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STRONGLY INTERACTING SOLITARY WAVES FOR THE FRACTIONAL

MODIFIED KORTEWEG-DE VRIES EQUATION

ARNAUD EYCHENNE AND FRÉDÉRIC VALET

Abstract. We study one particular asymptotic behaviour of a solution of the fractional modified
Korteweg-de Vries equation (also known as the dispersion generalised modified Benjamin-Ono equa-
tion):

∂tu+ ∂x(−|D|αu+ u
3) = 0. (fmKdV)

The dipole solution is a solution behaving in large time as a sum of two strongly interacting solitary
waves with different signs. We prove the existence of a dipole for fmKdV. A novelty of this article is
the construction of accurate profiles. Moreover, to deal with the non-local operator |D|α, we refine
some weighted commutator estimates.

1. Introduction

1.1. Introduction of the equation. This article is dedicated to the fractional-modified Korteweg-de
Vries equation (also known as the dispersion generalised modified Benjamin-Ono equation):

∂tu+ ∂x
(
−|D|αu+ u3

)
= 0, u : It ×Rx → R, 1 < α < 2, (fmKdV)

where It is a time interval, ∂x (respectively ∂t) denotes the space (respectively time) derivative, and
the symbol |D|α is defined by the Fourier transform as an operator acting on the space of distributions:

F(|D|αu)(ξ) := |ξ|αF(u)(ξ).

For the purposes of motivating the equation, let us introduce the more generalised equation:

∂tu+ L∂xu+ ∂x(f(u)) = 0. (1)

The operator L represents the dispersion of the equation, and f(u) stands for the non-linearity.
In the case of a quadratic non-linearity f(u) = u2 and a dispersion L = −|D|α, we get respectively

the Benjamin-Ono equation (BO) and the Korteweg-de Vries equation (KdV) for α = 1 and α = 2.
Shrira and Voronovich, in [48], introduced the equation of coastal waves, where the parameter is the
evolution of the depth of the coast. If the evolution of the depth is algebraic and given by −(1+X)α−1,
for α ∈ (1, 2), then the dispersion operator is approximated, for waves with a small wave number, by
−c|D|α. Notice that other dispersions are justified by Klein, Linares, Pilod and Saut [28].

While the change of dispersion in the quadratic case models different phenomena, the change of
non-linearity helps to understand the balance between non-linearity and dispersion. Indeed, studying
equations with a cubic non-linearity f(u) = u3 and different dispersions give new insights of the com-
petition between those two terms. The case L = ∂2x = −|D|2 corresponds to the modified Korteweg-de
Vries equation (mKdV), while the case L = −|D| corresponds to the modified Benjamin-Ono equa-
tion (mBO). We chose in this article to focus on the case of a non-local dispersion L = −|D|α, with
1 < α < 2.

Since, for 1 < α < 2, fmKdV does not enjoy a Lax pair as KdV, BO or mKdV, no tools from complete
integrability can be applied to this equation. On the other hand, fmKdV possesses 3 conserved
quantities (at least formally):

∫

R

u(t, x)dx,
1

2

∫

R

u2(t, x)dx,

∫

R

Å
(|D|αu(t, x))2

2
− u4(t, x)

4

ã
dx.
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2 A.EYCHENNE AND F.VALET

We define the scaling operators by:

∀λ ∈ R
∗
+, u 7→ uλ, with uλ(t, x) := λ

α
2(1+α)u(λt, λ

1
1+αx). (2)

The set of solutions of fmKdV is fixed under the scaling operations. The mBO equation is mass-
critical in the sense that the L2-norm is preserved under any scaling operation. Meanwhile, fmKdV is
mass-subcritical since the conserved space under the operator of scaling is the homogeneous Sobolev
space Ḣs(R) with s = 1−α

2 < 0 as soon as α > 1. The equation fmKdV has been proved to be locally

well-posed in Hs(R) for s ≥ 3−α
4 by Guo [18], and the flow is locally continuous on that space. As a

consequence, the equation is globally well-posed in the energy space H
α
2 (R) (see Appendix A). We also

refer to Guo and Huang [19], Kim and Schippa [27], Molinet and Tanaka [41] for other well-posedness
results. Moreover, in the case α = 1 the problem is locally well-posed in the energy space, see Kenig
and Takaoka [26].

1.2. Ground states and solitary waves. Different coherent structures may appear in the study
of non-linear dispersive equations, and solitary waves are one of them. A solitary wave is a solution
u(t, x) = Qc(x− ct) moving at a velocity c in one direction, decaying at infinity and keeping its form
along the time. The function Qc satisfies the elliptic equation:

−|D|αQc − cQc +Q3
c = 0. (3)

A remarkable point is the existence of those objects for any velocity c > 0. Unlike the mKdV
equation the solutions Qc of (3) are not explicit. The existence of a such solution of the elliptic
problem (3) is related to the existence of a minimizer of an adequate functional. Such a minimizer is
called a ground state, and the existence of a ground state has been proved by Weinstein in [51] and
Albert-Bona-Saut in [1]. Moreover, the ground state is positive. For now, the notation Qc will refer
to the ground-state of the functional.

If we denote by Q the positive ground state associated to c = 1, all the other ground states Qc

associated to the different values c > 0 can be expressed in terms of the ground state Q by the
operation of scaling (2):

Qc(x) = (Q1)c(x).

The question of the uniqueness of the ground state of (3) is difficult and has been solved by Frank-
Lenzmann in [14]. Note however that no result seems to be known for the uniqueness of solutions
to (3) which do not minimize the Euler-Lagrange functional. The non-locality of the operator |D|α
does not allow to use classical ODE’s tools for this equation. The uniqueness of the solution of the
non-local elliptic problem (3) is derived from the non-degerenency of the linearized operator

L = |D|α + 1− 3Q2,

by proving that ker(L) = span(Q′). This result was obtained by Frank-Lenzmann in [14]. The proof
is based on an extension process to the upper half-plane, introduced by Caffarelli-Silvestre [6], which
allows to look at the operator |D|α as a Dirichlet-Neumann operator.

Furthermore, as soon as α < 2, the function Q has a algebraic decay (see (18) for a more precise
expansion):

Q(x) ≃+∞
1

x1+α
.

The question of stability of a solitary wave in this case has been done by Angulo Pava [3], see also
[43].

One conjecture in the field of dispersive equation states that any solution decomposes, at large
time, into different dispersive objects (such as the solitary waves) plus a radiation term. Whereas the
solitary waves move to the right, the radiation term moves to the left. This conjecture has been proved
for the KdV equation using the tools of complete integrability, but remains open in the non-integrable
cases. It is then natural to introduce multi-solitary waves, which are solutions u that in large time
[T0,+∞) are close to a sum of K decoupled solitary waves:
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Definition 1. Let K > 0, and K different velocities 0 < c1 < · · · < cK . A function u is called a
multi-solitary waves associated to the previous velocities (or pure multi-solitary waves) if there exist
T0 > 0, K functions vk : (T0,+∞) → R such that:

lim
t→+∞

∥∥∥∥∥u(t)−
K∑

k=1

Qck(· − vk(t))

∥∥∥∥∥
H

α
2

= 0 and ∀k ∈ (1,K), |vk(t)− ckt| = o+∞(t).

Notice that the definition of a multi-solitary waves may depend on the information one can get from
those objects. For example, in a recent result by the first author [12], the proof of the existence of the
multi-solitary waves has been established for the equation fKdV with a dispersion α ∈ (12 , 2) and an
explicit rate of convergence of the solution to the sum of the K-decoupled solitary waves. Notice that
the proof can easily be adapted to fmKdV, establishing then the existence of multi-solitary waves for
this equation for 1 < α < 2. The proof of existence of those objects is a first step toward the soliton
resolution conjecture for this equation.

