationary points of the micromagnetic energy functional Eα. If α2 > 3,

the normal vector fields ±n are the only global minimizers of the energy functional Eα
in H1(C,S2). Also, they are locally stable for every α2 > 1 and unstable for 0 < α2 < 1.

Moreover, when α2 > 1, the normal vector fields ±n are local minimizers of the energy

Eα.

Remark 4.7. It is simple to show that the constant vector fields ±e3 are stationary

points of the micromagnetic energy functional and they are unstable for all κ2 > 0. Despite

this, one can prove that they are stable in the class of axially symmetric minimizers.
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Finally, motivated by their importance in numerical simulations, one is interested

in global minimizers of Eα in the class of in-plane configurations. In [73] it is shown

that if m⊥ ∈ H1(S1,S1) is the profile of a minimizer of Eα, then either degm⊥ = 0 or

degm⊥ = 1 (cf. Figure 11). Indeed, there exists a threshold value α2
∗ of the anisotropy

parameter such that the normal vector fields ±n are the only two in-plane energy

minimizers when κ2 > κ2
∗ and the common minimum value of the energy is 2π. Instead,

when κ2 < κ2
∗, the minimal energy depends on κ2. The precise minimal values and the

analytic expressions of the minimizers can be written in terms of elliptic integrals.

There are several analogies in the behavior of the minimizers of the micromagnetic

energy in cylindrical and spherical surfaces. However, there are also remarkable exceptions.

Indeed, in both cases, the normal vector fields turn out to be the unique global minimizers

of the energy functional in a wide range of the parameters [76]. Nevertheless, the

topological implications are different. On the one hand, the normal vector fields to S2

carry a different skyrmion number because deg (±nS2) = ±1, and, by Hopf’s theorem,

they cannot be homotopically mapped one into the other (this translates into the so-called

topological protection of the ground states). On the other hand, due to the odd dimension,

the two normal vector fields to S1 have the same degree, and therefore, they can be easily

switched one to the other through suitable external perturbation.
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5. One-dimensional domain walls in thin film ferromagnets: an overview

(by C. Muratov).

5.1. Introduction. Magnetism is a physical phenomenon that has been known to

mankind for at least two millennia. In nature, it manifests itself in the ability of the

naturally magnetized mineral magnetite to exert an attractive force on objects made of

iron. Importantly, this interaction represents one of the basic examples of actio ad distans,

since a piece of iron feels the force of a magnet separated from it by a macroscopically

large distance. The latter is due to the nonlocal character of the interaction that is

mediated by the magnetic field.

Despite its long history, magnetism remained a poorly understood phenomenon until

the early 20th century. The 1907 work of Weiss was the first to explain the macroscopic

alignment of the individual magnetic moments of atoms in a ferromagnet through the

concept of the molecular field [211]. Yet it took another 20 years with the works of Pauli,

Dirac and Heisenberg during the “golden age” of quantum mechanics to identify the

microscopic origin of ferromagnetism as a manifestation of the Pauli exclusion principle and

spin – a purely quantum-mechanical degree of freedom of a particle [191, 77, 108, 109, 78].

The exclusion principle gives rise to the Heisenberg exchange interaction between electrons,

which, in turn, leads to the emergence of a macroscopic magnetic moment in ferromagnets

due to the alignment of the electron spins.

Heisenberg exchange favors alignment of spins of the neighboring electrons in a fer-

romagnetic material, creating a non-zero magnetization that would ideally be uniform

in space. However, such a uniform magnetization generates a magnetic field that does

not always favor alignment of the spins at large distances. The competition of Heisen-

berg exchange with the magnetostatic interaction gives rise to the notion of magnetic

domains, introduced in the 1926 book of Weiss and Foëx, whereby the magnetization

in a ferromagnet consists of extended regions of space in which the spins are aligned,

separated by sharp transition regions [212]. These types of configurations can lower the

magnetostatic interaction energy via fine scale oscillations of the magnetization between

different domains, which results in a vast variety of the observed magnetic domain patterns

[112].

The theory of magnetic domains was put on a solid theoretical footing in 1935 through

the work of Landau and Lifshitz, who formulated what is now known as the micromagnetic

modeling framework [134]. Landau and Lifshitz interpreted the observed magnetization

patterns as the result of the minimization of the micromagnetic energy functional, defined

on three-dimensional vector fields of constant length. Their ideas were further extended

in the works of Néel, Kittel and Brown [183, 184, 122, 33, 34]. Furthermore, the dynamics

of the magnetization in response to external influences may be studied with the help of

the Landau-Lifshitz-Gilbert equation and its extensions [134, 100, 32, 93]. Stochastic

effects may also be added to study the effect of thermal noise on the magnetization, as

pioneered by Brown [35]. Today these formulations find their implementations in the form

of efficient numerical algorithms that allow to explore the complexity of the magnetic

systems computationally [97, 138, 187, 86].

From the mathematical point of view, micromagnetics pose a great number of challeng-

ing problems, from calculus of variations, to nonlinear dynamics, to stochastic analysis.
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This field caught the attention of mathematicians fairly recently, but has already generated

a large and growing body of literature (for an excellent review from 2006, see [68]). In

the calculus of variations, one is faced with highly nonlinear, nonlocal, often topologically

constrained minimization problems that involve multiple spatial scales. It is only very

recently that the basic ideas of the theories of magnetic domains began to receive rigorous

mathematical treatment, with the methods of asymptotic analysis in the calculus of

variations playing a significant role (see, e.g., [43, 44, 49, 189, 125, 66, 126], this list is

certainly not exhaustive).

