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Abstract

For a positive integer k, the k-recolouring graph of a graph G has as vertex
set all proper k-colourings of G with two k-colourings being adjacent if they
differ by the colour of exactly one vertex. A result of Dyer et al. regarding
graphs of bounded degeneracy implies that the 7-recolouring graphs of pla-
nar graphs, the 5-recolouring graphs of triangle-free planar graphs and the
4-recolouring graphs planar graphs of girth at least six are connected. On the
other hand, there are planar graphs whose 6-recolouring graph is disconnected,
triangle-free planar graphs whose 4-recolouring graph is disconnected and pla-
nar graphs of any given girth whose 3-recolouring graph is disconnected.

The main result of this paper consists in showing, via a novel application of
the discharging method, that the 4-recolouring graph of every planar graph of
girth five is connected. This completes the classification of the connectedness
of the recolouring graph for planar graphs of given girth. We also prove some
theorems regarding the diameter of the recolouring graph of planar graphs.

1 Introduction and results
Let k > 1 be an integer, and let G = (V,E) be a graph. A (proper) k-colouring of G is
a function σ : V → {1, . . . , k} such that, for every edge xy ∈ E, we have σ(x) 6= σ(y).
The k-recolouring graph of G, denoted by G(G, k), is the graph whose vertices are the k-
colourings of G, with two vertices being adjacent whenever the corresponding colourings
differ on exactly one vertex.
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The problem of determining whether G(G, k) is connected is equivalent to that of
determining whether the Glauber dynamics on the k-colourings of G is ergodic (see
e.g. [10, 16]). One of the earliest results in this direction is the following theorem by
Dyer et al. [13] and rediscovered by Cereceda et al. [9]. For a positive integer d, a graph
is d-degenerate if each of its subgraphs contains a vertex of degree at most d.

Theorem 1.1. Let k and d be positive integers such that k > d+2. If G is a d-degenerate
graph, then G(G, k) is connected.

The bound on k in Theorem 1.1 is best possible (for example, if G is the complete
graph on d+1 vertices, then G(G, d+1) a collection of (d+1)! isolated vertices). Perhaps
surprisingly, this bound also turns out to be best possible for planar graphs, triangle-free
planar graphs and planar graphs of girth at least six. Indeed, by Euler’s formula, planar
graphs are 5-degenerate, triangle-free planar graphs are 3-degenerate and planar graphs
of girth at least six are 2-degenerate. Thus, Theorem 1.1 implies that if G is a planar
graph, then G(G, 7) is connected. Similarly, G(G, 5) is connected if G is triangle-free and
planar, and G(G, 4) is connected if G has girth at least six and planar.

On the other hand, there is a planar graph G and a 6-colouring of G where the
closed neighbourhood of each vertex contains all 6 colours [2] and hence this 6-colouring
forms an isolated vertex in G(G, 6), implying G(G, 6) is disconnected. For triangle-free
planar graphs, consider the 4-colouring of the cube Q3 where all colours are used in every
face. Again, this colouring forms an isolated vertex in G(Q3, 4) and hence G(Q3, 4) is
disconnected. For planar graphs of girth at least six, the 3-colouring of a cycle C whose
length is a multiple of three where the colours 1, 2, 3 alternate in a cyclic fashion also
forms an isolated vertex in G(C, 3). This motivates the following question.

Problem 1.2. What is the smallest integer κ such that for every planar graph G of girth
five, the graph G(G, κ) is connected?

Note by our earlier discussion that κ∈ {4, 5} for Problem 1.2. In the main contribution
of this paper, we settle the problem by showing that κ = 4.

Theorem 1.3. For every planar graph G of girth five, the graph G(G, 4) is connected.

By our earlier discussion, Theorem 1.3 completes the classification of the connected-
ness of the recolouring graph for planar graphs of given girth. The proof idea of Theorem
1.3 is based on a new application of the discharging method, in which we allow an infinite
number of reducible configurations rather than the usual finite number. More precisely,
we first prove that a special type of C5 is forbidden. We then show that any possible
gluing of these C5 in a tree-like structure is also forbidden. We then conclude with a very
short and simple discharging argument; see Section 3.1 for a more detailed outline.

On a slightly different track, the question of determining what is the diameter of
G(G, k) (when it is connected) also received considerable attention. In other words, how
fast can we reach one k-colouring of G from another by changing the colour of one vertex
at a time? This question and, particularly, the following strengthening of Theorem 1.1
conjectured by Cereceda [8] have been the subject of much attention in recent years.

Conjecture 1.4. Let k, d be positive integers, k > d+2 and let G be a d-degenerate graph
on n vertices. Then G(G, k) has diameter O(n2).
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This bound would be best possible [3]. Although the conjecture has resisted several
efforts, there have been some partial results surrounding it. The most important break-
through comes from Bousquet and Heinrich [6], who show amongst other results, that
G(G, k) has diameter O(nd+1). Nonetheless, Conjecture 1.4 remains open even for d = 2.

When k is substantially larger than d, Bousquet and Perarnau [7] gave the following
bound.

Theorem 1.5. Let k and d be positive integers, such that k> 2d+2. If G is a d-degenerate
graph on n vertices, then G(G, k) has diameter O(n).

We conjecture that the bound on k in Theorem 1.5 can be lowered to d+ 3 and this
would be best possible [3].

Conjecture 1.6. Let k, d be positive integers, k > d+3 and let G be a d-degenerate graph
on n vertices. Then G(G, k) has diameter O(n).

To the best of our knowledge, Conjecture 1.6 is only known to hold for outerplanar
graphs [1] and 1-degenerate graphs. For partial results, Bartier and Bousquet [5] proved
that G(G, d + 4) has diameter O(n) for every d-degenerate chordal graph G of bounded
maximum degree, and Dvořák and Feghali proved that G(G, 10) has diameter O(n) for
every planar graph G [11, 12], and if G is triangle-free, then so does G(G, 7) [12].

As a second contribution in this paper, we confirm the conjecture for planar graphs
of girth at least 6, improving the bound on k in Theorem 1.5 in this special case.

Theorem 1.7. For every planar graph G on n vertices of girth at least 6, G(G, 5) has
diameter O(n).

To prove Theorem 1.7, we show that planar graphs of girth > 6 contain a 2-degenerate
1-island of constant size (see Section 2 for a definition), by using virtually the same
arguments as in [14] for a similar result; we then simply show that such a configuration is
reducible for the problem. We remark that it may be possible to improve Theorem 1.7 by
showing that G(G, 4) has linear diameter (this would be best possible, since, as discussed,
there exists planar graphs G of girth > 6 such that G(G, 3) is disconnected).

As our final contribution, we address a recent conjecture by Dvořák and Feghali that
generalizes their aforementioned result that G(G, 10) has diameter O(n) for every planar
graph G. In order to state the conjecture and our theorem, we require some further
definitions. A list assignment L for G is a function that, to each vertex v ∈ V , assigns a
set L(v) of colours. An L-colouring of G is (proper) colouring ϕ ofG such that ϕ(v)∈L(v)
for each v ∈ V . For a list assignment L of G, the L-recolouring graph of G, denoted by
G(G,L), is the graph whose vertices are the L-colourings of G, with two vertices being
adjacent whenever the corresponding colourings differ on exactly one vertex. Dvořák and
Feghali [12] made the following conjecture.