1.3. Dipoles and main theorem. Notice that in the previous definition of multi-solitary waves, all
the velocities are distinct. One can wonder if there exist solutions u behaving at infinity as a sum of
two solitary waves with the same velocity c and different signs. A solution satisfying this definition is
called a dipole. In particular, if the two solitary waves have the same velocity, they interact in large
time one with each other, and the velocity of the different solitary waves is thus expected to be of the
form vk(t) ∼+∞ ct− gk(t), with gk(t) = o+∞(t).

This object has first been observed on the mKdV equation using the complete integrability of the
equation [49]. For an odd non-linearity f(u) = |u|p−1u, p ∈ (2, 5) and a dispersion L = ∂2x, Nguyen in
[44] proved the existence of dipoles for those equations that are not completely integrable.

In this paper, we prove the existence of a dipole for the fmKdV in the L2-subcritical case:

Theorem 2. Let α ∈ (1, 2). There exist some constant T0 > 0, C > 0 and U ∈ C0([T0,+∞) : H
α
2 (R))

solution of (fmKdV) such that, for all t ≥ T0:∥∥∥U(t, ·) +Q
(
· − t− a

2
t

2
α+3

)
−Q

(
· − t+

a

2
t

2
α+3

)∥∥∥
H

α
2
≤ Ct

− α−1
4(α+3) ,

where

a :=

(
α+ 3

2

 
−4b1
α+ 1

) 2
α+3

and b1 := −2
(α+ 1)2

α− 1

sin(π2α)

π

∫ +∞

0
e−

1
rα dr

‖Q‖6
L3

‖Q‖2
L2

< 0. (4)

This result sheds new light on the relation between the dispersion L and the distance between two
solitary waves of a dipole. Indeed, Nguyen in [44, 45] studied the case of a dispersion L = −|D|2 = ∂2x
and different non-linearities, which corresponds to the generalized Korteweg-de Vries equation. Since
the ground states Q have an exponential decay e−|x|, the distance between the two solitary waves of
a dipole is logarithmic in time 2 ln(tc), with c depending on the non-linearity. A second example is
the recent preprint of Lan and Wang [32], where they studied the generalized Benjamin-Ono equation
with a dispersion L = −|D| = −H∂x with H the Hilbert transform and different non-linearities. For
this equation, since the ground states have a prescribed algebraic decay x−2, the solitary waves of the
dipoles they studied have a distance α

√
t+β ln(t)+γ, where α, β and γ are constants dependent only

on the non-linearity. Theorem 2 emphasises how the dispersion influences the distance between the

two solitary waves, that is at
2

α+3 . One can conjecture that the dipoles for an equation L = −|D|α, for
α ∈ (1, 2) and a non-linearity f(u) = |u|p−1u with various values of p, are composed of two solitary

waves at a distance ct
2

α+3 , with a constant c dependent on p.

1.4. Related results. As explained in the introduction, the behaviour of a solution of (5) is deter-
mined by the balance between the non-linearity and the dispersion, therefore blow-ups are expected
in the critical and super-critical cases. An important result for blow-up, in finite or infinite time, in a
non-local setting has been obtained by Kenig-Martel-Robbiano in [31] for:

∂tu− ∂x|D|αu+ |u|2αu = 0.

This equation is critical for all the values of α. For α = 2 in the former equation, which corresponds to
the critical general Korteweg-de Vries equation, Merle [39] proved the existence of blow-up solutions
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in finite or infinite time. Using this result, [31] proved by a perturbative argument the existence of
blow-up for all α ∈ (α1, 2], for some 1 < α1 < 2. The proof is based on the existence of a Liouville
property and localized energy estimates. Those localized estimates generalize the pioneering work of
Kenig and Martel [24] for the asymptotic stability of the soliton of the Benjamin-Ono equation.

In the case α = 1 in fmKdV, the equation is L2-critical and blow-up phenomena occur. Bona-Kalisch
[5], and Klein-Saut-Wang [29] studied numerically the critical fmKdV and conjecture a blow-up in
finite time for this equation. In [37] Martel-Pilod proved rigorously the existence of minmial mass
blow-up solution for mBO. We mention also the result by Kalisch-Moldabayev-Verdier in [23], where
they observed that two solitary waves may interact in such a way that the smaller wave is annihilated.

For the super-critical case we refer to the work of Saut-Wang in [47], where they proved the global
well-posedness for small initial data and [29] for numerical simulation of blow-up in finite time.

The phenomenon of strong interaction between two different objects also occurs in different situa-
tions. Let us enumerate different families of equations and results (this list may not be exhaustive)
by beginning with the KdV family. By using the integrable structure of mKdV, Wadati and Ohkuma
[49] exhibited the existence of a dipole. More recently, Koch and Tataru [30] characterized the set of
complex two-solitons as a 8-dimensional symplectic submanifold of Hs for s > −1

2 . The explicit for-
mula of a dipole holds for the mKdV equation only. In the non-integrable case Nguyen [44] proved the
existence of a dipole for (1) for a dispersion L = ∂2x and a non-linearity f(u) = |u|p−1u, with p ∈ (2, 5).
Moreover, he discovered that for each super-critical equation with a non-linearity p > 5, there exists a
dipole formed by two solitary waves with same signs, and the distance between the two objects is also
logarithmic in time. Inspired by this result, Lan and Wang [32] looked for the phenomenon of dipoles
for a dispersion L = −|D| and a non-linearity f(u) = |u|p−1u, with various values of p 6= 3. We also
list some results in the setting of the strong interaction of two non-linear objects in the non-linear
Schrödinger setting. Ovchinnikov and Sigal [46] for the time-dependent Ginzburg Landau equation,
with two vortices with different signs; Krieger, Martel and Raphaël [31] for the three dimensional grav-
itational Hartree equation with two solitons; Nguyen [45] for the subcritical non-linear Schrödinger
with two solitary waves with different signs, and the same signs for the super-critical case; Nguyen and
Martel [36] for coupled non-linear Schrödinger, for two solitary waves with different velocities. The
phenomenon of dipole also appears in the family of wave equations: Gerard, Lenzmann, Pocovnicu
and Raphaël [16] for the cubic half-wave equation; Côte, Martel, Yuan and Zhao [10] for the damped
Klein-Gordon equation; Aryan [4] for the Klein-Gordon equation; Jendrej and Lawrie [22] for the wave
maps equation.

The strong interaction between different objects also gives rise to exotic behaviours. For example,
the existence of strongly interacting objects has been proved with multi-solitary waves for the mass-
critical non-linear Schrödinger equation by Martel and Raphaël [38] and with bubbles for the critical
gKdV equation by Combet and Martel [8].

Even if the question of dipoles occur at infinity, one can wonder what happens on the real line to
a solution that behaves like a two soliton at −∞. The problem of inelastic collision of two solitary
waves has been investigated by Mizumachi [40], Martel and Merle [33, 34] and Muñoz [42] for non-
integrable equations in the KdV family. Indeed, only the completely integrable equations exhibit an
elastic collision, that is a solution that can be decomposed at +∞ with the same decomposition as at
−∞ (up to phase shift).