The basic ingredient in the analysis of the domain structure of ferromagnets is the

domain wall solution, which represents a one-dimensional transition layer profile that

connects different values of the magnetization at the opposite sides. This note aims at

giving a brief overview of the state of the art and some open questions in the modeling

and analysis of domain wall solutions in thin ferromagnetic films with the magnetization

lying mostly in the film plane.

5.2. Micromagnetic energy functional. The starting point of micromagnetic modeling

is the micromagnetic energy functional E(M) defined on a vector field M : Ω→ R3 that

represents the magnetization vector, i.e., the vector-valued magnetic dipole moment per

unit volume, in a ferromagnetic body occupying a bounded three-dimensional domain Ω

in free space. The length of the magnetization vector is fixed to be equal to the saturation

magnetization, i.e., |M(r)| = Ms for all r = (x, y, z) ∈ Ω, but the direction of M(r) is

allowed to be arbitrary. If Ω is occupied by a bulk uniaxial ferromagnetic single crystal

with the easy axis along the y-axis, the micromagnetic energy takes the form (in the SI

units) [135]

E(M) =
A

M2
s

ˆ
Ω

|∇M|2 d3r +
K

M2
s

ˆ
Ω

(M2
1 +M2

3 ) d3r

− µ0

ˆ
Ω

M ·H d3r + µ0

ˆ
R3

ˆ
R3

∇ ·M(r)∇ ·M(r′)

8π|r− r′|
d3r d3r′. (5.1)

Here M = (M1,M2,M3), and the terms, in order of appearance, are the exchange, the

magnetocrystalline anisotropy, the Zeeman and the magnetostatic energy, also referred

to as the stray field energy, respectively. The constants A,K, µ0 are, respectively, the

exchange stiffness, the anisotropy constant and the permeability of vacuum, and H is the

applied external magnetic field. In the last term in (5.1), the magnetization vector M is

extended by zero outside Ω and ∇·M is understood distributionally. In writing (5.1), the

effects of magnetostrsiction and other, more exotic interactions have been neglected [135].

The exchange energy in (5.1) forces the magnetization to be spatially uniform, while

the anisotropy energy forces the magnetization to align with ±ŷ. The Zeeman term

favors alignment of the magnetization along the applied field H. The stray field energy,

in contrast, is a non-negative term that can be viewed as the Coulombic energy of the

“magnetic charges” with density ρ = −∇ ·M and, therefore, forcing the distributional

divergence of the magnetization to be zero.

When Ω = R3 and H = 0, the energy in (5.1) is explicitly minimized by M = ±Msŷ,

illustrating the fundamental bistability of the magnetization in a uniaxial ferromagnetic

crystal. It was quickly recognized, however, that in a large but finite sample Ω ⊂ R3 a
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spatially uniform magnetization would result in a high stray field due to the jumps of the

magnetization to zero at ∂Ω, leading to a large magnetostatic energy term. Instead, the

energy is reduced by dividing Ω into subdomains in which M alternates between the two

preferred orientations, thus creating a domain structure. The first step in understanding

the latter is to understand the structure of the transition layer between the two preferred

orientations of M.

5.3. Domain walls in bulk materials. Domain walls are the basic building blocks of the

magnetic domains. The concept of a domain wall as a narrow transition region separating

the two distinct orientations of the magnetization was first proposed by Bloch [24], but

within the micromagnetic modeling framework it was formulated by Landau and Lifshitz

[134] and further developed by Néel [185]. We can conveniently rewrite the stray field

energy with the help of the magnetostatic potential U solving

∆U = ∇ ·M in D′(R3) (5.2)

and vanishing at infinity. In the absence of the applied field the energy is then [33, 135, 75]

E(M) =
A

M2
s

ˆ
Ω

|∇M|2 d3r +
K

M2
s

ˆ
Ω

(M2
1 +M2

3 ) d3r +
µ0

2

ˆ
Ω

|∇U |2 d3r. (5.3)

We next extend the above discussion to the case Ω = R3 and assume that M = M(x),

i.e., that M varies only along x̂. We further assume that M satisfies

lim
x→±∞

M(x) = ±Msŷ, (5.4)

and that the gradient of U vanishes as x→ ±∞. Then the energy per unit area in the

yz-plane is

E1d(M) =

ˆ ∞
−∞

(
A

M2
s

|M′|2 +
K

M2
s

(M2
1 +M2

3 ) +
µ0

2
M2

1

)
dx, (5.5)

where we took into account that the solution of (5.2) in this case yields ∇U = M1x̂.

Landau and Lifshitz approached the problem of determining the domain wall profile

by assuming that M1 = 0 to make the stray field contribution to the energy vanish. This

ansatz then implies that we can write M = M0, where

M0 = Ms(0, cos θ, sin θ), (5.6)

for some rotation angle θ = θ(x) to be determined. Assuming that M0 from (5.6)

minimizes the energy in (5.5) among the profiles satisfying (5.4), one obtains

Aθ′′ −K sin θ cos θ = 0, θ(−∞) = ±π, θ(+∞) = 0, (5.7)

whose unique solution, up to translations, is

θ = ± arccos(tanh(x/L)), (5.8)

where L =
√
K/A is the wall width [134]. This solution is referred to as the Bloch wall

solution. The corresponding wall energy per unit area is E1d(M0) = 4
√
AK. Thus, the

domain wall is expected to give a net contribution proportional to the domain wall area

to the energy of the magnetic domains.