Conjecture 1.8. Let G = (V,E) be a planar graph on n vertices, and let L be a list
assignment for G with |L(v)| > 10 for each v ∈ V . Then G(G,L) has diameter O(n).

In the case where the number 10 of colours is replaced by 12, Conjecture 1.8 follows
from [[6], Theorem 1]. We improve this result as follows:
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Theorem 1.9. Let G= (V,E) be a planar graph on n vertices, and let L a list assignment
for G where |L(v)| > 11 for every v ∈ V . Then G(G,L) has diameter O(n).

Our proof of Theorem 1.9 follows the same spirit as our proof of Theorem 1.7, by
combining a structural result of Borodin for planar graphs with a standard reducible
configuration argument.

Girth/colours 4 5 6 7
3 +∞ +∞ +∞ O(n6) [6]
4 +∞ O(n4) [6] O(n log3(n)) [15] O(n) [12]
5 < +∞ (Thm 1.3) O(n log2 n) [15] - -
6 O(n3) [6] O(n) (Thm 1.7) - -

7+ O(n log n) [15] - - -

Table 1: Existing and open cases for the diameter of the k-recolouring graph of planar
graphs with girth g for some combinations of values of k and g. Note that any bound at
a given position in the table implies the same bound at its right and below it.

We end this section with a summary in Table 1 of some of the results on the diameter
of G(G, k) for planar graphs G of given girth g. We should remark that there is no known
lower bound beating the (trivial) Ω(n) bound on the diameter of such G(G, k) whenever
it is connected, which suggests an interesting direction of research.

For more results on this topic or on reconfiguration versions of decision problems other
than graph colouring, we refer the reader to the surveys by van den Heuvel [19] and by
Nishimura [18].

2 The proofs of Theorems 1.7 and 1.9
We start with some definitions. For a subgraph H of a graph G and a colouring σ of
G, we denote by σ�H the restriction of σ to H. A colouring σ′ of G is obtained from σ
by a single step recolouring, denoted σ ∼ σ′, if σ and σ′ differ in the colour of exactly
one vertex. Let α and β be two colourings of G. Given a sequence σ′ of recolourings
α�H ∼ · · · ∼ β�H in H, we say that σ′ lifts to a sequence σ of recolourings α ∼ · · · ∼ β in
G if σ�H=σ′ . Note that the recolouring sequences σ and σ′ may not be of the same length.
For a recolouring sequence α = α1 ∼ α2 ∼ · · · ∼ αm = β, the set of new colours of H is
the set

⋃m
i=2{αi(u) : αi(u) 6= α1(u), u ∈ H}.

In order to prove Theorems 1.7 and 1.9, we will use the following basic, yet powerful,
lemma (whose proof is implicit in a number of papers).

Lemma 2.1. Let G be a graph and v a vertex of G. Let k and C be positive integers,
k > d(v) + 2. Let α and β be k-colourings of G. Suppose that there is a recolouring
sequence from α�(G−v) to β�(G−v) that recolours the neighbourhood N(v) of v at most C
times. Then the sequence lifts to a sequence in G from α to β by at most d C

k−d(v)−1e+ 1
recolourings of v.

Proof. Since the total number of times the neighbours of v change their colour is at most
C, we can let a1, . . . , aC be the new colours inN(v) in order. Let t= k−dG(v)−1. We start
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by recolouring v to a colour not in {a1, . . . , at}, followed, in turn, by the first t recolourings
a1, . . . , at in N(v). We then recolour v to a colour not in {at+1, . . . , a2t}, followed by the
next t recolourings in N(v); we continue this process until all C recolourings in N(v) have
occurred. Notice that it is always possible to recolour v since there are at least t colours
not appearing on v or any of its neighbours. Finally, we recolour v to β(v). Clearly, v is
recoloured at most dC

t
e+ 1 times.

To prove Theorem 1.9, we combine Lemma 2.1 with the following result of Borodin [4].

Theorem 2.2. If G is a planar graph with minimum degree 5, then G has a 3-face T
with vertices v1, v2, v3 such that d(v1) + d(v2) + d(v3) 6 17.

We say that (G,α, β) is a counterexample to Theorem 1.9 if

• G is a planar graph,

• α and β are L-colourings of G, where L is as in Theorem 1.9, and

• α cannot be transformed to β by at most 100 recolourings per vertex.

A counterexample (G,α, β) to Theorem 1.7 is said to be minimal if |V (G)| is minimum
amongst all counterexamples to Theorem 1.7.

Proof of Theorem 1.9. Let (G,α, β) be a minimal counterexample to Theorem 1.9.
We first claim that G has minimum degree at least 5. Otherwise, G has a vertex

v with degree at most 4. By minimality, there is a recolouring sequence from α�(G−v)
to β�(G−v) where each vertex gets recoloured at most 100 times. By Lemma 2.1, this
sequence lifts to a sequence in G by at most 68 recolourings of v, a contradiction.

We claim that G does not have two vertices v1 and v2 such that v1v2 ∈ E(G) and
the degrees of v1 and v2 are precisely 5. Otherwise, by minimality, there is a recolouring
sequence from α�(G−{v1,v2}) to β�(G−{v1,v2}) where each vertex gets recoloured at most 100
times. By Lemma 2.1, this sequence lifts to a sequence in G − v1 by recolouring v2 at
most 68 times. By the same lemma, the latter sequence lifts to a sequence in G by at
most 95 recolouring of v1, which is a contradiction. This proves the claim.

A similar argument can be applied to show that G has no triangle v1, v2, v3 such that
v1 has degree 5 and both v2 and v3 have degree 6 (consider the graphs G − {v1, v2, v3},
G− {v1, v2}, G− v1 and G in order). Indeed, v3 is recoloured 68 times, v2 is recoloured
95 times and finally v1 is recoloured at most 96 times.

To complete the proof, by Theorem 2.2, G contains a triangle T with vertices v1, v2, v3
such that d(v1) + d(v2) + d(v3) 6 17. As G does not contain an edge where both vertices
have degree 5, it implies that up to relabelling, d(v1) = 5, d(v2) = 6 and d(v3) = 6, which
contradicts the preceding argument.

The proof of Theorem 1.7 also follows from Lemma 2.1, but will require some more
work.

Given a graph G and an induced subgraph H of G, we say that H is a 2-degenerate
1-island if the following hold:

• each vertex v ∈ V (H) has at most one neighbour in G−H, and
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• there exists an ordering v1, . . . , v|V (H)| of the vertices of H such that for each i ∈
{2, . . . , |V (H)|}, the vertex vi has at most two neighbours in the graph G − H +
{v1, . . . , vi−1}.

We say that (G,α, β) is a counterexample to Theorem 1.7 ifG is a planar graph of girth
at least 6 and α and β are 5-colourings of G that cannot be transformed to one another
by at most 6143 recolourings per vertex. A counterexample (G,α, β) to Theorem 1.7 is
minimal if |V (G)| is minimum amongst all counterexamples to Theorem 1.7.

It turns out that a minimal counterexample cannot contain a 2-degenerate 1-island of
order at most 12.