We end this part with open questions related to the dipoles of fmKdV. We begin with the particular
case of the critical equation mBO: we do not know if the dipole phenomenon exists for this equation.
For a fixed dispersion L = −|D|α, one can also wonder about the importance of the non-linearity
f(u) = |u|p−1u : if p is close to 1, does the structure of a dipole still make sense, or does the non-
linearity breaks the structure? Concerning the fmKdV equation, if a solution behaves at time −∞ as
a sum of two different solitary waves, what will be the behaviour of this solution at +∞? Even though
this article does not answer those questions, it gives insights and tools to tackle those problems with
non-local dispersion.

1.5. Ideas of the proof. Let us perform the following change of variables. Let y := x − t, then
v(t, y) := u(t, x) verifies

∂tv + ∂y
(
−v − |D|αv + v3

)
= 0. (5)
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This equation is better suited than fmKdV for the phenomenon of strong interaction, since most of
the objects considered here are moving at a velocity close to 1. Theorem 2 can be rewritten in this
new setting:

Theorem 3. Let α ∈ (1, 2). There exist some constant T0 > 0, C > 0 and w ∈ C0([T0,+∞) : H
α
2 (R))

solution of (5) such that, for all t ≥ T0:
∥∥∥w(t, ·) +Q(· − a

2
t

2
α+3 )−Q(·+ a

2
t

2
α+3 )

∥∥∥
H

α
2
≤ Ct

− α−1
4(α+3) , (6)

with the constant a defined in (4).

From now on, we focus on proving the existence of the function w. We provide some ideas for the
proof of Theorem 3.

The first important point is the construction of a good approximation. We look for a solution closed
to the sum of two solitary waves −R1+R2 modulated by a set of parameters Γ = (z1, z2, µ1, µ2), where
zi(t) correspond to the centres of the solitary waves moving along the time, whereas 1+µi(t) correspond
to their size. To this aim, we search for an accurate description of w+R1 −R2, and we introduce the
approximation V of the form V (t, x) = −R1(t, x) + R2(t, x) + b(t)W (t, x) − P1(t, x) + P2(t, x). The
goal is to adapt the four other functions such that V almost solves (fmKdV), in the sense that the
quantity EV is close to 0, with:

EV := ∂tV + ∂y(−|D|αV − V + V 3).

By computing the time derivative of R1 and R2, four intrinsic directions appear: ∂yR1, ∂yR2, ΛR1

and ΛR2. For convenience, we will write them under a vector form by
−−→
MV . They go hand in hand

with the derivatives of the modulation parameters ż1, ż2, µ̇1 and µ̇2. Then, the function W is inherent
to the problem : it compensates two of those specific directions, and has a plateau between z2 and z1.
Even if the previous constructions of strong interactions ([33, 44, 45, 36]) used this function, it seems
to be the first time that it is understood as an intrinsic part of the evolution of the solitary waves,
and not only as a part of the profiles Pi. With this function we understand how the dispersion of the
first solitary wave −R1 on the front influences the second solitary wave in the back, and vice-versa.
Once this function W is defined, we fix the functions P1 and P2 with algebraic decay to cancel the
remainder terms with algebraic decay too, concentrated around the solitary waves. As a conclusion
of this construction, the error can be decomposed into:

EV = −→m · −−→MV + ∂yS + T,

with
−−→
MV containing the four peculiar directions cited above, −→m gives a system of ODEs that is

satisfied by Γ and adapted from the interaction terms. The two other source terms, S and T are error
terms coming from the rough approximation and are bounded by functions depending on Γ. If one
wants to go further in the development of the approximation, it suffices to extract from S and/or T
the terms at the next order to build more precise profiles.

Once the approximation V is constructed, the second step is to estimate the error between the
approximation and a solution, and to find a set of equations satisfied by µ := µ1−µ2 and z := z1−z2.
Fix Sn >> 0, and vn the solution of fmKdV with final condition vn(Sn) = V (Sn). We estimate the

H
α
2 -norm of the error backward in time by using an adequate weighted functional, mostly composed

of quadratic terms in the error. Whereas studying the error by the energy is quite classic, we adapt in
this article the energy functional used by Nguyen [44] by adding a source term

∫
Sǫ, linear in ǫ. This

trick has been used by Martel and Nguyen [36], by mixing the source term S in the functional, and
allows to get rid of the term

∫
∂yLSǫ in the functional. It generally helps to get a better approximation

of the functional, but in our case, the use of the modified energy enables us not to compute the high
Sobolev norms of the source term S. It means in particular that the influence of S on the error of the
approximation is lower than the one of T .

One technical issue of this functional, as opposed to the ones previously used in this context, is the
appearance of the non-local operator |D|α: two of the difficulties are the singularity of this operator
for low frequencies, and the lack of an explicit Leibniz rule for this operator and the weight φ. To
bypass those difficulties, we generalize the weighted commutator estimates given in Lemma 6 and
Lemma 7 of Kenig-Martel-Robbiano [31] and of the first author [12].
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These estimates rely on the understanding of the operator |D|α. Since the operator is singular at
frequency 0, we need to localize in high and low frequencies : for the high frequencies, we use the
pseudo-differential calculus, and the low frequency part is dealt with the theory of bounded operators
on L2. In particular, this method implies important restrictions on the choice of the weight.

When orthogonality conditions are imposed to the error, we get a system of ODEs ruling the
behaviour of z and µ in −→m. Roughly speaking, the system is the following:

µ̇(t) ∼ 2b1
zα+2(t)

, and µ(t) ∼ ż(t).

Notice that it is the solution of this system that gives the distance between the two solitary waves in
Theorem 3.

To obtain a suitable bound on the different unknowns, we use a bootstrap argument. The more
important ones are the error, the parameters z and µ. The error is dealt with the previous functional
and µ by the bootstrap argument. Notice that a bootstrap argument alone would not have been
sufficient to close the estimates: because of the algebraic decay in time of the different parameters,
several integrations in time can not close the estimates. A topological argument, as introduced by
Côte, Martel and Martel in [9], is necessary to conclude the estimate on z: roughly speaking, this
argument of connectedness asserts that there exists at least one initial data zin, chosen in a fixed
interval of initial data, such that the estimates hold on the all time interval. Once this initial data is
chosen, the all set of estimates is proved to hold on [T0, Sn].

With these estimates in hand, a classical argument of extraction by compactness allows to get an
adequate initial data. By weak-continuity of the flow, we prove that the chosen initial data is close at
any time to the sum of the two decoupled solitary waves. Furthermore, we obtain the algebraic decay
in time of the error between the final solution and the two solitary waves.

1.6. Outline of the paper. The paper is organised as follow. Section 2 is dedicated to the properties
related to the ground-state Q. It contains in particular the more recent results on those objects, the
properties on the linearized operator and various lemmas related to this operator. Section 3 contains
the construction of an approximation of the solution. Notice that the proof of the main theorem of
this part can be skipped at first lecture. In section 4, we give the modulation theorem to describe a
solution close to the multi-solitary waves with strong interaction. Section 5 provides the proof of the
existence of the solution. The appendices recall satellite results used in this article : well-posedness,
the pseudo-differential calculus, proofs of various lemmas based on pseudo-differential calculus, and
the coercivity of the localised linearized operator.

1.7. Notations. Throughout the article, we use the following notations.
We denote by C a positive constant, changing from lines to lines independent of the different

parameters.
We say x ∼ y if there exists 0 < c1 < c2 < +∞ such that c1x ≤ y ≤ c2y.

The japanese bracket 〈·〉 is defined on R by 〈x〉 := (1 + x2)
1
2 .

L2(R) is the set of square integrable functions. We denote the scalar product on L2(R) by 〈u, v〉 :=∫
R
u(x)v(x)dx with u, v ∈ L2(R). The Fourier transform is defined by:

∀f ∈ L2(R), f̂(ξ) :=

∫

R

eixξf(x)dx.