One may wonder to which extent this logic is mathematically sound. At the level of the

one-dimensional energy E1d, why should the magnetization M admit the representation in
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(5.6), and even if it does, why should it satisfy the conditions at infinity in (5.7), namely,

not exhibit winding, which would correspond to adding integer multiples of 2π to one

of the limits? Going to higher dimensions, would the obtained profile also minimize the

energy in (5.3) when, say, Ω = R × [0, l)2, for l > 0, and periodicity in y and z? More

broadly, is the obtained profile the unique, up to translations, critical point of E1d or E

among profiles with suitable behavior at infinity? What if Ω = R3?

These questions bear a striking similarity with another problem arising in the context

of phase field models of phase transitions [103] that has received considerable attention in

the mathematical community under the name of the De Giorgi conjecture (for a review, see

[61]). In its canonical form, De Giorgi conjecture states that the only bounded solutions

u : Rn → R of the Euler-Lagrange equation

∆u+ u− u3 = 0 (5.9)

associated with the Ginzburg-Landau energy

EGL(u) =

ˆ
Ω

(
1

2
|∇u|2 +

1

4
(1− u2)2

)
dnr (5.10)

for every Ω ⊂ Rn bounded, which are monotone in one spatial variable are one-dimensional,

i.e., u(x1, . . . , xn) = tanh(x1/
√

2) after a rotation and a translation [59]. In the physical

dimensions, n = 2, 3, the conjecture was proved by Ghoussoub and Gui [98] and Ambrosio

and Cabré [7], respectively. A simpler version of this conjecture additionally assumes that

the solution approaches u = ±1 along the direction of monotonicity, and when this limit

is uniform, the solution is known to be one-dimensional without the need of a rotation

or monotonicity assumption (see [61] and references therein). In particular, the latter

result applies when Ω = R× [0, l)2, for any l > 0, to any finite energy solution of (5.9)

connecting u = ±1 as x→ ±∞.

The corresponding problem associated with (5.3) represents a vectorial and nonlocal

extension of the above problem, and is in general considerably more challenging, even with

additional assumptions on the behavior of the solution “at infinity”. One may naturally

ask whether, say, the solution given by (5.6) and (5.8) is the unique, up to translations,

minimizer of (5.3) satisfying (5.4) for Ω = R× [0, l)2 and periodic boundary conditions,

for any l > 0. The answer to this question may be rather easily seen to be positive, but

in fact it does not involve the solution of the very complicated Euler-Lagrange equation

associated with (5.3). Instead, one can proceed with the help of the vectorial version of

the Modica-Mortola trick [172], which is available for the problems of micromagnetics

[128]. For example, setting m = M/Ms, in one space dimension we have (see also [96])

E1d(M) ≥
ˆ
R

(
A|∇m|2 +K(m2

1 +m2
3)
)
dx

≥
ˆ
R

(
A
|m′2|2

1−m2
2

+K(1−m2
2)

)
dx

≥ 2
√
AK

ˆ
R
|m′2|dx

≥ 4
√
AK = E1d(M0), (5.11)
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and, therefore, E(M) ≥ l2E1d(M0), with equality if and only if M = M0 in Ω = R×[0, l)2,

up to a translation.

However, things get more complicated if one only requires that M be a local minimizer,

or even a critical point of E. Even in one dimension, the question as to whether M0 is

the only critical point of E1d satisfying (5.4) would require solving a system of nonlinear

ordinary differential equations associated with (5.5) and includes a possibility of winding

solutions. Things come to the next level of complexity in higher dimensions due to the

nonlocality introduced by (5.2), and even further complexity arises due to severe lack of

compactness when Ω = R3. In particular, in contrast to the scalar problem in (5.9) the

vectorial problem associated with (5.3) lacks rotational symmetry. Furthermore, simply

changing the orientation of the wall, e.g., taking M = M0(y) immediately results in an

infinite wall energy per unit area, since the wall becomes charged and, therefore, the

magnetostatic potential U solving (5.2) exhibits an asymptotically linear behavior far

away from the wall.

5.4. Micromagnetics of thin films. We now turn to the situation in which Ω is a domain

in the form of an extended film, i.e., Ω = R2× (0, d), where d is the film thickness. Notice

that in this case the uniform magnetization configurations M = ±Msŷ do not produce

any stray field and, therefore, are still the global minimizers of the energy in (5.3) for

H = 0. At the same time, the one-dimensional domain wall profile given by (5.6) and

(5.8) is no longer a minimizer of (5.3) per unit length in the y-direction, since it generates

a stray field due to the jump of the magnetization at the top and bottom surfaces of

the film, z = 0 and z = d. For sufficiently thick films, this stray field modifies the wall

profile only in the small vicinity of the surfaces by creating the Néel caps [196], unless

the material is magnetically sufficiently soft [133, 80]. At the same time, as was pointed

out in 1955 by Néel, as the thickness of the film becomes sufficiently small it becomes

energetically favorable for the magnetization to rotate in the film plane, giving rise to

a Néel wall [186]. This is due to the appearance of a shape anisotropy, whereby to the

leading order the stray field energy behaves as a local penalty term for the out-of-plane

component of the magnetization [214, 101]. It can be most easily seen from the solution of

(5.2) for a spatially uniform magnetization, in which case ∇U = M3ẑχ(0,d)(z), where here

and everywhere below χD denotes the characteristic function of the set D, generating an

additional anisotropy-like term in (5.3). When the film thickness decreases, a transition

from the Bloch to the Néel wall occurs [186, 69, 209].