Lemma 2.3. Let (G,α, β) be a minimal counterexample to Theorem 1.9. Then G does
not contain a 2-degenerate 1-island H where |V (H)| 6 12.

Proof. Suppose towards a contradiction that G contains a 2-degenerate 1-island H with
|V (H)| 6 12. Let t = |V (H)|, and let v1, . . . , vt be an ordering of V (H) such that for all
i∈ {2, . . . , t} the vertex vi has at most two neighbours in the graph G−H+{v1, . . . , vi−1}.
By minimality, there is a recolouring sequence σ′ in G−H from α�(G−H) to β�(G−H) that
recolours every vertex at most 6143 times. We lift σ′ to a recolouring sequence σ from
α to β in G as follows. Let c1 = 2049, and for i > 2, let ci := d6143+ci−1

2
e + 1. Note that

c12 = 6143 and ci+1 > ci.
To prove the lemma, it suffices to show that σ′ lifts to σ by recolouring each vi at

most ci times. We proceed by induction on i. For i = 1, since v1 has at most one
neighbour in G − H, Lemma 2.1 implies that v1 is recoloured at most 2049 = c1 times.
Suppose i ∈ {2, . . . , t}. Since H is a 2-degenerate 1-island, vi has at most one neighbour
in G−H and at most two neighbours in G−H + {v1, . . . , vi−1}, the neighbours of vi are
recoloured at most ci−1 + 6143 times. By Lemma 2.1, σ′ lifts to a recolouring sequence
of G−H + {1, . . . , vi} by recolouring vi at most ci times, as desired.

To finish the proof of Theorem 1.7, it suffices to show, by Lemma 2.3, that every
planar graph of girth at least 6 contains a 2-degenerate 1-island H where |V (H)| 6 12.
This follows nearly immediately from the proof of Theorem 8 in [14]. We include the
proof for completeness since the result stated in [14] is slightly weaker (but holds for
more general surfaces).

Lemma 2.4. Every planar graph of girth at least 6 contains a 2-degenerate 1-island H
where |V (H)| 6 12.

Proof. Let G be a vertex minimal counterexample. Then G has minimum degree 2; if
not, the vertex of degree 1 is a 2-degenerate 1-island. A similar argument can also be
applied to show that G does not contain

(A1) a path with at most 12 vertices each of degree at most 3 where the endpoints have
degree 2;

(A2) a cycle C with at most 12 vertices where all vertices in C have degree at most 3
and at least one vertex of C has degree 2.
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We now proceed via the classical discharging method. For every v ∈ V (G), let
ch(v) = 2d(v) − 6, and for every face f in G, let ch(f) = d(f) − 6. By Euler’s formula,∑

x∈V ∪F ch(x) = −12.
For every face f in G, choose an orientation of f and call it positive, and let the

other orientation be called negative. We now describe a procedure by which charges are
redistributed. For any vertex v where d(v) = 2, for any face f incident to v and for any
orientation of f , take a maximal facial walk of f starting at v and going around f in the
prescribed orientation of f such that the inner vertices of the walk have degree precisely
3. Let u be the other end vertex of the walk (note that u = v is a possibility). Our
discharging rules are as follows:

• If the walk has at least 5 inner vertices, f sends a charge of 1
2
to v.

• Otherwise, u sends a charge of 1
2
to v.

By the maximality of the walk, if the second case occurs, then by (A1) and (A2) u
has degree at least 4 and there are no paths where both endpoints have degree 2 and all
internal vertices have degree at least 3.

To reach a contradiction, we show that the final charges ch∗(f) and ch∗(v) of each
face f and vertex v is non-negative.

Case 1: d(v) = 2.
In this case, v appears four times in the union of all boundary walks of faces of G (for
each face, we consider a boundary walk in the positive orientation and a boundary walk
in the negative orientation of the face). Therefore v receives a charge of 4 × 1

2
= 2, and

thus ch∗(v) = −2 + 2 > 0, as required.

Case 2: d(v) = 3.
Vertices of degree 3 start with 0 charge and do not give any charge, hence they end up
with a final charge of 0.

Case 3: d(v) > 4.
Consider the facial walks through which v gives a charge of 1

2
to some vertices of degree

2. Note that there are at most two such walks for each of the d(v) faces incident to v.
Therefore we have ch∗(v) > 2d(v) − 6 − 2 × d(v) × 1

2
= d(v) − 6, which is non-negative

when d(v) > 6.
To handle the remaining cases, we first claim that if a neighbour u of v is immediately

before v in more than one such walk, then u has degree 2. Assume by contradiction
that u has degree > 3 and is just before v in two facial walks ending at v, then by the
above procedure u must have degree exactly 3 and there are two paths starting at u each
containing at most three inner vertices (each of degree 3) and finishing at a vertex of
degree 2 (if there were more than three inner vertices, then together with vertices u and
v, it would give at least 5 inner nodes, a contradiction since we assumed that we cannot
apply the first discharging rule). It follows that G contains a path on at most 9 vertices
each having degree at most 3 and with its endpoints having degree 2, contradicting (A1).

Let us now complete the proof of Case 3. If d(v) = 5, then v cannot be adjacent
to at least 4 vertices of degree 2 since otherwise v together with these vertices form a
2-degenerate 1-island of size at most 5. Therefore, by the claim, v gives a charge of at
most 3 + 2× 1

2
= 4, implying ch∗(v) > 0.
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Suppose d(v) = 4. Then a similar argument as above (see below) can be applied to
show that

• v is not adjacent to more than 2 vertices of degree 2,

• if v is adjacent to two vertices of degree 2, then v does not give any charge through
its neighbours of degree at least 3,

• if v is adjacent to one vertex of degree 2, then v does not give any charge through
more than one neighbour of degree at least 3

In each case, we obtain ch∗(v) > 0. Lastly, if v has no neighbour of degree 2, by the
claim, ch∗(v) > 2− 4× 1/2 > 0. We now give the details.

• If, for a contradiction, v is adjacent to at least 3 vertices of degree 2, then these
vertices together with v form a 2-degenerate 1-island of size at most 5. Thus v is
adjacent to at most two vertices of degree 2.

• If v is adjacent to exactly two vertices of degree 2, then v does not send charge
through any of its degree 3 neighbours. This is because if v did, then the path
from the neighbour to the vertex of degree 2, combined with v and its degree 2
neighbours is a 2-degenerate 1-island of size at most 7, a contradiction. Thus in
this case, the final charge of v is at least 0, as desired.

• So we can assume that v is adjacent to at most 1 vertex of degree 2. If v has exactly
one neighbour of degree 1, then as before we see that v can send charge through at
most one of its degree 3 neighbours. If not, then these two paths from the degree
3 neighbours to the vertices of degree 2 plus v and the degree 2 neighbour form a
2-degenerate 1-island of size at most 10, which is a contradiction. Therefore in this
case, again v ends up with final charge at least 0. This completes Case 3.

Case 4: d(f) = 6.1
In this case, no vertex receives any charge from f , since otherwise f has a vertex of degree
2 and five vertices of degree 3, which implies that the face is a 2-degenerate 1-island of
order 6.