We define the following spaces:

• the Sobolev space, for s ∈ R : Hs(R) :=

ß
f ∈ L2(R) :

∫

R

(1 + |ξ|2) s
2 f̂(ξ)dξ < +∞

™
,

• the Schwartz space : S(R) =
¶
f ∈ C∞(R);∀α ∈ N,∀β ∈ N,∃Cα,β, |fα(x)| ≤ Cα,β 〈x〉−β

©
,

• the set of functions with enough decay:

Xs(R) :=

ß
f ∈ Hs(R) : ∃C > 0,∀x ∈ R, |f(x)| ≤ C

〈x〉1+α

™
, and X∞(R) =

⋂

s∈N

Xs(R). (7)

Let f, g ∈ L2(R). We say that f is orthogonal to g if

∫

R

f(x)g(x)dx = 0, and is sometimes shortened

by f ⊥ g.
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Q is the ground-state associated to the elliptic problem (12), and for c > 0, we set Qc(x) :=

c
α

2(α+1)Q(c
1

1+αx). Moreover, let us define:

ΛQc :=
d

dc′
Qc′

|c′=c
=

1

c

ï
α

2(α+ 1)
Q+

1

α+ 1
xQ′

ò

c

, (8)

Λ2Qc :=
d2

dc′2
Q|c′=c =

1

c2

Å
− α(α+ 2)

4(α+ 1)2
Q+

x2Q′′

(α+ 1)2

ã

c

. (9)

The parameters of the approximation are z1, z2, µ1 and µ2. We denote by Γ = (z1, z2, µ1, µ2) the
set of those parameters. z and µ are defined in (33), and z̄ and µ̄ in (109). The two solitary waves
are defined by:

R1(Γ, y) := Q1+µ1(y − z1), R2(Γ, y) := Q1+µ2(y − z2), and ΛRi(t, y) := (ΛQ1+µi(t))(y − zi(t)).
(10)

Along the article, the functions z1, z2, µ1, µ2 and Γ can depend on the time, and it is precised when
needed. The asset of this notation is to remark that the two solitary waves depend on the time through
the parameter Γ. For purposes of notations, we can denote the solitary waves by Ri(t) to emphasize on
the time dependency. The solitary waves dependent only on the translation parameters are denoted
by:

R̃i(t, y) := Q(y − zi(t)) and ΛR̃i(t, y) := (ΛQ)(y − zi(t)). (11)

The derivatives are denoted by ∂y and ∂t. The notation ∇Γ holds for the gradient along the four
directions of Γ. When no confusion is possible, we denote by prime (as in Q′) the space derivative,
and by a dot (as in µ̇) the time derivative.

2. Ground state

This part recalls the properties known on Q: existence, uniqueness and the recently proved asymp-
totic expansion. We emphasize that the asymptotic expansion is composed of terms with algebraic
decay, and is thus different from the one of the (gKdV) family −cQc+∆Qc+Q

p
c = 0, with exponential

decay. Next, we focus our attention on the linearized operator L.

2.1. Ground state properties. Considering the equation (5), the existence of solitary waves is
related to the existence of solutions to the following elliptic time-independent equation:

−|D|αQ−Q+Q3 = 0, 1 < α < 2. (12)

The previous elliptic equation is related to a calculus of variation problem. If Q is a minimizer of
the following functional Jα:

Jα(v) =

Å∫
||D|α2 v|2

ã 1
α
Å∫

|v|2
ã2− 1

α

∫
|v|4

. (13)

then it is a solution to the elliptic problem.
We now sum up the previous known results on the ground states, which are the minimizer of Jα.

Theorem 4 ([1, 14, 15, 51]). Let α ∈ (1, 2). There exists Q ∈ Hs(R) for all s ≥ 0 such that

(1) (Existence) The function Q solves (12) and Q = Q(|x|) > 0 is even, positive and strictly
decreasing in |x|. Moreover, the function Q is a minimizer of Jα in the sense that:

Jα(Q) = inf
v∈H

α
2 (R)

Jα(v). (14)

(2) (Uniqueness) The even ground state solution Q = Q(|x|) > 0 of (13) is unique, up to the
multiplication by a constant, scaling and translation.

(3) (Decay) The function Q verifies the following decay estimate:

C1

(1 + |x|)1+α
≤ Q(x) ≤ C2

(1 + |x|)1+α
, (15)

for some C1, C2 > 0.
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(4) (Gagliardo-Niremberg inequality) There exists a constant C = C(α) such that:

‖v‖L4 ≤ C ‖v‖1−
1
2α

L2 ‖v‖
1
2α

H
α
2
. (16)

Remark 5. Notice that since the non-linearity is cubic, the function Q in the theorem and −Q are
both solutions of the elliptic equation (12).

Proof. We give some classic ideas to prove the Gagliardo-Niremberg inequality. The proof of this
inequality relies on finding a universal constant C which bounds (Jα)−1. Indeed, by denoting the
following 2-parameters transformation for (λ, γ) ∈ R

∗
+ × R

∗
+:

vλ,γ(x) := λv

Å
x

γ

ã
,

we notice that Jα(vλ,γ) = Jα(v). As a consequence, if for any v, the inequality is proved for some
vλ,γ for some values of λ and γ, then the inequality is proved for any function. In particular, if we

choose λ = ‖v‖−1
L2 and γ = ‖v‖

2
α−1

Ḣ
α
2

, we have ‖vλ,γ‖L2 = ‖vλ,γ‖Ḣ α
2

= 1. Thus it suffices to prove

that (Jα)−1(vλ,γ) = ‖vλ,γ‖4L4 is uniformly bounded with the constraints on λ and γ. By the Sobolev
embedding for a certain constant C (see for example [11]):

‖v‖L4 ≤ C‖v‖
H

α
2
,

and thus we have (Jα)−1(vλ,γ) ≤ 2C independently of vλ,γ . This last inequality concludes the proof
of the Gagliardo-Niremberg inequality. �

Remark 6. As from [51, 1, 25], the optimal constant in the Gagliardo-Niremberg inequality can be
given explicit in terms of Q.

Recently, the asymptotic expansions of the ground states have been improved, see [13]. We recall
the results applied to our case:

Theorem 7 ([13]). Let α ∈ (1, 2) and x > 1. The positive, even function Q defined in Theorem 4
verifies:

(1) (First-order expansion) The function Q verifies the following decay estimate:
∣∣∣∣Q(j)(x)− (−1)j

(α+ j)!

α!

a1

x1+α+j

∣∣∣∣ ≤
Cj

(1 + x)2+α+j
, j ∈ N, (17)

for some Cj > 0, with a1 := k1‖Q‖3
L3 > 0 and k1 :=

sin
(
π
2α
)

π

∫ +∞

0
e−r

1
α
dr .

(2) (Higher order expansion) There exists C > 0 such that:
∣∣∣Q(x)−

( a1

xα+1
+

a2

x2α+1
+

a3

xα+3

)∣∣∣ ≤ C

x3α+1
, (18)

∣∣∣Q′(x) + (α+ 1)
a1

xα+2
+ (2α+ 1)

a2

x2α+2

∣∣∣ ≤ C

x3α+1
, (19)

∣∣∣∣ΛQ(x) +
a1(α+ 2)

2(α + 1)

1

xα+1
+
a2(3α+ 2)

2(α+ 1)

1

x2α+1

∣∣∣∣ ≤
C

xα+3
. (20)

with a2 := k2‖Q‖3
L3 , k2 := −2 sin (πα)

π

∫ +∞

0
re−r

1
α
dr, and a3 ∈ R.