For thin films, i.e., films whose thickness is smaller than the exchange length `ex =√
2A/(µ0M2

s ), which is the characteristic length scale at which the exchange and the

magnetostatic interactions balance each other, the magnetization vector becomes nearly

independent of z, and due to the strong shape anisotropy the magnetization is forced to lie

almost entirely in the film plane in magnetically soft materials. There are many possible

combinations of the material and geometric parameters that lead to a whole hierarchy

of thin film regimes [66, 129, 176, 177, 116, 126, 114, 173] (this list is not meant to be

exhaustive). For Néel walls in extended films with moderate magnetocrystalline anisotropy,

an appropriate model that balances the exchange, anisotropy and the magnetostatic

energy as the film thickness vanishes was introduced in [177] (see also [65, 39]). Assuming

that Ω = D × (0, d) for some D ⊆ R2 and that M(x, y, z) = Ms(m(x, y)χ(0,d)(z), 0) for
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some m : R2 → S1 ∪{0} with |m| = χD, we can compute the energy of the magnetization

configuration explicitly (below we follow the presentation in [160]). Measuring the lengths

in the units of the Bloch wall width L =
√
A/K, the energy in the units of 2Ad, and

introducing the dimensionless thin film parameter

ν =
µ0M

2
s d

2
√
AK

, (5.12)

we arrive at the following expression for the energy [95]:

E(m) =
1

2

ˆ
D

(
|∇m|2 +m2

1 − 2h ·m
)
d2r

+
ν

2

ˆ
R2

ˆ
R2

Kδ(|r− r′|)∇ ·m(r)∇ ·m(r) d2r d2r′, (5.13)

where

Kδ(r) =
1

2πδ

{
ln

(
δ +
√
δ2 + r2

r

)
−
√

1 +
r2

δ2
+
r

δ

}
, (5.14)

δ = d/L is the dimensionless film thickness, and we set H = K/(µ0Ms)(h, 0) for h : R2 →
R2, assuming that the applied field lies in the film plane.

Observe that when δ is small, we have

Kδ(r) '
1

4πr
and

ˆ
∂D

Kδ(|r− r′|) dH1(r′) ' 1

2π
ln δ−1. (5.15)

Therefore, to the leading order as δ → 0 we have E(m) ' Eδ(m), where

Eδ(m) =
1

2

ˆ
D

(
|∇m|2 +m2

1 − 2h ·m
)
d2r +

ν

8π

ˆ
D

ˆ
D

∇ ·m(r)∇ ·m(r)

|r− r′|
d2r d2r′

− ν

4π

ˆ
D

ˆ
∂D

∇ ·m(r)(m(r′) · n(r′))

|r− r′|
dH1(r′) d2r+

ν ln δ−1

4π

ˆ
∂D

(m(r) ·n(r))2 dH1(r),

(5.16)

where n(r) denotes the outward unit normal at r ∈ ∂D. As the last term in (5.16) forces

m · n = 0, in the limit we arrive at

E0(m) =
1

2

ˆ
D

(
|∇m|2 +m2

1 − 2h ·m
)
d2r +

ν

8π

ˆ
D

ˆ
D

∇ ·m(r)∇ ·m(r)

|r− r′|
d2r d2r′,

(5.17)

with admissible configurations m ∈ H1(D; S1) satisfying Dirichlet boundary condition

m = st on ∂D, where t is the positively oriented unit tangent vector to ∂D and

s : ∂D → {−1, 1} is constant on each connected component of ∂D.

The reduced thin film energy in (5.17) may be rigorously justified via a uniform

Γ-expansion in the limit of vanishing film thickness [126], provided that the anisotropy

constant K and the applied field h scale as O(d2), which is appropriate for moderately

soft ferromagnetic materials of a few nanometer thickness [107, 177]. Notice that it

represents a different regime from the thin film limits considered by De Simone, Kohn,

Müller and Otto in [66], which are relevant to extremely soft ferromagnetic materials

such as permalloy and in which the magnetostatic energy dominates. The connection
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of the energy in (5.17) with the latter is obtained by considering the regime of ν � 1.

Similarly, the regime that leads to (5.17) is different from the one studied by Kohn and

Slastikov in [129], which corresponds to specimens of small lateral extent (see also [173]).

Also notice that the energy in (5.16) does not support boundary vortices, which appear

in the regime studied by Moser [176].

5.5. Domain walls in thin films. The analysis of domain wall profiles in thin films

requires to extend (5.17) to the cases in which the film domain D is unbounded. Therefore,

we first modify the functional to make the energy of the ferromagnetic state zero in the

presence of the applied field h = (h1, h2) for either 0 ≤ h1 < 1 and h2 = 0, or h1 = 0 and

h2 > 0, corresponding to two cases of interest, namely, the field applied in the direction

perpendicular to the easy axis and the field applied along the easy axis:

E(m) =
1

2

ˆ
R2

(
|∇m|2 + (m1 − h1)2 + 2h2(1−m2)

)
d2r

+
ν

8π

ˆ
R2

ˆ
R2

∇ ·m(r)∇ ·m(r)

|r− r′|
d2r d2r′, (5.18)

where we dropped the subscript zero from the energy to simplify notations. In the first

case, the ground states of the energy are m = (h1,±
√

1− h2
1), while in the second case

the ground state is m = (0, 1). The case of zero applied field is included in the first case,

and the case h1 ≥ 1 and h2 = 0 is analogous to the second case.

