
Assume the generalization procedure unfolds this execution tree:

l e t rec g e n e r a l i z e ( a l r eady : ItemSet . t ) ( o the r s : ItemSet . t ) : un fo ld ing =
match ItemSet . min e l t opt o the r s with

| None −> Return a l r eady
| Some e l t −>

l e t other s ’ = ItemSet . remove e l t o the r s in

I fThenElse ( ( ItemSet . union a l r eady other s ’ ) ,
g e n e r a l i z e a l r eady other s ’ ,
g e n e r a l i z e ( ItemSet . add e l t a l r eady ) other s ’ ) ; ;

IfThenElse(s, t, f) queries if the set s is suitable and executes t or f accord-
ingly. Whether the then branch is taken when s is queried is a Bernoulli random
variable as.

P is a monotone function from the subsets of X to {0, 1}, 0 identified with
false, 1 with true. eval test s picks a choice according to as, and eval result s

checks if P (s). The probability that the execution tree produced by the above
procedure returns an incorrect result (¬P (s)) is:

l e t rec e v a l p r o b a b i l i s t i c ( e v a l t e s t : ItemSet . t −> f l o a t )
( e v a l r e s u l t : ItemSet . t −> f l o a t ) = function

| Return i s −> e v a l r e s u l t i s
| I fThenElse ( i s , unf t , u n f f ) −>

l e t p t rue = e v a l t e s t i s in

p t rue ∗ . ( e v a l p r o b a b i l i s t i c e v a l t e s t e v a l r e s u l t un f t )
+. ( 1 . −. p t rue ) ∗ . ( e v a l p r o b a b i l i s t i c e v a l t e s t e v a l r e s u l t u n f f )

Now we try to maximize this probability over all P . For the sake of sim-
plicity, assume temporarily that there are only two probability distributions for
as depending on whether P (s) is true or false. Then there are only two co-
efficients mistake correct (¶as = 0 when P (s)) and mistake incorrect (¶as = 1
when ¬P (s)), also denoted by e. At each step, we choose between these two dis-
tributions, but once the distribution for ¬P (s) is picked then it must be picked
for all the subtree, by monotonicity. Furthermore, once the algorithm believes
that a set is admissible whereas it is not, the only possible outcome of branches
in the execution tree is a wrong answer. We obtain:

l e t rec bound p r obab i l i s t i c = function

| Return i s −> 0 .0
| I fThenElse ( i s , unf t , u n f f ) −>

Float .max
( m i s t a k e i n c o r r e c t +.

( 1 . −. m i s t a k e i n c o r r e c t ) ∗ . ( b ound p r obab i l i s t i c u n f f ) )
( ( m i s t a k e c o r r e c t ∗ . ( b ound p r obab i l i s t i c u n f f ) ) +.
( ( 1 . −. m i s t a k e c o r r e c t ) ∗ . ( b ound p r obab i l i s t i c un f t ) ) ) ; ;

Now note that this function no longer depends on the actual sets, but only
on the structure of the tree, which depends only on the cardinal of the others
set. We would obtain the same with calling this function with argument |X |:

1



l e t rec uppe r bound p r obab i l i s t i c = function

| 0 −> 0 .0
| n −>

l e t next bound = uppe r bound p r obab i l i s t i c (n−1) in

Float .max
( m i s t a k e i n c o r r e c t +.

( 1 . −. m i s t a k e i n c o r r e c t ) ∗ . next bound )
( ( m i s t a k e c o r r e c t ∗ . next bound ) +.

( ( 1 . −. m i s t a k e c o r r e c t ) ∗ . next bound ) ) ; ;

The second argument to max simplifies to next bound. Since next bound ≤
1, the first argument is always greater than or equal to the second, which sim-
plifies into:

l e t rec uppe r bound p r obab i l i s t i c = function

| 0 −> 0 .0
| n −>

l e t next bound = uppe r bound p r obab i l i s t i c (n−1) in

( m i s t a k e i n c o r r e c t +.
( 1 . −. m i s t a k e i n c o r r e c t ) ∗ . next bound ) ; ;

In other words, p0 = 0, pn+1 = e + (1 − e)pn, and the closed form is pn =
1− (1− e)n.

Now in the above reasoning, allow probability distributions for as to vary
across calls, but we now that P (as = 1) may differ across several s where ¬P (s).
We however know that P (as = 1) ≤ ǫ when ¬P (s). With the same reasoning.
Then the overall probability that the algorithm produces a wrong answer is
bounded by

1− (1 − ǫ)|X| (1)

This bound is tight: it is reached when the only admissible set is X itself
(P (X) but ¬P (X ′) for X ′ ( X) and P (as = 1) = ǫ for all X ′ ( X .

2