We also recall some results of regularity given by convolution with the kernel k associated to the
dispersion:

k(x) :=

∫

R

eixξ

1 + |ξ|α dξ.

Lemma 8 ([13]). Let g ∈ X0(R). There exists C = C(g) such that:

|k ∗ g|(x) ≤ C

〈x〉1+α
.
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Furthermore, if g ∈ C1(R), and |g′(x)| ≤ C〈x〉−2−α, then there exists C = C(g, g′) such that:

|∂x (k ⋆ g) |(x) ≤
C

〈x〉2+α
.

We set the expansion of the translated ground state Q(x+ z) at +∞ in x by:

Qapp(x, z) :=
a1

zα+1
− (α+ 1)a1

x

zα+2
+

a2

z2α+1
+

Å
a1

(α+ 1)(α + 2)

2
x2 + a3

ã
1

zα+3
.

Lemma 9. Let z be large enough. We have for all |x| ≤ z
2 :

|Qapp(x, z)−Q(x+ z)|+ |Qapp(−x, z)−Q(x− z)| ≤ C

Å |x|3
zα+4

+
|x|
z2α+2

+
1

z3α+1

ã
, (21)

|∂xQapp(x, z)−Q′(x+ z)|+ |∂xQapp(−x, z)−Q′(x− z)| ≤ C

Å
x2

zα+4
+

1

z2α+2

ã
(22)

∣∣∣∣ΛQ(x+ z) +
a0(α+ 2)

2(α + 1)

1

zα+1

∣∣∣∣+ |∂xΛQ(x+ z)| ≤ C

Å |x|
z2+α

+
1

z2α+1

ã
(23)

Proof. From the asymptotic of Q in (18) and the asymptotic expansions:
∣∣∣∣

a1

|x− z|α+1
−
Å

a1

zα+1
− a1(α+ 1)

x

zα+2
+ a1

(α+ 1)(α + 2)

2

x2

zα+3

ã∣∣∣∣ ≤ C
|x|3
zα+4

and the ones of
a2

|x− z|2α+1
and

a3

|x− z|α+3
, we get the development of Q(x+ z). The proof is similar

for Q′ with (19).
The proof of ΛQ is a combination of the two previous asymptotic expansions. �

Proposition 10. Let µ∗ > 0 be small enough. There exists a constant C > 0, such that for any
µ ≤ µ∗, we have:

|Q1+µ −Q− µΛQ|+
∣∣Q2

1+µ −Q2 − 2µQΛQ
∣∣ ≤ C

µ2

〈x〉1+α
. (24)

The following terms are also bounded in terms of µ:

‖Q1+µ −Q− µΛQ‖
H2 ≤ Cµ2 and ‖ΛQ1+µ − ΛQ‖

H1 ≤ Cµ. (25)

Moreover, the scalar product of Q with ΛQ is:

〈Q,ΛQ〉 = α− 1

2(α+ 1)
‖Q‖2L2 . (26)

Proof. By the Taylor formula in µ, we have, with (8), (18) and (17) for the second derivative:

Q1+µ −Q− µΛQ =

∫ 1+µ

1
(1 + µ− s)Λ2Qsds,

|Q1+µ −Q− µΛQ| ≤
∫ µ

0

µ− s

(1 + s)2
1

〈x〉α+1
1+s

ds ≤ C
µ2

〈x〉α+1
.

The proof is similar for Q2
1+µ.

Notice that the previous bound still holds for two more derivatives, and the integral gives the first
part of (25). The second part is similar. �

2.2. Properties of the linearized operator. We recall some results on the spectrum of the lin-
earized operator L and establish new inversion lemma on L.

Theorem 11 ([51, 1, 25, 14]). Let α ∈]1, 2[. There exists Q ∈ H
α
2 (R) ∩C∞(R) such that

(1) (Linearized operator) Let L be the unbounded operator defined on L2(R) by:

Lv = |D|αv + v − 3Q2v. (27)

Then, the continuous spectrum of L is [1,+∞[, L has one negative eigenvalue µ0, associated
to an even eigenfunction v0 > 0, and kerL = span {Q′}.
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(2) (Invertibility) For any g ∈ L2(R) orthogonal to v0 and Q′, there exists a unique f ∈ L2(R)
such that Lf = g and f ⊥ Q′. Furthermore, if g ∈ Hk(R), then f ∈ Hk+α(R).

Proof. We give the proof of the second point. By the Lax-Milgram theorem on H
α
2 (R), we obtain the

existence of f in the same space. Because f satisfies |D|αf = g − f + 3Q2f , we have f ∈ Hα(R).
Concerning the higher regularity of g, if f is solution of Lf = g with g ∈ Hk(R), then, since

[∂y, L]v = 3∂y(Q
2)v for all v ∈ S(R), we obtain that f ∈ Hk+α(R). �

Remark 12. From Theorem 11 we have the operator L verifies that there exists κ > 0 such that for
all f ∈ H

α
2 (R), with f ⊥ v0, Q

′ then:

〈Lf, f〉 ≥ κ‖f‖2
H

α
2
.

However, it is not convenient to work with v0. An argument of Weinstein will allow us to replace the
orthogonality on v0 by an orthogonality on Q to get the coercivity. Indeed, from Lemma E.1 in [50]
and since

〈L−1Q,Q〉 = −〈ΛQ,Q〉 = − α− 1

2(α+ 1)
‖Q‖2L2 < 0.

we obtain the coercivity of L up to the orthogonality condition on Q and Q′:

∀f ∈ H
α
2 (R), f ⊥ Q,Q′ implies 〈Lf, f〉 ≥ κ‖f‖.

H
α
2

(28)

We continue this section with two lemmas on the characterisations on the inverse of particular
functions by L on specific directions.

Lemma 13. Let k > 0 and g ∈ Xk(R) with g ⊥ Q′, then there exist a unique f ∈ Xk+α(R), a ∈ R

such that: ®
Lf = g + aQ

f ⊥ Q, f ⊥ Q′
.

Proof. Since g+aQ ⊥ Q′, we apply the invertibility property of Theorem 11 and there exists a unique
f ∈ Hk+α(R) such that: ®

Lf = g + aQ

f ⊥ ker(L) = span(Q′)
.

To obtain the second orthogonality condition, since LΛQ = −Q, with (26) we deduce that:

〈f,Q〉 = 0 ⇐⇒ 〈g + aQ,ΛQ〉 = 0 ⇐⇒ a = − 〈g,ΛQ〉
〈Q,ΛQ〉 = −2(α+ 1)

α− 1

〈g,ΛQ〉
‖Q‖2

L2

, (29)

We finish with the decay in 〈x〉−1−α from the definition (7) of Xk+α(R). Since g + aQ + 3Q2f ∈
Xk(R), we obtain by Lemma 8 that f = (|D|α + 1)−1(g + aQ + 3Q2f) ∈ Xk+α(R). This concludes
the proof of Lemma 13. �

Lemma 14. Let g ∈ Xk(R). There exist a unique a, ã ∈ R and a unique function f ∈ Xk+α(R) such
that: ®

∂yL(f − ãS0) = ∂yg + aQ′ + ãΛQ

f − ãS0 ⊥ Q, f − ãS0 ⊥ Q′

with

a = −2(α+ 1)

α− 1

〈g − ã(|D|α + 1)S0),ΛQ〉
‖Q‖2

L2

and ã =
2(α+ 1)

α− 1

〈g,Q′〉
‖Q‖2

L2

. (30)

Similarly, there exist a unique a, ã ∈ R and a unique function f ∈ Xk+α(R) such that:
®
∂yL (f + ã(l − S0)) = ∂yg + aQ′ + ãΛQ

f + ã(l − S0) ⊥ Q, f + ã(l − S0) ⊥ Q′

with

a = −2(α+ 1)

α− 1

〈g + ã(|D|α + 1)(l − S0)),ΛQ〉
‖Q‖2

L2

and ã =
2(α + 1)

α− 1

〈g,Q′〉
‖Q‖2

L2

.
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Proof. We denote by H the Hilbert transform. Since |D|α = |D|α−1H∂y, we deduce that:

|D|αS0 = |D|α−1H(|D|α + 1)−1ΛQ =

∫ +∞

y

|D|α(|D|α + 1)−1ΛQ.