Case 5: d(f) > 7.
For each vertex of degree 2 that receives a charge of 1

2
from f in the positive orientation,

let A+(v) be the set consisting of the five vertices of degree exactly 3 following v in the
positive orientation of f (notice that these vertices exist). We define A−(v) similarly for
the negative orientation of f . Then A+(v) and A−(u) are pairwise disjoint, otherwise
there is a 2-degenerate 1-island of size at most 11. Therefore each face f sends a charge
of at most 2× 1

2
× bd(f)

6
c, and thus as d(f) > 7, we get that ch∗(f) > 0. This completes

Case 5 and hence the proof of the theorem.
1The degree of a face being the number of vertices incident to it.
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3 The proof of Theorem 1.3

3.1 Outline of the proof

We say that (G,α, β) is a special counterexample to Theorem 1.3 if

• G is a planar graph of girth 5,

• α is a 4-colouring of G and β is a 3-colouring of G, and

• there is no sequence of recolourings from α to β.

Note that every special counterexample is indeed a counterexample to Theorem 1.3.
Moreover, because of the celebrated Grötszch’s Theorem [17] (stating that every triangle-
free planar is 3-colourable), if there is no special counterexample, then Theorem 1.3 holds.
Therefore, in order to prove Theorem 1.3, it is sufficient to show that there is no special
counterexample. For clarity, from now on, we will omit the adjective “special”.

We say that a counterexample (G,α, β) is minimal if |V (G)| 6 |V (H)| for any other
counterexample (H,α′, β′). We prove Theorem 1.3 by contradiction, showing that no
minimal counterexample exists.

For a face f of G, the set of vertices incident with f is denoted V (f). Let v be a
vertex of G of degree exactly 4 and let f be a 5-face incident with v. A 5-face f ′ 6= f of
G is opposite to f with respect to v if V (f)∩ V (f ′) = {v} (note that since v has degree 4
and G has girth 5, f ′ is well defined). We say that a vertex u incident with a 5-face f is
bad for f if either

• u has degree 3, or

• u has degree 4 and f has an opposite 5-face f ′ with respect to u such that each
vertex in V (f ′)− {u} is bad for f ′.

If v is bad for f , we say that (v, f) is a bad pair. Observe that bad pairs are well-defined
inductively, and that the definition gives a natural quasi-order on bad pairs.

To prove Theorem 1.3, we show that every minimal counterexample cannot contain
two infinite families of forbidden structures, namely:

• a 5-face f where all vertices are bad for f (Lemma 3.17)

• a 5-vertex v adjacent to four 5-faces f1, f2, f3, f4 such that each vertex of fi (except
v) is bad for fi (Lemma 3.19).

We then apply a simple discharging argument to reach a contradiction with the existence
of a minimal counterexample.

3.2 Structure of a minimal counterexample

In this section, we show a series of lemmas leading to the sought forbidden structures
from Lemmas 3.17 and 3.19 (see the end of this section).

Lemma 3.1. Let (G,α, β) be a minimal counterexample. Then G is connected and has
minimum degree at least 3.
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Proof. Clearly, G is connected. Suppose that G has a vertex v of degree at most 2. By
minimality of (G,α, β), there is a recolouring sequence from α�(G−v) to β�(G−v). This
sequence can be lifted to a sequence in G by first recolouring v whenever a neighbour of
v is recoloured to the colour of v (this is possible since the number 4 of colours implies
there is always a colour not appearing on v or any of its neighbours). At the end of the
sequence, we recolour v to β(v), which is a contradiction.

We say that a vertex v of G is α-frozen if α(v) = γ(v) for every colouring γ obtainable
from α by a sequence of recolourings. We say that v is α-locked if all colours {1, 2, 3, 4}
appear in the closed neighbourhood of v. Notice that if a vertex is frozen, then it is also
locked, but the converse is not necessarily true. A vertex is said to be α-loose if it is
not α-frozen and α-free if it is not α-locked. A locked vertex is said to be unlocked if it
becomes free after recolouring at least one of its neighbours.

We have the following simple observations about frozen vertices. The first lemma is
obvious.

Lemma 3.2. Let G be a graph, and let ϕ be a 4-colouring of G. If v is a vertex of G of
degree 3 that is ϕ-locked, then recolouring one of the neighbours of v unlocks v.

The following simple consequence of the lemma will be used repeatedly.

Lemma 3.3. Let G be a graph, and let ϕ be a 4-colouring of G. Let P = v1v2 . . . vk be a
path in G such that v1 is ϕ-free and, for i ∈ {2, . . . , k}, vi is ϕ-locked and has degree 3.
Then, for j ∈ {2, . . . , k} there is a sequence of recolourings from ϕ to some colouring of
G that unlocks vj that only recolour vertices of P .

Proof. We recolour vi, 1 6 i 6 j − 1 in order, i.e. starting with v1 and moving towards
vj−1. This is possible by Lemma 3.2.

Lemma 3.4. Let G be a graph, ϕ be a 4-colouring of G and v be a vertex of G with
degree 3 that is ϕ-frozen. Then every neighbour of v is ϕ-frozen.

Proof. Suppose by contradiction that there is a neighbour w of v that is ϕ-loose. By
definition of w, there is a recolouring sequence starting from ϕ which recolours w. Up to
truncating the recolouring sequence and renaming w, one can assume that w is the only
recoloured neighbour of v. Since v is ϕ-frozen and has degree precisely 3, recolouring w
in turn unlocks v by Lemma 3.2, which is a contradiction.

Lemma 3.5. Let G be a graph, ϕ be a 4-colouring of G and v be a vertex of G with
degree 4 that is ϕ-frozen. If v has two frozen neighbours with the same colour in ϕ, then
all neighbours of v are ϕ-frozen.

Proof. Let u1, u2 be the two ϕ-frozen neighbours of v such that ϕ(u1) = ϕ(u2), and let
w1 and w2 be the other two neighbours of v. Suppose for a contradiction that one of
w1, w2, say w1, is ϕ-loose. So we can let σ be the first colouring obtainable from ϕ via a
sequence of recolourings such that σ(w1) 6= ϕ(w1).

Note that v being ϕ-frozen implies ϕ(v), ϕ(u1), ϕ(w1), ϕ(w2) are pairwise distinct.
Thus, σ(w1) ∈ {ϕ(u1), ϕ(w1), ϕ(w2)} and since u1 and u2 are frozen, σ(ui) = ϕ(ui) for
i = 1, 2. Hence, v has only two colours appearing in its neighbourhood, and hence is
σ-loose, which is a contradiction.
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Using these properties, we can prove the following result. Let G be a plane graph
with girth 5, and let f be a face of G. The set of neighbours adjacent to some vertex in
V (f) (but not on f) is denoted by N(f). A 5-face f in G with V (f) = {v1, v2, v3, v4, v5}
is bad if d(v1) 6 4 and d(vi) = 3 for i ∈ {2, . . . , 5}; it is very bad if moreover d(v1) = 4.

Lemma 3.6. Let (G,α, β) be a minimal counterexample. Then G does not contain a bad
5-face with at least one vertex that is α-loose.

Proof. Suppose by contradiction that G contains a bad 5-face f with an α-loose vertex.
By definition, α can be transformed to some 4-colouring ϕ such that f has a vertex that
is ϕ-free.

