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Abstract – The scope of this work is to illustrate the advantages that can be obtained in
the context of structural health monitoring (SHM) when data-driven and model-based ap-
proaches are combined through the construction of a numerical twin of the structure. While
the strategy isn’t entirely novel per se, the use of wholly integrated technologies and software
developed by the same company for all parts of the workflow, preventing data loss and ensur-
ing interoperability, is where the originality lies. ASDEA S.r.l. provides products designed
to perform each part in the SHM cycle, spanning from data acquisition to alert emission and
damage management. The paper describes how the pieces are put together inside the coher-
ent environment provided by the STKO software, initially designed as a powerful interface to
the OpenSees solver for finite element methods (FEM). Data is acquired through a network
of MonStr sensors (produced by ASDEA Hardware), managed using artificial intelligence
(AI). The data is then exposed to near-real-time analysis to obtain an accurate picture of
the structural conditions, and the numerical model is updated continuously to reflect present
conditions. When anomalies are detected by the AI-based classifier, they are compared to
the output provided by the FEM analysis to ensure reliability.

Keywords – structural health monitoring, digital twin, FEM modelling, model updating.

1 Introduction

Over the last few decades, many automated methods for SHM have been introduced [1], [2]. The
underlying algorithms for anomaly detection relate to the two main categories of data-driven and
model-based approaches. In the data-driven paradigm, sensors are installed on the structure being
monitored and are set to register dynamic and environmental data. These data are transmitted to a
central node and then processed to provide a near real-time response about the structural conditions.
Conversely, model-based monitoring techniques provide for the construction of a numerical model
of the structure [3] (Figure 1).

Numerical simulations of the dynamics are performed after the domain is meshed, and the
equations governing the structure’s motion are time-discretised. Such equations are solved by
inputting several boundary conditions. Many scenarios should be considered to obtain the system
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Figure 1: From real structure to the numerical model

response for several types of loads under different environmental conditions in a “what-if” approach.
Furthermore, if a sensor network is available, experimental data can be exploited for the ongoing
calibration of the parameters defining the numerical model for more reliable previsions (model
updating). Both approaches are extensively used for structural condition assessment. Nevertheless,
they both contain inherent limitations when considered alone, i.e., the data-driven approach is
dependent on the quantity and quality of data, and the model-based approach’s reliability decreases
as the system complexity increases. However, the latter can perform better than the former when
a suitable model is provided. Accordingly, a hybrid approach using both techniques can greatly
improve the performance of the monitoring system in terms of execution time and overall reliability
[4]. Specifically, when a data-driven approach detects anomalous states in the data flow, the data
recorded by the sensor network can be treated as input conditions for the corresponding FEM model
to check the validity of the anomaly, hence preventing the emission of false alarms.

Herein, we present our proposal for a comprehensive hybrid approach to the problem of SHM,
as sketched in Figure 2.

Figure 2: The underlying levels defining the SHM process

Each method developed is embedded within the common environment provided by ASDEA
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Software’s [5] STKO (the Scientific ToolKit for OpenSees [6]). All the scripts are editable and then
combined to get the desired algorithm, even though our purpose is to use the FEM solver of STKO
to filter the outputs obtained from the AI-based APIs where necessary.

2 Methods

Although data-driven and model-based approaches for damage identification and decision-making
for SHM are available, data-driven algorithms are usually preferred. This is due to the fact that
they allow for the manipulation and processing of real, effective data registered from sensors and
then provides a current health status by means of robust multivariate statistic tools. However,
such a task requires dependable and optimally arranged equipment and high-performing CPUs to
manage the relevant datasets. Our solution overcomes such potential limitations through the use
of a network of optimally-placed MonStr devices for data acquisition and the adoption of suitable
GPUs for parallel computing. Nevertheless, some inaccuracies may still affect the overall reliability
of the results, which is where the hybrid model comes into play. The data analysis algorithms work
under the pattern recognition paradigm in an output-only approach. After a baseline characterising
the structure is obtained through the continuous monitoring of the structure in a healthy operative
state, machine learning programs identify underlying trends, patterns, and correlations within the
dataset, statistically comparing the output with the baseline scenario. Although well realised in
theory, the detection system may still fail in diagnosis for many reasons and, if damage actually
occurs, additional techniques have to be introduced for damage classification, localisation, extension,
and prognosis (concerning the remaining useful lifetime of the structure). Issues of this type can
be resolved through the construction of an accurate digital twin of the structure, in the following
manner:

• The initial baseline pattern can be integrated with a damage pattern obtained by running
FEM simulations with several critical boundary conditions as inputs.