Then, we get that:

∂yLS0(y) = −ΛQ(y)− 3∂y
(
Q2(y)S0(y)

)
. (31)

Therefore, it is enough to prove that the following problem has a unique solution:

®
Lf = g + aQ− ã3Q2S0

f − ãS0 ⊥ Q, f − ãS0 ⊥ Q′
.

We choose ã such that g + aQ + ã3Q2S0 is orthogonal to Q′, and then arguing as in the proof of
Lemma 13, we conclude the proof the first identity of Lemma 14. The second identity is similar.

�

3. Construction of the approximation

The approximation V of the expected solution u is built in this section. The purpose is to minimise
the flow EV associated to the approximation, by detailing V . By taking the time derivative of the sum
of two solitons −R1 +R2, a particular direction intrinsic to the problem appears and is compensated
by the use of a function W . This term possesses a tail at −∞. We also define a time-dependent
variable b(z(t)). We then minimise the flow associated to −R1 +R2 + bW by adding localised profiles
−P1 and P2 in the approximation to cancel the source term coming from the non-linearity.

3.1. Notation. Let us consider four C1 functions µ1, µ2, z1 and z2 on a time interval I ⊂ R, and

Γ(t) = (µ1(t), µ2(t), z1(t), z2(t)). (32)

We define the distance between the different functions by:

µ(t) := µ1(t)− µ2(t), z(t) := z1(t)− z2(t). (33)

For a fixed constant C0 > 0, we use the following set of assumptions on the interval I:

−z(t) ≤ z2(t) ≤ −1

8
z(t),

1

8
z(t) ≤ z1(t) ≤ z(t), (34)

|µ1(t)|+ |µ2(t)|+ |µ(t)|+ |ż1(t)|+ |ż2(t)|+ |ż(t)| ≤ C0

z(t)
1+α
2

, (35)

|µ̇1(t)|+ |µ̇2(t)| ≤
C0

z(t)2+α
. (36)

Remark 15. The constant C0 is used to fix the set of assumptions on Γ. The computations of this
section involve the constant C0, but it does not have any influence on the final constant C in Theorem
3. For the sake of simplicity, we omit the presence of this constant in the computations. To close the
bootstrap, we will fix the constant C0 to be large enough so that the set assumptions on Γ is satisfied.

We define a function

b(z(t)) :=
b1

z2+α(t)
(37)

with b1 = −2a1
(α+ 1)2

α− 1

‖Q‖3
L3

‖Q‖2
L2

< 0 and a1 > 0 defined in Theorem 7.

3.2. Approximate solution.
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We define a function S0 such that the ∂yLS0 is close to ΛQ, in the sense that the remaining terms
are of the form ∂y(g) for some function g:

S0(y) :=

∫ +∞

y

(|D|α + 1)−1ΛQ(ỹ)dỹ, and W (Γ(t), y) := S0(y − z1(t))− S0(y − z2(t)). (38)

S0 is a well-defined function. It has a limit at −∞, which may be different from 0 and is denoted by
l:

l := lim
y→−∞

S0(y). (39)

See Appendix B for the justification of S0.

Theorem 16. Let I ⊂ R an interval such that the assumptions (34)-(36) on Γ are satisfied.
There exist two constants β0 and δ0 in R, two functions β(Γ) and δ(Γ) and two functions P1(Γ, y)

and P2(Γ, y) such that the following holds:

• Asymptotic of β and δ. The functions β and δ have the following expansion:∣∣∣∣β(Γ)−
β0

z1+α

∣∣∣∣+
∣∣∣∣δ(Γ) −

δ0

z1+α

∣∣∣∣ ≤
C

z2+α
. (40)

• Orthogonality conditions and limits. The profiles Pi(Γ) ∈ C(I,X2+α(R)) satisfy:

−P1 + b(z)S0(· − z1) ⊥ R̃1, ∂yR̃1, P2 + b(z)(l − S0(· − z2)) ⊥ R̃2, ∂yR̃2. (41)

We then define the approximation V of a solution by:

V (Γ, y) :=

2∑

i=1

(−1)i (Ri(Γ, y) + Pi(Γ, y)) + b(z)W (Γ, y), (42)

and for simplicity we will write V (t, y) := V (Γ(t), y).
• Decomposition and estimate of the flow. The flow EV of the approximation

EV := ∂tV + ∂y
(
−|D|αV − V + V 3

)
(43)

can be decomposed into:

EV = −→m · −−→MV + ∂yS + T (44)

with

−→m(t) =

Ü
−µ̇1(t) + b(z(t))

ż1(t)− µ1(t) + β(Γ(t))
µ̇2(t) + b(z(t))

−ż2(t) + µ2(t)− δ(Γ(t))

ê

,
−−→
MV (t, y) =

Ü
ΛR1(t, y)
∂yR1(t, y)
ΛR2(t, y)
∂yR2(t, y)

ê

, (45)

and the source term S and the approximation due to the flow T are in C1(I,X2+α(R)) and
satisfy the set of inequalities :

‖S‖H1 ≤ C

z
5+3α

2

, (46)

‖∂tS‖L2 ≤ C

z3+2α
, (47)

‖T‖H1 ≤ C

z
5+3α

2

+
C

z1+α

2∑

i=1

|żi − µi|. (48)

We add some estimates related to the previously defined functions. We recall the definition of φ in
(125) and Φ in (128).

Proposition 17. With the previous notations, the following estimates hold:

• Estimates on the solitary waves:

‖Ri(φ− δ2i)‖H1 + ‖∂yRi (φ− δ2i)‖H1 + ‖(1 −
»

|δ1i − φ|)Ri)‖L2 ≤ C

zα
, i = 1, 2, (49)

‖∂yRiΦ‖L2 + ‖ΛRiΦ‖L2 ≤ C

z
1+α
2

, i = 1, 2, (50)
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where δij holds for Kronecker delta.
• Estimates on the profiles:

‖ (P1 − P2 − bW ) ‖L∞ + ‖∂y (P1 − P2 − bW ) ‖L∞ ≤ C

z1+α
, (51)

‖∂t (P1 − P2 − bW ) ‖L∞ ≤ C

z
3+3α

2

, (52)

• Estimates on the approximation:

‖V ‖L∞ + ‖∂yV ‖L∞ ≤ C, (53)

‖V kΦ2‖L∞ + ‖(V 2 −R2
1)∂yR1‖L2 ≤ C

z1+α
k ∈ N (54)

‖∂tV ‖L∞ ≤ C

z
1+α
2

. (55)

The next subsections are dedicated to the proof of the theorem on the approximation V . We begin
with the expansion of EV defined in (43). Let us first compute the different time derivatives:

∂t(−R1) = ż1∂yR1 − µ̇1ΛR1 and ∂tR2 = −ż2∂yR2 + µ̇2ΛR2.