For a colouring σ of G, we shall slightly abuse notation by saying the face f is σ-free
if at least one vertex incident to f is σ-free. Our aim is to show that any recolouring
sequence of G− V (f) can be lifted into a sequence in G, which is a contradiction to the
minimality of (G,α, β).

Let u1 denote the vertex of degree at most 4 in f , and let u2, . . . , u5 denote the vertices
of degree precisely 3 on f in a clockwise ordering starting at u1 around f . By Lemma
3.1, d(u1) > 3. We require the following two claims.

Claim 3.7. If f is σ-free and w ∈ {u1, . . . , u5}, then there is a recolouring sequence
starting from σ that recolours only vertices in V (f) and unlocks w.

Proof of Claim 3.7. If w is σ-free, there is nothing to prove.
So we can assume that w is σ-locked. If w 6= u1, then one of the two facial paths from

w to u1 goes through a free vertex (otherwise all vertices of f are locked). Let u be the
first such vertex. We can apply Lemma 3.3 with the path from w to u, and the claim
follows.

Therefore we can assume that w = u1. Since f is σ-free and each ui 6= w has degree
precisely 3, the same argument can be applied to show that for i ∈ {2, . . . , 5} each ui can
be unlocked by recolouring vertices in V (f)− w and if d(u1) = 3, then w = u1 may also
be unlocked. To complete the proof, it remains to show that w can also be unlocked if
d(w) = 4 by recolouring vertices in V (f).

Let w1 and w2 denote the two neighbours of w outside f , and suppose σ(w) = 1,
σ(w1) = 3 and σ(w2) = 4. Our aim is to try to recolour w to colour 2 (by possibly
first recolouring only vertices in V (f) − w). If σ(u2), σ(u5) 6= 2, then w is σ-free, a
contradiction. Therefore, either σ(u2) = 2 6= σ(u5) or σ(u2) = σ(u5) = 2. We address the
two cases separately.

Case 1: σ(u2) = 2 6= σ(u5).
Since f is σ-free, we can let i ∈ {2, . . . , 5} be the smallest index such that ui is σ-free. If
i = 2, then we recolour u2 which, in turn, unlocks v. And if i 6= 4, then recolouring uj
unlocks uj−1 for i > j > 1 in order as needed.

It only remains to address the case i = 5. We first try to recolour u5 with a colour
distinct from 2; this in turn unlocks u4 and by recolouring u4 vertex u3 is unlocked etc.
until u1 is unlocked. So we can assume that we can only recolour u5 with colour 2.
Without loss of generality, set σ(u5) = 3. Since u4 is locked, σ(u3) 6= 3 = σ(u5) and since
u2 is locked, σ(u3) 6= 1 = σ(u1). Therefore, σ(u3) = 4 6= σ(u2) = 2. Since u3 is locked,
σ(u4) 6= 2 = σ(u2) and thus σ(u4) = 1. By applying the recolouring sequence shown in
Figure 1, w may be recoloured to 2. This completes Case 1.
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u5 : 3 → 2
u4 : 1 → 3
u3 : 4 → 1
u2 : 2→ 4

1
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2
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4

u3 : 1 → 2
u4 : 3 → 1
u5 : 2 → 3
w : 1→ 2

2
4
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3

3 4

3

3 2

4

Figure 1: Recolouring sequence from Case 1 of Claim 3.7.

Case 2: σ(u2) = σ(u5) = 2,
If either u2 or u5, say u2, is σ-free, then we recolour u2 with a colour 6= 2 and apply Case
1.

Otherwise, since f is σ-free, either u3 or u4 is σ-free. Assume without loss of generality
that u3 is σ-free; then recolouring u3 unlocks u2, in which case the argument from the
preceding paragraph can be applied. This completes Case 2 and hence the proof of the
claim.

Claim 3.7 will allow us to prove the following claim, from which we will derive
Lemma 3.6.

Claim 3.8. If f is σ-free, z ∈V (f) and a∈{1, 2, 3, 4}, then there is a recolouring sequence
from σ to a colouring σ′ that recolours only vertices in V (f) such that σ′(z) 6= a and some
vertex in {u2, . . . , u5} is σ′-free.

Proof of Claim 3.8. We distinguish three cases (the cases z= u4 and z= u5 are symmetric
to respectively z = u3 and z = u2).

Case 1: z = u1.
By Claim 3.7, we can transform σ to some colouring σ′ by only recolouring vertices in V (f)
so that z is σ-free and so by recolouring z if necessary we can further assume σ′(z) 6= a.
If some vertex in {u1, . . . , u5} \ {z} is σ′-free, then the claim follows. So we can assume
that each ui is σ′-locked. By symmetry, we assume that the neighbours of z outside f are
coloured with 2 and 3. Thus, σ′(u2) = σ′(u5) = 2 and so σ′(u3) = 3, σ′(u4) = 4 6= σ′(z) = 1.

Now we proceed with the recolouring sequence shown in Figure 2 (note that, at the
end of the sequence, the colour of z is 1 while u2 is free, as needed).

Case 2: z = u2.
By Claim 3.7, we can transform σ to a colouring σ′ by only recolouring vertices in V (f)
so that u1 is σ′-free and by recolouring u1 if necessary we can further assume that z
is σ′-free. If σ′(z) 6= a then we are done. Suppose σ′(z) = a. If u3 is σ′-locked, then
recolouring z = u2 in turn unlocks u3 by Lemma 3.2, and we are done. If, on the other
hand, u3 is σ′-free, then we recolour u3 if necessary to unlock u4. If, at this point, u2 is
locked, then we can recolour u1 which is still unlocked, and then u2 becomes free. We
finish the sequence by recolouring z = u2 (to a colour distinct from a) and as u4 is still
free the claim follows. This completes Case 2.
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u4 : 4 → 2
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Figure 2: Recolouring sequence that unlocks vertices without changing the colour of v.

Case 3: z = u3,
As before, by Claim 3.7, we can transform σ to a colouring σ′ by only recolouring vertices
in V (f) so that u3 is σ′-free and σ′(u3) 6= a. Assume that each vertex in {u2, . . . , u5} is
σ′-locked (else we are done).

Now recolouring u3 unlocks both u2 and u4, and in turn recolouring u4 unlocks u5. If,
at this point, u3 is locked, we recolour u2 to unlock u3 and then recolour u3 if necessary
so that its colour is distinct from a. Since u5 is free, Case 3 is complete.

We can now finish the proof of the Lemma 3.6. By the minimality of (G,α, β), there
is a sequence s′ of recolourings from α�(G−V (f)) to β�(G−V (f)).

We lift s′ to a sequence from α to β in G as follows. Each time a vertex v ∈ N(f) is
recoloured to the current colour a of some vertex z ∈ V (f), we precede the recolouring
of v by changing the colour of z to a colour distinct from a and such that another vertex
of {u2, . . . , u5} is unlocked; this is always possible by Claim 3.8 since (by hypothesis), f
contains a free vertex. Observe that this operation only changes the colours of vertices
in V (f) and leaves f with a free vertex in {u2, . . . , u5}. (Note that v indeed has at most
one neighbour in f by girth assumption). This shows that s′ lifts to a sequence from α to
some colouring β′ of G such that β′�(G−V (f)) = β�(G−V (f)) and some vertex in {u2, . . . , u5}
is β′-free. To finish the proof, we describe a sequence of recolourings from β′ to β that
recolours only vertices in V (f).