• The number of false alarms can be reduced by double-checking the FEM model using current
data as input conditions.

• The corresponding FEM analysis helps classify the damage avoiding (or integrating) signal
triangulation.

Although some digital-twinning experiments have been implemented, they greatly suffer from a
lack of a common environment for the analysis. In fact, the various siloed software used to cover
different parts of the analysis typically require incompatible data formats. Many problems arise
in managing such large, heterogeneous datasets, including a slowdown of the algorithm, and part
of the data may be lost in the process. Such issues are completely bypassed using our proposed
system since the entire analysis is performed in the STKO environment, and the HDF5 data format
is adopted for all steps that produce outputs.

3 Results

Among the various aspects characterising the complex process which defines the digital twin strategy
as a whole, at this stage, we will focus on the STKO software and, in particular, on the tools it
provides for model updating. STKO plays a central role in our approach, hosting all the different
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stages of the SHM process and managing the HDF5 datasets produced at different levels. This
guarantees a complete interfaceability among SHM algorithms, which is a true innovation in this
field.

STKO was initially created to provide an advanced interface for the OpenSees software for finite
element analysis to make it accessible to a broader range of users. What makes STKO even more
useful as a unified environment for SHM is that individual users are able to create their own Python
scripts according to their specific needs. Thus, the already powerful pre and postprocessors can be
customised as required by the end-user.

Even though efforts are still being made to refine the FEM modelling aspects, like introducing
new constituent elements and materials, new tools have also been made available especially for
digital twinning purposes. In order to manage the workflow described as follows, a dedicated
Python framework was developed and it supports the:

• Preprocessing of data acquired through the MonStr device network,

• Data selection and feature extraction for model calibration,

• Updating the numerical model by means of genetic algorithms to match the experimental
data [7].

Once the FEM model is updated, dynamic simulations can be performed for “what-if” fore-
casting or to numerically reproduce near-real-time scenarios to check the reliability of the outputs
produced by the data-driven part of the algorithm for structural monitoring. It is worth stressing
once again that what holds all the pieces of the algorithm together within STKO is the consistent
database formatting and the Python language itself that acts as a glue for the different scripts.

Figure 3 schematically illustrates how the entire process works, including the interdependencies
among the various steps.

4 Conclusions and Contributions

The approach presented here has many features that make it very innovative compared to the
strategies currently available. To guarantee complete interoperability and optimal management of
all phases, from data acquisition to anomaly detection and data management, ASDEA’s various
companies have collaborated to provide the necessary products. This crucial aspect was made
possible by adopting a suitable, common format for databases and developing a robust software
environment in the form of STKO that hosts the Python codes needed for data analysis and feature
classification. Contrary to what the reader may assume from such a rigid workflow, the system’s
organisation inherently supports its adaptability. Each script featured can be easily customised,
and the various moduli arranged as desired for the purposes of each specific case under examination.
The workflow’s clarity also improves the readability of the underlying codes, makes the data
portable, and increases the speed of simulations.

Furthermore, substantial technical innovations have been made regarding the sensors themselves.
The novel, high-performing MonStr device designed by ASDEA Hardware for data recording has
extremely competitive features: signals can be sampled at an effective rate of 1 kHz, while the entire
network can be synched to less than 1 ms. Moreover, MonStr device networks can support up to
1000 channels, meaning hundreds of units can be optimally placed and arranged on a single structure
for highly reliable analysis. Furthermore, the MonStr device belongs to the A class performance
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Figure 3: Scheme of the workflow as explained in the text

for accelerometers and B class performance for all the remaining equipment according to the ANSS
guidelines [8].

Another key innovation of the system is that it takes already existing extremely powerful machine
learning-based algorithms for data analysis and redirects some of the heavy calculations to dedicated
GPUs that run in parallel to the CPU, thus increasing speed and efficiency. Python’s TensorFlow
and Apache Spark API libraries on related topics support such computations by default. Tests
performed using random forests as feature classifiers showed that the running speed of the algorithms
can be increased up to a factor of O(104) using average GPUs rather than average CPUs. Finally,
the FEM modelling phase capitalises on the well-known advantages of using OpenSees solvers via
the powerful STKO software.

Thus, we believe our digital twinning strategy for SHM is well-positioned to become the standard
for predictive engineering problems in the near future.
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