By the definition of V in (42), we get the development:

EV =

2∑

i=1

(−1)i (µ̇iΛRi − żi∂yRi) +

2∑

i=1

(−1)i∂y
(
−|D|αRi −Ri +R3

i

)
(56)

+

2∑

i=1

∂y
((
−|D|α − 1 + 3R2

i

)
((−1)iPi)

)
+ ∂y ((−|D|α − 1)(bW ))

+ ∂y(V
3 +R3

1 −R3
2 + 3R2

1P1 − 3R2
2P2) (57)

+
d

dt
(−P1 + P2 + bW ). (58)

Notice also the following identities:

∂y(−|D|α(−R1)− (−R1)−R3
1) = −µ1∂yR1 and ∂y(−|D|αR2 −R2 +R3

2) = µ2∂yR2.

We extract from (56) and (58) the higher orders terms, and for sake of clarity we denote:

∀i ∈ {1, 2}, T (i, β0) :=
β0

z1+α
∂y
Ä
µiΛR̃i

ä
− µi∂yPi, (59)

and the remaining term outside of ∂y by:

T :=

2∑

i=1

b(z)
Ä
ΛR̃i − ΛRi

ä
+ β(Γ)

Ä
−∂yR1 + ∂yR̃1

ä
− δ(Γ)

Ä
−∂yR2 + ∂yR̃2

ä

+ T (1, β0)− T (2, δ0) +
d

dt
(−P1 + P2 + bW ) . (60)

Note that the directions ΛRi and ∂yRi involved in
−−→
MV are switched by T to ΛR̃i and ∂yR̃i.

We continue by decomposing the term (57). First, from the interaction term V 3 + R3
1 − R3

2 we
extract the higher orders terms, and denote by SV 3 the rest:

SV 3 :=V 3 +R3
1 −R3

2 + 3R2
1P1 − 3R2

2P2 − 3R2
1bS0(y − z1)− 3R2

2b(l − S0(y − z2))− 3R2
1R2 + 3R1R

2
2

=3R2
1(P2 − bS0(y − z2)) + 3R2

2(−P1 + b(S0(y − z1)− l))− 6R1R2(−P1 + P2 + bW )

+ 3(−R1 +R2)(−P1 + P2 + bW )2 + (−P1 + P2 + bW )3. (61)

The profiles Pi are built to remove the main orders of the interaction terms and some added terms
in T . We want to inverse the following terms to get a better approximation of the solution:

∀i 6= j ∈ {1, 2}, S (i, j) := 3R̃2
i R̃j − 6µiR̃iΛR̃iPi + 6µiR̃iΛR̃iR̃j + 3µjR̃

2
iΛR̃j + µiPi − β0

µi

z1+α
ΛR̃i,

(62)
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and thus the quantities that we want to be close to 0 are the functions S1 and S2, equal to 0 at +∞
and satisfying:

∂yS1 := ∂y
ÄÄ

−|D|α − 1 + 3R̃2
1

ä
(−P1 + bS0(· − z1)) + S (1, 2)

ä
− b(z)ΛR̃1 − β(z)∂yR̃1, (63)

∂yS2 := ∂y
ÄÄ

−|D|α − 1 + 3R̃2
2

ä
(P2 + b(l − S0(· − z2))) − S (2, 1)

ä
− b(z)ΛR̃2 + δ(z)∂yR̃2. (64)

By an adequate choice of Pi, b, β and δ, the functions S1 and S2 will not have a tail at −∞.
We finally gather the previous approximations and find the remaining terms in ∂y, by setting:

∀i 6= j ∈ {1, 2}, S̃ (i, j) := 6µiR̃iΛR̃iPi + 3R2
iRj − 3R̃2

i R̃j − 6µiR̃iΛR̃iR̃j − 3µjR̃
2
iΛR̃j , (65)

and thus:

S̃ := 3(R2
1 − R̃2

1)(−P1 + bS0(· − z1)) + S̃ (1, 2) + 3(R2
2 − R̃2

2)(P2 + b(l − S0(· − z2)))− S̃ (2, 1). (66)

We finally get the following decomposition:

EV = −→m · −−→MV + ∂yS + T,

where the coefficients −→m and
−−→
MV are defined in (45), T is defined in (60), and S by

S = S1 + S2 + SV 3 + S̃. (67)

Let us continue the construction in the next subsection by the choices of P1 and P2.

3.3. Construction of the profiles.

This part is dedicated to the construction of the profiles P1 and P2. The goal is to minimise the
quantities S1 and S2 by exploiting the intrinsic directions of the problems ∂yR1, ∂yR2, ΛR1 and ΛR2.
In particular, the coefficient b defined in (37) is central in the study of the interaction. The profiles
Pi are established term by term in S in (62), and using the expansion of the interaction terms, given
by Qapp.

Due to the definition of S in (62), for any i 6= j ∈ {1, 2}, we define an approximate value of the
function S , where it is located, by:

F (i, j, β0, B0) := 3R̃2
iQapp((−1)j(· − zi), z) − 6

µi

z1+α
R̃iΛR̃iB0(· − zi) + 6

µi

z1+α
R̃iΛR̃ia1

− 3
µj

z1+α
R̃2

i

a1(α+ 2)

2(α + 1)
+

µi

z1+α
B0(· − zi)− β0

µi

z1+α
ΛR̃i. (68)

The definitions of b1 and b are given in (37), and S0 and l respectively in (38) and (39).

Proposition 18. There exist two constants β0 and δ0, two functions β(Γ) and δ(Γ) in C1(I) satis-
fying (40), two even functions B0,D0 ∈ X∞(R) and two profile functions P1(Γ, y) and P2(Γ, y) in
C(I,X∞(R)) satisfying:

∣∣∣∣P1(Γ, y + z1)−
β0

z1+α
B0(y)

∣∣∣∣ +
∣∣∣∣P2(Γ, y + z2)−

δ0

z1+α
D0(y)

∣∣∣∣ ≤
C

z2+α

1

〈y〉1+α
, (69)

∂y
ÄÄ

−|D|α − 1 + 3R̃2
1

ä
(−P1 + b(z)S0(· − z1)) + F (1, 2, β0 , B0)

ä
= b(z)ΛR̃1 + β(Γ)∂yR̃1, (70)

∂y
ÄÄ

−|D|α − 1 + 3R̃2
2

ä
(P2 + b(z)(l − S0(· − z2))) − F (2, 1, δ0 ,D0)

ä
= b(z)ΛR̃2 − δ(Γ)∂yR̃2, (71)

with the orthogonality conditions:

P1 − b(z)S0(· − z1) ⊥ R̃1, ∂yR̃1, and P2 + b(z) (l − S0(· − z1)) ⊥ R̃2, ∂yR̃2. (72)

Moreover, the profiles P1, P2 verify:

|Pi(Γ, y)|+ |∂yPi(Γ, y)| ≤
C

z1+α

1

〈y − zi〉1+α
, (73)

∣∣∣∣
d

dt
Pi(Γ, y)

∣∣∣∣ ≤
C

z
3+3α

2

1

〈y − zi〉1+α
, (74)

∣∣∣∣
d

dt
Pi(Γ, y) + żi∂yPi(Γ, y)

∣∣∣∣ ≤
C

z
5+3α

2

1

〈y − zi〉1+α
. (75)



STRONG INTERACTIONS FOR FMKDV 15

The profiles P1 and P2 are defined by:

P1(Γ(t), y) :=
−→
f (Γ(t)) · −→B (y − z1(t)), P2(Γ(t), y) :=

−→
f (Γ(t)) · −→D(y − z2(t)), (76)

where the functions
−→
f ,

−→
B and

−→
D are established in the next proposition, and the quantities F are

translated to be centered at 0 and correspond to
−→
f · −→F . The proof of Proposition 18 is postponed

after the proof of the next proposition.