From β′ we recolour as many vertices as possible in V (f) to colour 4 (recall that
β uses only colours 1, 2 and 3) and let β′′ denote the resulting colouring; notice that
β′′(uj) = β′′(uj+2) = 4 for some j ∈ [5] (here u6 = u1 and u7 = u2). From β, we recolour
uj and uj+2 to colour 4 and denote the resulting colouring β∗. Note that uj+1 is free in
both β′′ and β∗ unless possibly if uj+1 = u1, in which case β′′(u1) = β∗(u1). Therefore,
by recolouring uj+1 if necessary from β′′, we can assume β′′(uj+1) = β∗(uj+1). The only
cause of difficulty is when β∗(uj+3) = β′′(uj+4), β∗(uj+4) = β′′(uj+3) and uj+4 and uj+3 are
locked in β∗ (all the other cases are easy and left to the reader). In this case, assuming
without loss of generality that uj is the vertex of degree 3, we recolour, from β∗, uj to
colour β(uj), then recolour uj−1 = uj+4 to colour 4, followed by recolouring uj−2 = uj+3

to its colour β∗(uj+4) in β′ and finally uj+4 to β∗(uj+3). We finish the sequence by
recolouring uj to colour 4. The proof of the lemma is complete.

In order to prove the next lemma, we make use of the following observation (see also

13



4

1

2 3

1

2,3

3

4 4

2

Figure 3: The unique locked 4-colouring of a 5-face from Lemma 3.9.

Figure 3).

Lemma 3.9. Let f be a 5-face in a plane graph G with girth 5 and v ∈ V (f). Assume
that all vertices of f but v have degree 3. If d(v) = 3, there is no 4-colouring ϕ of
G[V (f) ∪ N(f)] such that every vertex in V (f) is ϕ-locked. Otherwise d(v) > 4, and
there is a unique such colouring (see Figure 3).

The (easy) proof of Lemma 3.9 follows by case analysis and is left to the reader. We
are now ready to prove Lemma 3.10.

Lemma 3.10. Let (G,α, β) be a minimal counterexample. Then G does not contain four
5-faces f1, . . . , f4 such that

⋂4
i=1 V (fi) contains a vertex v of degree 5 and every vertex in⋃4

i=1 V (fi)− {v} has degree 3 (see Figure 4).

5
v

3
u1

3

3

3

3
u53

z1

3z′1

3

3 3

3

3 z4

3
z′4

f1

f2 f3

f4

Figure 4: Configuration from Lemma 3.10. Numbers indicate degree.

Proof. Suppose otherwise, and let H = G[
⋃4
i=1 V (fi)]. For i ∈ {1, . . . , 4} write V (fi) =

{v, ui, ui+1, zi, z
′
i}, where ui denotes the neighbour of v incident with fi−1 and fi, and

uizi, ziz
′
i, z
′
iui+1 ∈ E(fi).

By the minimality of (G,α, β), there is a sequence s′ of recolourings from α�(G−H) to
β�(G−H). To reach a contradiction, we show how to lift s′ to a sequence from α to β in G.
Fix a 4-colouring σ of G.

Claim 3.11. For i = 1, 2, there is a σ-free vertex incident to fi, fi+1 or fi+2.

Proof of Claim 3.11. Suppose by contradiction that all vertices incident to fi, fi+1 and
fi+2 are σ-locked. By Lemma 3.9, σ(ui) = σ(ui+1), σ(ui+1) = σ(ui+2) and σ(ui+2) =
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σ(ui+3). Thus only two colours appear in the neighbourhood of v, i.e., v is σ-free, which
is a contradiction.

Claim 3.12. There is a recolouring sequence from σ to some colouring σ′ such that
σ�(G−H) = σ′�(G−H) and σ(v) 6= σ′(v).

Proof of Claim 3.12. By Claim 3.11, there is a σ-free vertex h incident with f1, f2, or f3.
Let P denote a shortest path whose internal vertices entirely lie in V (f1 ∪ f2 ∪ f3)− {v}
and having ends h and u1. Applying Lemma 3.3 to P , we can assume u1 is σ-free.
Similarly, we can assume that u5 is σ-free. (Note that this keeps u1 free since u1 has
no neighbour in V (f2 ∪ f3 ∪ f4) − {v}). This, in turn, yields σ(u1) = σ(u5). Indeed, if
they have different colours and none can be recoloured into the other, they can both be
recoloured into {1, 2, 3, 4} \ {σ(u1), σ(u5), σ(v)}. To prove the claim, we must change the
colour of v. We consider two cases.

Case 1: f2 and f3 are both σ-locked.
By Lemma 3.9, σ(u2) = σ(u3) = σ(u4). Consequently, only two colours appear in the
neighbourhood of v since σ(u1) = σ(u5) by assumption, i.e., v is σ-free so we simply
recolour v.

Case 2: there is a σ-free vertex incident to either f2 or f3.
By applying Lemma 3.3 as before, we can assume that uj is σ-free for some j ∈ {2, 3, 4}.
Let C be the set of colours appearing on the σ-locked neighbours of v. Then |C| 6 2
by our observations this far and so there is a colour a ∈ [4] \ (C ∪ {σ(v)}). We simply
recolour the three σ-free neighbours u1, u5 and uj of v if their colour is a and finish the
sequence by recolouring v to a. This completes Case 2 and the proof of the claim.

Claim 3.13. There is a recolouring sequence from σ to some colouring σ′ such that
σ�(G−H) = σ′�(G−H) and σ

′(v) ∈ {σ′(z′1), σ′(z4)}.

Proof of Claim 3.13. Since G is planar, there cannot be an edge between z′1 and {z3, z′3}
and one between z4 and {z2, z′2}. Up to exchanging z′1 and z4, assume that the former
holds.

Let x be the neighbour of z′1 which is not z1 or u2. By hypothesis x /∈ {z3, z′3}, and
since G has girth 5, x /∈ {z2, z′2}. If x /∈ H, then by Claim 3.12, we can assume that
σ(x) 6= σ(v). If x = z4, then σ(x) 6= σ(v) otherwise the result follows. If x = z′4, we can
also assume that σ(x) 6= σ(v) otherwise u4 is σ-free, and up to recolouring u4, x becomes
free and we can recolour it. So we can assume that σ(x) 6= σ(v).

We try to immediately recolour z′1 to colour σ(v). If this is not possible, then either
σ(z1) or σ(u2) is σ(v), and as u2v ∈ E(G), σ(z1) = σ(v). Therefore u1 is σ-free, and up
to applying Lemma 3.3, we can assume that z1 is σ-free; so we recolour z1 to a colour
different from σ(v) and then finally recolour z′1 with σ(v). The claim is proved.

Claim 3.14. For every w ∈ V (G −H), there is a recolouring sequence from σ to some
colouring σ′ such that σ�(G−H) = σ′�(G−H) and every vertex in NG(w) ∩ V (H) is σ′-free.