We also need to derive a one-dimensional analog of the energy in (5.18). To that end,

we assume that m = m(ξ), where ξ = x cosβ + y sinβ for some β ∈ [0, π2 ], i.e., that m

varies only along the direction (cosβ, sinβ) in the xy-plane. Writing m = (− sin θ, cos θ),

where θ is the angle between the magnetization vector and the easy axis measured

counterclockwise, we then have that the energy per unit length normal to the (cosβ, sinβ)

direction is [160]

Eβ(θ) =
1

2

ˆ ∞
−∞

(
|θ′|2 + (sin θ − h1)2 + 2h2(1− cos θ)

)
dξ

+
ν

8π

ˆ ∞
−∞

ˆ ∞
−∞

(sin(θ(ξ)− β)− sin(θ(ξ′)− β))2

(ξ − ξ′)2
dξ dξ′. (5.19)

The associated Euler-Lagrange equation is

0 =
d2θ

dξ2
+ h1 cos θ − (h2 + cos θ) sin θ − ν

2
cos(θ − β)

(
− d2

dξ2

)1/2

sin(θ − β), (5.20)

where (
− d2

dξ2

)1/2

u(ξ) =
1

π
−
ˆ ∞
−∞

u(ξ)− u(ξ′)

(ξ − ξ′)2
dξ′, (5.21)

and −́ denotes the principal value of the integral.

Before discussing the results and open questions for solutions of (5.20), let us recall what

happens in the local case ν = 0. In this case an elementary phase plane analysis shows that

the only solutions that connect distinct equilibria at infinity are those that connect the

adjacent minima of the potential energy term in (5.19). In particular, when h1 = h2 = 0,

we must have θ(+∞) − θ(−∞) = ±π, resulting in a 180-degree wall, while for h1 = 0
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and h2 > 0 we must have θ(+∞)− θ(−∞) = ±2π, resulting in a 360-degree wall. When

h2 = 0 and 0 < h1 < 1, the solutions satisfy either θ(+∞)− θ(−∞) = ±(π − 2 arcsinh1)

or θ(+∞) − θ(−∞) = ±(π + 2 arcsinh1). These solutions remain the only monotone

solutions connecting the respective equilibria, up to rotations, in two space dimensions

by the results of [98]. For h1 = 0 they are energy minimizing, and when 0 < h1 < 1 the

solution with the smaller variation is energy minimizing. Finally, their profiles may be

computed by an explicit integration, just like in the case of the Bloch wall profile.

5.5.1. 180-degree uncharged walls. As soon as ν > 0, the analysis of (5.20) becomes

much more complicated than in the case ν = 0, as the problem becomes nonlocal and

its solution can no longer be written down in closed form. In fact, this gave rise to

a significant controversy about the structure of the 180-degree Néel wall profile in the

physics literature (for a discussion, see [2] and [112]). Note that the 180-degree Néel walls

are routinely observed experimentally in sufficiently thin, magnetically soft films [112, 20].

Early studies of 180-degree Néel walls relied on either ansatz-based, or numerical, or

perturbative minimizations of the analog of (5.19) with h1 = h2 = 0 and β = 0 that is

obtained from (5.13) [69, 48, 193, 95, 96]. The first rigorous analysis of existence and

qualitative properties of the wall profiles, still in the context of (5.13), was carried out

by Melcher [168] (see also [39] for a discussion of (5.19)). A comprehensive study of the

energy minimizing profiles connecting distinct equilibria within the context of (5.19) with

0 ≤ h1 < 1, h2 = 0, and β = 0 was carried out by Chermisi and Muratov, in which

existence, monotonicity, asymptotic decay and uniqueness of minimizers connecting the

equilibrium θ = arcsinh1 with θ = π − arcsinh1 were established [41]. Furthermore,

uniqueness of monotone solutions connecting these equilibria was established by Muratov

and Yan, taking advantage of the hidden convexity of the one-dimensional energy [180].

Notice that such a result is non-trivial even in one space dimension, as in the nonlocal

setting it is not a priori clear whether the solutions of (5.20) must necessarily be monotone.

While it is known that the energy minimizing solution is monotone and vice versa, it is

not known whether non-monotone domain wall solutions to (5.20) with β = 0 might also

exist.

It would be interesting to see whether the monotone one-dimensional solutions to

(5.20) with β = 0 also remain the unique monotone critical points of (5.17) with D =

{(x, y) ∈ R2 : −l/2 < y < l/2}, a strip with width l > 0 and subject to periodicity in y.

The vectorial nature of the problem prevents the use of monotone rearrangements to show

that the minimizers are still monotone in this setting, contrary to the one-dimensional

case. The only available result concerning the one-dimensionality of the minimizers that

is currently available in this context is that of De Simone, Knüpfer and Otto, who studied

a similar problem on a strip, but with clamped magnetization away from the origin and

neglecting the magnetocrystalline anisotropy [64]. Introducing a small parameter in front

of the exchange term, they showed that as this parameter tends to zero, the domain wall

energy is asymptotically minimized by a one-dimensional profile. It is not known if the

asymptotic profile is, in fact, one-dimensional for small but finite value of the parameter,

nor is it known that the profile of the minimizer converges to a suitable discontinuous

one-dimensional profile.



THE MATHEMATICS OF THIN STRUCTURES 51

In connection with (5.18) and in the spirit of [64], one could also consider the following

version of the energy

Eε(m) =
1

2

ˆ
R×(−l/2,l/2)

(
ε|∇m|2 +

1

ε
m2

1

)
d2r

+
ν

8π

ˆ
R×(−l/2,l/2)

ˆ
R2

∇ ·m(r)∇ ·m(r)

|r− r′|
d2r d2r′, (5.22)

obtained by rescaling all lengths by ε, as in the Modica-Mortola rescaling and fixing the

domain to be a strip after the rescaling. In one dimension the minimizer of this problem,

which is simply a rescaling of the minimizer of (5.19) with β = 0, clearly converges to

m(x) = sgn(x)ŷ as ε→ 0, after suitable translations. Whether the same conclusion holds

on the strip remains to be seen, even if it seems to be plausible, as the energy minimizing

magnetizations must converge to a function in BV (R × (−l/2, l/2);R2) taking values

±ŷ due to the Modica-Mortola estimate on the first two terms in the energy. Also, any

deviations of the jump set of the limit function from a vertical line would create large

stray field contributions that would be heavily penalized by the last term in (5.22). In

fact, if ε is the width of the transition region between m = ŷ and m = −ŷ which makes

an angle α with the vertical, then the last term can be seen to yield a contribution of

order | ln ε| sin2 α. It is then also natural to ask if one recovers the total variation of m1

as the Γ-limit of Eε in (5.22) as ε→ 0 if ν is replaced by νε = γ| ln ε|−1 for γ > 0 fixed.

Surprisingly, the latter seems to be false, as the recovery sequence of the Modica-Mortola

theory would generate a strictly positive magnetostatic contribution on the parts of the

jump set where the distributional gradient of m1 is not aligned with the x-axis. Lastly,

we would like to mention that studying a version of (5.22) defined on m = (− sin θ, cos θ)

as a functional of θ is, in turn, more subtle, as the latter keeps track of the winding of

the magnetization, while the one in (5.22) does not. In particular, the energy in (5.22)

would not be able to capture 360-degree walls in the limit (see also section 5.5.3).

5.5.2. 180-degree charged walls. The domain walls considered so far do not carry a

net “magnetic charge” [112]. More precisely, integrating the non-dimensionalized bulk

magnetic charge density ρ = −∇ ·m per unit length over these profiles yields the jump of

the component of the magnetization along the wall, which is zero when β = 0. However,

for β 6= 0 the magnitude of the jump of the magnetization is equal to 2 sinβ 6= 0 when

m(±∞) = ±ŷ. This immediately makes the magnetostatic energy infinite:
ˆ ∞
−∞

ˆ ∞
−∞

(sin(θ(ξ)− β)− sin(θ(ξ′)− β))2

(ξ − ξ′)2
dξ dξ′ ≥

ˆ ∞
R

ˆ 0

−∞

sin2(θ(ξ′)− β)

(ξ − ξ′)2
dξ dξ′

≥
ˆ ∞
R

sin2(θ(ξ′)− β)

ξ′
dξ′ ≥ 1

2
sin2 β

ˆ ∞
R

dξ′

ξ′
= +∞,

(5.23)

where we assumed without loss of generality that β < θ(ξ) < β + π for ξ < 0 and chose

a sufficiently large R > 0 such that sin2(θ(ξ′)− β) ≥ 1
2 sin2 β > 0 for all ξ′ > R. Thus,

paradoxically there are no finite energy solutions to (5.20) for any β ∈ (0, π2 ]. Nevertheless,

one may wonder if (5.20) does have solutions with θ(+∞) = 0 and θ(−∞) = ±π, as is

the case when ν = 0. At present, this question is completely open.
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A closely related question was recently addressed by Lund, Muratov and Slastikov in a

slightly different context [160]. They considered the situation in which the ferromagnetic

film occupies a half-plane instead of the whole plane, and edge domain walls are expected

due to the boundary penalty term forcing the magnetization to be tangential to the

boundary [110, 210, 195, 167]. These magnetization configurations would solve a Dirichlet

problem for (5.20) with ξ > 0 and the boundary condition θ(0) = β, provided that

sin(θ − β) is set to zero in the nonlocal term for ξ < 0. Clearly, such a wall is bound to

be charged if θ(+∞) ∈ πZ in order for the anisotropy energy to remain finite.

Lund, Muratov and Slastikov proved existence of solutions for the above problem by

minimizing the renormalized energy obtained from (5.19) by subtracting the leading order

divergent term at infinity from the nonlocal term. This leads to considering

Eβ(θ) =

ˆ ∞
0

(
1

2
|θ′|2 +

1

2
sin2 θ +

ν

4π
· sin2(θ − β)− sin2(ηβ − β)

ξ

)
dξ

+
ν

8π

ˆ ∞
0

ˆ ∞
0

(sin(θ(ξ)− β)− sin(θ(ξ′)− β))2

(ξ − ξ′)2
dξ dξ′

− ν

8π

ˆ ∞
0

ˆ ∞
0

(sin(ηβ(ξ)− β)− sin(ηβ(ξ′)− β))2

(ξ − ξ′)2
dξ dξ′, (5.24)

where ηβ(ξ) is a fixed smooth non-increasing cutoff function such that ηβ(ξ) = β for

all ξ < 0 and ηβ(ξ) = 0 for all ξ > 1, and the minimization is carried out over all

θ − β ∈ H̊1
0 (R+). Formally, it is not difficult to see that minimizers of (5.24) should

satisfy (5.20) for ξ > 0.