Proof of Claim 3.14. Set Z1 = {u1, z1, z′1}, Z2 = {z2, z′2}, Z3 = {z3, z′3} and Z4 = {z4, z′4, u5}.
Note that NH(w)⊆

⋃4
i=1 Zi; moreover, since G has girth 5, w can have at most one neigh-

bour in each Zi that we denote wi.
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By Claim 3.13, we can assume that σ(z′1) = σ(v), in turn implying u2 is σ-free. For
i ∈ [4], let Pi denote the path in H with ends u2 and wi and that does not contain v. We
apply Lemma 3.3 to subpaths of each Pi (with Pi playing the role of P ) starting with P4

and working our way backwards to P1 to obtain a sequence of recolourings that unlocks
each wi. At each step, u2 stays σ-free since z′1 and v keep their colour. Therefore, if wi
have not become free, one can always find a subpath of Pi ending at wi and satisfying
the hypotheses of Lemma 3.3. This implies the claim.

We can now finish the proof of Lemma 3.10. By the minimality of (G,α, β), there is
a sequence s′ of recolourings from α�(G−H) to β�(G−H).

We lift s′ to a sequence from α to some colouring β′ of G by, for each vertex w ∈
V (G −H), recolouring each neighbour w′ of w in H whenever w gets recoloured to the
colour of w′; this is possible by Claim 3.14 and gives that β′�(G−H) = β�(G−H). We now
conclude the proof by recolouring β′ to β in a similar fashion to Lemma 3.6. Note that
the only possible vertices coloured 4 are in H since β is a 3-colouring.

We consider two cases depending on whether v has colour 4 or not. Denote by z′0
(resp. z5) the neighbour of u1 (resp. u5) not in {v, z1} (resp. {v, z′4}). Note that z′0 and
z5 are not in H since otherwise G would contain a C4.

Case 1: v has colour 1, 2 or 3.
We first show how to recolour H so that all the ui’s get colour 4. Assume that this is not
the case, and that there exists an index i such that ui has colour 1, 2 or 3. We prove that
we can recolour H in such a way that either the number of ui’s coloured with 4 increases,
or it does not decrease but the number of zi and z′i coloured with 4 decreases.

If zi and z′i−1 are not coloured 4, then one can directly recolour ui with 4, which
concludes.

Otherwise, assume by symmetry that z′i−1 has colour 4. Then let j < i be the largest
index such that z′j−1 is not coloured 4 (which exists since z′0, which is not in H, has colour
1, 2 or 3). Now z′j has colour 4, hence zj does not. Now uj can be recoloured to 4, which
increases the number of u`’s coloured with 4. So we can assume that uj is coloured 4.
Hence zj is free (since it has two neighbours coloured with 4) and then can be recoloured
with a colour distinct from 4. So either we can immediately recolour z′j or recolour it
after the recolouring of zj. So we can recolour H in such a way z′j is not coloured 4,
which does not change the number of vertices u` coloured with 4, but the number of z`, z′`
coloured with 4 decreased.

By iterating this argument, we obtain a colouring of H where colour 4 lies exactly on
the ui’s. We now claim that the following (?) property holds: if zi, z′i are both locked,
we can flip the colours of zi and z′i by only recolouring vertices among {v, ui, ui+1, zi, z

′
i}.

Indeed, if that is the case, the neighbours of zi and z′i outside of {v, ui, ui+1, zi, z
′
i} have

the same colour. So we can recolour v with the colour of zi, then recolour ui with a free
colour, then zi with 4, then z′i with the previous colour of zi. Now, up to recolouring v
(which only has two colours in its neighbourhood) and freeing ui, we can colour zi with
the initial colour of z′i and put back colour 4 on ui.

Now let us prove that for increasing i6 4, we can colour zi, z′i with their target colour.
Note that these target colours do not appear on ui, ui+1 since they are coloured with 4
and β is a 3-colouring. If they appear on another neighbour in H, it should be in {zj, z′j}
for some j 6= i. Moreover there is at most one edge between {zi, z′i} and {zj, z′j} since
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G has girth 5. Now, using property (?) if needed, we can recolour zj, z′j so that they
are not coloured anymore with the target colour of their neighbour in {zi, z′i}. Note that
this happens only if j > i since β is a proper colouring and the vertices zj, z′j with j < i
already have their final colour. In particular, these recolouring steps do not recolour the
vertices zj, z′j for j < i.

So we can assume that the final colour of zi (resp. z′i) does not appear on its neigh-
bourhood except maybe on z′i (resp. zi). So we can directly colour zi, z′i with their target
colour unless both are locked and their target colours are then flipped. But then we apply
again (?) to swap their colours.

We finally set v to β(v), then each ui to β(ui).

Case 2: v has colour 4.
We first recolour vertices to 4 as long as it is possible. We then claim that if ui and ui+1

are locked, we can recolour them (together with zi, z′i) so that they have the same colour.
Indeed, assume that ui is coloured with 1 and ui+1 with 2. Note that both zi and z′i must
have a neighbour with colour 4 by maximality of β′. Now either zi is coloured with 2 or
z′i is coloured with 1 (since both cannot have colour 3). By symmetry we consider only
the latter. Either zi is coloured 2 and we recolour it with 3 so that ui can be recoloured
with 2, or zi is coloured 3, and we recolour it to 2, so that z′i can be recoloured to 3 and
ui+1 to 1. Afterwards, we recolour again vertices with 4 whenever possible.

Therefore, if colours 1, 2 and 3 appear on locked ui’s, it must be on u1, u3 and u5.
By maximality of β′, the vertices coloured with 4 among {z′1, z2, z′3, z4} must dominate
{z1, z′2, z3, z′4}. Due to planarity and girth constraints, this implies that at least three
vertices among {z′1, z2, z′3, z4} are coloured with 4. Therefore, either u2 or u4 (say u2
by symmetry) sees only colour 4 in its neighbourhood. In that case, either z1 sees two
vertices coloured with 4, and we can recolour it, which unlocks u1, or we recolour u2 so
that z′1 becomes free, then recolour z′1 and finally recolour z1 with 4. In both cases, only
u3 and u5 can be locked in the obtained colouring.

Therefore, we can assume that at most two colours appear on the locked ui’s. Let
c be one of the remaining colours. Now, observe that all the ui’s coloured with c are
unlocked, hence they can be recoloured. We may now recolour v to c, so that we can
apply Case 1.

We now will investigate the properties of bad vertices and bad pairs, which were
defined in Section 3.1.

Bad vertices have the following property.

Lemma 3.15. Let (G,α, β) be a minimal counterexample. If v is a bad vertex of G for
some 5-face f and has degree 4, then v is α-frozen and both neighbours of v which are
not incident to f are also α-frozen and are coloured alike under α.

Proof. We prove the result by induction on the pairs (v, f) such that v has degree 4 and
is bad for f . Let v be a vertex of degree 4 which is bad for the face f .

Let us assume that all the bad pairs smaller than (v, f) satisfy the statement of the
lemma. Let f ′ be the face opposite of f at v.

Claim 3.16. All the vertices of f ′ are frozen, and if z 6= v is incident to f ′, then its two
neighbours in f ′ have different colours.
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Proof. In order to prove the first part of this claim, we show that:

• f ′ contains at least one frozen vertex;

• if z is a frozen vertex of f ′ different from v, then its neighbours are also frozen.

If all the vertices of f ′ different from v have degree 3, then f ′ is very bad and the result
of the claim follows immediately from Lemma 3.6. On the other hand, vertices of degree
4 different from v and incident to f ′ are frozen using the induction hypothesis, hence the
first point holds.

In order to prove the second point, consider a frozen vertex z incident to f ′ and
different from v. If z has degree 3, then the neighbours of z are frozen by Lemma 3.4 and
in particular its neighbours on f ′ have different colours. If z has degree 4, then since we
know that z is bad for f ′, by the induction hypothesis, the two neighbours of z which are
not incident to f ′ are frozen and have the same colour. By Lemma 3.5, this implies that
all the neighbours of z are frozen. Moreover, since the neighbours of z outside of f ′ have
the same colour, its neighbours incident to f ′ have different colours.

Hence, the claim above shows that v is frozen. Moreover, the two neighbours of v
incident to f ′ must have the same colour since otherwise it is not possible to colour the
vertices of f ′ with 4 colours such that the property of the claim above holds. This proves
the induction step and finishes the proof of the lemma.

We now have all the tools needed to forbid the structures presented in Subsection 3.1.

Lemma 3.17. The graph G does not contain a 5-face f such that every vertex on f is
bad for f .

Proof. Let us assume by contradiction that G has a face f satisfying this property. By
Lemmas 3.6 and 3.9, f contains a vertex of degree 4, and all of them are frozen by
Lemma 3.15. Moreover, as before, if z is a frozen vertex of f , then its neighbours are
also frozen. This follows from Lemma 3.4 if z has degree 3, and from Lemma 3.5 and
Lemma 3.15 if z has degree 4. Let u and v be two vertices incident to f . We will show
that u and v have different colours. This is trivially true if u and v are adjacent. If
they are not adjacent, then they have a common neighbour w incident to f . If w has
degree 3, then since w is locked all its neighbours have different colours, and in particular
α(u) 6= α(v). If w has degree 4, then by Lemma 3.15, its two neighbours not incident to
f have the same colour, and consequently u and v must have different colours. Hence, all
the vertices incident to f have different colours in α, which contradicts the assumption
that α is a 4-colouring of G.

An important consequence of Lemma 3.17 is stated in the following corollary.

Corollary 3.18. Let v be a vertex of G of degree 4, incident to the faces f1, f2, f3, f4 (in
clockwise order). Then v cannot be bad for both fi and fi+2 mod 4. In particular, every
bad 4-vertex is bad for at most two faces.

Proof. Let us assume by contradiction that v is bad for both f1 and f3. Since v is bad
for f1, then by definition all the vertices of f3 different from v are bad for f3. Since v is
also bad for f3, we obtain a contradiction with Lemma 3.17.
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Lemma 3.19. The graph G does not contain a 5-vertex v adjacent to four 5-faces
f1, f2, f3, f4 such that, for each i, all vertices incident to fi except v are bad for fi.

Proof. Let us assume by contradiction that G contains a vertex v with this property. Let
H be the graph induced by the vertices incident to the faces fi. The case where all the
vertices of H different from v have degree 3 has already been handled in Lemma 3.10.
Hence we can assume that at least one vertex incident to fi has degree 4. By Lemma 3.15
we know that this vertex is frozen, and so are its neighbours. Moreover, by Remark 3.4,
all the neighbours of a frozen vertex of degree 3 are also frozen. Hence, it follows that all
the vertices of H are frozen. However, this implies that the colouring α is locked on H,
which is not possible by Claim 3.11.

3.3 Discharging

We may now reach a contradiction using a discharging argument. We first give an initial
weight of 2d(v) − 6 to each vertex v and `(f) − 6 to each face f . According to Euler’s
formula, the total weight is∑

v∈V (G)

(2d(v)− 6) +
∑

f∈F (G)

(`(f)− 6) = −12.

We then redistribute the weights according to the following rules :

• Every 4-vertex which is bad for at least two faces gives 1 to their opposite faces.

• Every 4-vertex which is bad for only one face f gives 1 to its opposite face, and
then splits its remaining weight equally among its two remaining incident 5-faces.

• Every 4-vertex which is not bad and every 5+-vertex v gives 1 to each incident
5-face f such that all the vertices of f \ {v} are bad, and 1

2
to every other 5-face.

We finally reach a contradiction by showing that every vertex and face ends up with
non-negative weight after this process. This contradicts that the sum of the weights is
negative and proves Theorem 1.3. First recall that every vertex of G has degree at least
3, and that 3-vertices and 6+-faces have non-negative initial weight and do not lose any
weight. Therefore, we only have to consider 4+-vertices and 5-faces.

We may easily take care of vertices of degree d > 6: they give at most 1 to each
incident face, hence they end up with at least

2d− 6− d = d− 6 > 0.

Lemma 3.20. Every 5-vertex ends up with non-negative weight.

Proof. By Lemma 3.19, we know that every 5-vertex gives 1 to at most 3 faces and at
most 1

2
to every other face, hence their final weight is at least 4− 3× 1− 2× 1

2
= 0.

Lemma 3.21. Every 4-vertex ends up with non-negative weight.
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Proof. Let v be a 4-vertex and f1, f2, f3, f4 be the faces incident to v. If v is bad, then
by Corollary 3.18, it is bad for at most two faces. Then either v is bad for two faces and
loses 2 by the first rule, or it is bad for one face, and distributes all its weight by the
second rule. In both cases, bad 4-vertices end up with weight 0.

We may thus assume that v is not bad. If v gives 1 to an incident face, say f1, then f3
cannot have length 5 otherwise v would be bad for f3, and v would not give any weight
to f3. Otherwise, v gives at most 2 × 1

2
to f1 and f3. Therefore, v gives at most 1 to

{f1, f3}, and at most 1 to {f2, f4} by symmetry. Then the final weight of v is at least
2− 2× 1 = 0. This completes the proof of the lemma.

Lemma 3.22. Every 5-face receives a weight of at least 1.

Proof. Let f be a 5-face. By Lemma 3.17, f contains at most four bad vertices for f .
Let v be a vertex on f which is not bad for f . If v has degree at least 5 or is a 4-vertex
which is not bad, then it gives at least 1

2
to f by the third rule. If v has degree 4 and is

bad, let f, f1, f ′, f2 be the faces incident to v in clockwise order. Observe that if v is bad
for f ′, then it gives 1 to f since f is opposite to f ′ with respect to v. Otherwise, since v
is bad but not bad for f by construction, then v is bad for f1 or f2 (but not both since f1
and f2 are opposite with respect to v, see Corollary 3.18). Then the second rule applies,
and f receives at least 1

2
from v.

Therefore, every vertex on f which is not bad for f gives at least 1
2
to f . We may thus

assume that f has only one such vertex v. In that case, f receives 1 from v by the third
rule unless v is a bad 4-vertex. In that case, again let f, f1, f ′, f2 be the faces incident to
v in clockwise order. If f ′ has length 5, then since v is the only vertex in f which is not
bad for f , it implies that v is bad for f ′ and thus gives 1 to f by the first or second rule
since f is a face opposite to f ′ with respect to v. Otherwise, f ′ has length at least 6, and
v is bad for f1 or f2 (but not both, again by Corollary 3.18). In that case, f receives also
1 by the second rule. This completes the proof of the lemma.
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