In [160], it was shown that minimizers of (5.24) in the considered class indeed exist,

are sufficiently regular and solve (5.20) classically for each β ∈ (0, π2 ] and each ν > 0.

Minimizers approach a limit θ(+∞) ∈ πZ and satisfy |θ′(0)| = sinβ, but develop a

singularity in θ′′(ξ) as ξ → 0+. Not much else can be said a priori. In particular,

minimizers are not guaranteed to be monotone or not to exhibit winding. In fact,

numerical solution of the Dirichlet problem for (5.20) shows that both possibilities do

occur. Also, minimizers do not have to be unique. Nevertheless, one can exclude winding

when either ν or β is sufficiently small, and there is uniqueness in the small β case.

Whether the obtained profiles are also minimizers for the two-dimensional problem is

also not clear. However, in a closely related setting such a symmetry result was recently

established by the same authors in [159].

To conclude this section, we would like to mention a recent paper by Knüpfer and Shi,

who considered a two-dimensional problem related to head-to-head domain walls that in

one dimension would correspond to the case of β = π
2 [127]. They considered a Modica-

Mortola rescaling of the energy as in (5.22), except ν is again replaced by νε = γ| ln ε|−1,

and considered clamped magnetization configurations as in [64]. However, as the stray

field energy would still be infinite on the considered class of magnetizations, they modify

the stray field term by subtracting a reference configuration from the magnetization. This

amounts to introducing an additional external magnetic field that precisely cancels the

divergence of the energy, thus modifying the nature of the problem in a rather significant

way. Nevertheless, Knüpfer and Shi were able to establish several asymptotic results for

the considered energy. In particular, for γ below some threshold the limit energy is given
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by an anisotropic perimeter of the jump set of the limit magnetization configuration. We

conjecture that such a result should also hold for a suitably renormalized version of the

energy in (5.22) with the above choice of ν = νε. It is also expected that while for small

enough values of γ the minimizers are one-dimensional, for large enough values of γ they

would develop a microstructure in the form of zig-zag walls [112].

5.5.3. 360-degree and other winding walls. A qualitatively different type of a domain

wall is the 360-degree wall. In contrast to the cases considered in the preceding sections,

this wall, in which the magnetization rotates exactly once over the unit circle, connects the

same limit magnetization on either side of the wall. Thus, a 360-degree wall represents an

example of a topological defect, as such a wall is characterized by a non-trivial topological

degree:

deg(m) =
1

2π

ˆ
R

(m1m
′
2 −m2m

′
1)dξ =

1

2π

ˆ
R
θ′ dξ =

1

2π
(θ(+∞)− θ(−∞)) = ±1,

(5.25)

where, as before, m = (− sin θ, cos θ) for θ = θ(ξ). The 360-degree walls are also frequently

observed in magnetically soft thin ferromagnetic films [84, 210, 42, 192, 112].

As was already mentioned, when ν = 0 the 360-degree walls exist if and only if

h1 = 0 and h2 6= 0. This is in contrast with the experimental observations, in which

these walls can be observed in the absence of any applied fields. In [178], Muratov

and Osipov carried out an ansatz-based minimization and a computational study of

360-degree walls as a function of their orientation angle β for different ν > 0. They

found numerically that the solutions of (5.20) in the form of 360-degree walls exist for

all β ∈ (0, π2 ], while they cease to exist for β = 0. Also, the wall energy was found to

depend strongly on the wall orientation angle β. The existence of solutions was explained

by the magnetostatic interaction between the two 180-degree cores inside a 360-degree

wall, which is logarithmically attractive for β 6= 0, as the cores carry opposite charges. At

the same time, for β = 0 the 180-degree cores only carry net dipole moments oriented

opposite to each other. This results in an algebraic repulsion between the cores (see also

[67]).

Ignat and Knüpfer studied the structure of 360-degree transition layers under clamping

away from the origin in a model in which the energy consists of only exchange and stray

field terms, and a small parameter balancing the two terms in the energy to yield a

non-trivial limit [116]. Although these are not 360-degree walls per se, they exhibit many

of the characteristics of the 360-degree wall solutions from [178]. In particular, Ignat and

Knüpfer show the asymptotic behavior of the energy of the 360-degree wall solutions

obtained in [178] for ν � 1.

Ignat and Moser carried out an analysis of winding domain wall structures, which

include 360-degree walls, via minimization of (5.19) (or its natural modification for h1 > 1)

[120]. Only the case β = 0 and h2 = 0 was considered (the value of ν was also fixed,

which is less essential). They proved that for h1 > 1 there is a minimizer for any value of

the degree. Note that in the case ν = 0 such an existence result could be obtained only

when deg(m) = ±1. The existence of minimizers with degrees strictly greater than 1 may

be explained by the attractive interaction of the 360-degree cores, which are now dipoles



54J.-F. BABADJIAN, G. DI FRATTA, I. FONSECA, G. A. FRANCFORT, M. LEWICKA, AND C. B. MURATOV

with the same orientation along the line and, therefore, attract each other. They also

showed non-existence of minimizers with degree 1 for β = 0 and h1 ∈ [0, 1), confirming

the numerics-based conclusion of [178]. Nevertheless, they also showed existence of a

domain wall with a non-trivial winding in a range of positive values of h1.

In the absence of the applied field, the analysis of existence of 360-degree walls for

general orientations was carried out by Capella, Knüpfer and Muratov [38]. They proved

existence of 360-degree walls for all ν > 0 in the case β = π
2 , i.e., when the wall direction

is along the easy axis. The proof is enabled by a symmetric decreasing rearrangement of

m2, which lowers the energy and reduces the minimization to the analysis of monotone

profiles. In particular, the obtained wall profile is monotone and satisfies (5.20).

Capella, Knüpfer and Muratov also proved existence of minimizers of (5.19) for all

β ∈ (0, π2 ], provided the value of ν is sufficiently small depending on β [38]. Here

the difficulty is due to the fact that one does not know any more if the wall profile is

monotone. Instead, the proof relies on a perturbative argument, by which the deviation

of the profile from the minimizer of the Modica-Mortola energy from the exchange and

anisotropy contributions is quantified. As a by-product, Capella, Knüpfer and Muratov

also characterize the width of the wall as a function of β and ν and obtain the asymptotic

expression for the wall energy for either β or ν small.

It would be interesting to see if the one-dimensional minimizers obtained for ν > 0

and no applied field remain as minimizers in the two-dimensional setting. For example,

are minimizers of (5.19) for β = π
2 with deg(m) = 1 still minimizers of (5.18) with

D = {(x, y) : −l/2 < x < l/2} subject to periodicity and limit behavior at infinity?

Notice that the answer to this question could turn out to be negative, depending on how

the wall energy depends on its orientation angle. It is conceivable that tilting the wall may

result in an energy decrease due to the orientation dependence of the wall energy, even if

the length of the wall would otherwise increase. Further studies into this question are

definitely needed. A closely related question comes up in the study of the Modica-Mortola

rescaling of the energy given in (5.22), written in terms of the θ variable to retain the

information about the magnetization winding. We conjecture that the Γ-limit of the

latter energy should be given by an anisotropic perimeter type functional that takes into

account winding multiplicity. For zero applied field the situation is complicated by the

presence of 180-degree walls oriented along the easy axis, but those can be eliminated by

assuming h2 > 0.

5.5.4. 90-degree and 180-degree walls in biaxial materials. We conclude by briefly

mentioning a class of materials in which the magnetocrystalline anisotropy exhibits a four-

fold symmetry, which is common for materials with cubic crystalline structure [135, 107].

The corresponding energy analogous to (5.18) with the applied field set equal to zero

reads

E(m) =
1

2

ˆ
R2

(
|∇m|2 +m2

1m
2
2

)
d2r +

ν

8π

ˆ
R2

ˆ
R2

∇ ·m(r)∇ ·m(r)

|r− r′|
d2r d2r′, (5.26)

with the easy directions along either ±x̂ or ±ŷ. Thus, in addition to the usual types of

domain walls, a 90-degree wall is also possible.

Lund and Muratov studied existence of 90-degree and 180-degree domain wall solutions

by minimizing the one-dimensional version of (5.26) analogous to (5.19) [158]. They
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found existence of 90-degree walls for β = π
4 (and all their possible π

2 rotations). This

choice of β corresponds to the orientation that makes the wall charge-free for θ(+∞) = 0

and θ(−∞) = π
2 . The analysis of this case follow the lines of that of 180-degree walls in

uniaxial materials [41], with similar conclusions. In contrast, existence of 180-degree wall

solutions was found for β = 0 (and all their possible π
2 rotations), using the techniques of

the analysis of 360-degree walls in uniaxial materials for β = π
2 [38]. The issue here is to

show that a 180-degree walls does not split into two 90-degree walls, and this does not

happen because the latter would be charged for θ(+∞) = 0, θ(−∞) = π and β = 0.

All the open questions that were discussed in the preceding sections are similarly

relevant to biaxial materials. However, these materials may possess a richer domain

structure due to the four possible equilibria of the magnetization, as well as a richer set

of charge-free domain walls.

5.6. Conclusion. In summary, in recent years there have been a number of developments

in modeling and analysis of the domain walls arising in thin ferromagnetic films in which

the magnetization rotates in the film plane, pushing forward our understanding of the

classical questions in physics that began to be formulated in the 1920s. Some of the domain

wall solutions are by now fairly well understood in one space dimension. Nevertheless,

there are more open questions than answers, especially in two-dimensional and vectorial

settings, that will hopefully inspire the next generation of researchers in the calculus of

variations and analysis of PDEs to further advance this exciting area at the intersection

of mathematics and materials science.
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internal length scale of the cross-tie wall. Multiscale Model. Simul., 1:57–104, 2003.
[68] A. DeSimone, R. V. Kohn, S. Müller, and F. Otto. Recent analytical developments in micromagnetics.

In G. Bertotti and I. D. Mayergoyz, editors, The Science of Hysteresis, volume 2 of Physical

Modelling, Micromagnetics, and Magnetization Dynamics, pages 269–381. Academic Press, Oxford,
2006.
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