Proposition 19. Let us define the vector functions:

−→
f (Γ) :=

Å
1

z1+α
,

1

z2+α
,
µ1

z1+α
,
µ2

z1+α
,

1

z2α+1
,

1

z3+α

ã
, (77)

and for all i ∈ {1, 2}:
−→
F (i, β0, B0) :=

(
3Q2a1, 3Q2a1(−1)i(α+ 1)y, −6QΛQB0 + 6QΛQa0 +B0 − β0ΛQ,

−3a1
α+ 2

α+ 1
Q2, 3Q2a2, 3Q2

Å
a1

(α+ 1)(α + 2)

2
y2 + a3

ãã
. (78)

There exist unique β0 ∈ R, β(Γ) ∈ C1(I) satisfying (40), B0, B1, B2, B3, B4 and B5 ∈ X∞(R), with
B0 an even function, and B0, B1 + b1S0, B2, B3, B4, B5 ⊥ Q,Q′ such that, :

∂y
Ä
L
Ä−→
f (Γ) · −→B − b(z)S0

ä
+

−→
f (Γ) · −→F (1, β0, B0)

ä
= b(z)ΛQ+ β(Γ)Q, (79)

with
−→
B := (B0, B1, B2, B3, B4, B5).

Similarly, there exist unique δ0 ∈ R, δ(Γ) ∈ C1(I), satisfying (40), D0,D1,D2,D3,D4 and D5 ∈
X∞(R) with D0 an even function, D0,D1 + b1(l − S0),D2,D3,D4,D5 ⊥ Q,Q′ such that:

∂y
Ä
L
Ä−→
f (Γ) · −→D + b(z)(l − S0)

ä
+

−→
f (Γ) · −→F (2, δ0,D0)

ä
= −b(z)ΛQ+ δ(Γ)Q′, (80)

with
−→
D := (D0,D1,D2,D3,D4,D5).

Notice that in the previous decomposition, the tail of the profile of the first solitary wave, given by
B1, has an influence on the profiles around the second solitary wave, on D1. However, this tail does
not change the coefficient −b(z)ΛQ, which is of great importance in the system of ODEs ruling the
equations of µ and of z.

To prove Proposition 19, we need Lemma 13 and 14 to find the adequate profiles.

Proof. We define from Lemma 13 the unique function B0 ∈ X∞(R) and the unique coefficient β0 ∈ R

satisfying:
®
LB0(y) = −3a1Q

2(y) + β0Q(y),

B0 ⊥ Q, B0 ⊥ Q′.
(81)

Notice that since L keeps stable the parity of the functions, B0 is an even function.
For the second term, we use Lemma 14 by defining the function B1, and the coefficients β1 and b1

as the unique solution of the following problem:

®
∂yL(B1(y)− b1S0(y)) = ∂y

(
3(α+ 1)a1yQ

2(y)
)
+ β1Q

′(y) + b1ΛQ,

B1 − b1S0 ⊥ Q, B1 − b1S0 ⊥ Q′.
(82)

Notice in particular that b1 is defined by the formula (30):

b1 = −2(α+ 1)2a1‖Q‖3
L3

(α− 1)‖Q‖2
L2

< 0, (83)

since the sign of a1 > 0 is given in Lemma 7. This justifies the choice of definition of b(z) :=
b1

z2+α
, as

stated in (37).
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The third, fourth, fifth and sixth terms are defined as for B0 and β0. With Lemma 13, we define
B2, B3, B4, B5 in X∞(R), and the coefficients β2, β3, β4 and β5 as the solutions of the following
problems:

®
LB2(y) = −6QΛQB0 − 6QΛQa1 −B0 + β0ΛQ+ β2Q(y)

B2 ⊥ Q, B2 ⊥ Q′
,




LB3(y) = 3a1

α+ 2

α+ 1
Q2 + β3Q(y)

B3 ⊥ Q, B3 ⊥ Q′

(84)

and
®
LB4(y) = −3a2Q

2(y) + β4Q(y)

B4 ⊥ Q, B4 ⊥ Q′.
,




LB5(y) = −3

Å
a1

(α + 1)(α + 2)

2
y2 + a3

ã
Q2(y) + β5Q(y)

B5 ⊥ Q, B5 ⊥ Q′.

(85)

Therefore, we set:

β(Γ) = (β0, β1, β2, β3, β4, β5) ·
−→
f (Γ). (86)

Now, we continue with the construction of
−→
D . Since the first, forth, fifth and sixth coordinates

in
−→
F (2, δ0,D0) are respectively equal to the first, forth, fifth and sixth terms in

−→
F (1, β0,D0), the

functions D0, D3, D4, D5 will solve respectively the same problem as B0, B3, B4 and B5. Then, we
take:

D0 = B0, D3 = B3, D4 = B4, D5 = B5, (87)

and

δ0 = β0, δ3 = β3, δ4 = β4, δ5 = β5. (88)

The situation is similar for D2 = B2 and for β2 = δ2. To construct D1, as for the function B1, we use
Lemma 14. Since z2+αb(z) = b1, there exist a unique function D1 ∈ X∞(R) and coefficients δ1, d1 ∈ R

such that:®
∂yL (D1(y) + d1(l − S0(y))) = ∂y

(
−(α+ 1)a1y3Q

2(y)
)
+ δ1Q

′(y) + d1ΛQ(y),

D1 + d1(l − S0) ⊥ Q, D1 + d1(l − S0) ⊥ Q′.
(89)

Moreover, Q2 is orthogonal to Q′. Therefore by the formula (30), we obtain that:

d1 = −b1. (90)

Thus, we conclude the proof of Proposition 19 by defining:

δ(Γ) := (δ0, δ1, δ2, δ3, δ4, δ5) ·
−→
f (Γ). (91)

�

Proof of Proposition 18. The two identities (70) and (71) are deduced from the one of
−→
B and

−→
D in

(79) and (80), as well as the orthogonality conditions.
We continue with the estimate (73) and (74). First, we deal with the term ∂yB0. From (81), we

deduce that:

∂yB0 = (|D|α + 1)−1 ∂y
(
3Q2B0 + 3a1Q

2 + β0Q
)
.

Since B0 ∈ X2+α(R), we have that ∂yB0 ∈ L∞(R) ∩ C(R). Then, by Lemma 8, we obtain that
∂yB0 ∈ X2+α(R). By a similar argument on B1, B2, B3, B4 and B5 with (35), we conclude that:

|∂yP1(Γ, y)| = |−→f (Γ) · (∂y
−→
B )(y − z1)| ≤

C

z1+α

1

〈y − z1〉1+α
.

The same estimate holds for P2.
Now, we estimate ∂tPi for i ∈ {1, 2}. Note that the profiles P1(Γ) and P2(Γ) are C1(I), since

Γ ∈ C1(I). By direct computation, we obtain that:

d

dt
P1(Γ(t), y) =

Å
d

dt
Γ(t) · ∇Γ

ã−→
f (Γ(t)) · −→B (y − z1(t))− ż1(t)∂yP1(Γ(t), y). (92)
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By Proposition 19, we have that Bj ∈ X∞ for j ∈ {0, · · · , 5}. Therefore, we deduce with (35) and
(36), that:

∣∣∣
Ä
Γ̇ · ∇Γ

ä−→
f (Γ) · −→B (y − z1)

∣∣∣ ≤ C

Å |ż|
z2+α

+
|µ̇1|+ |µ̇2|
z1+α

ã
1

〈y − z1〉1+α
≤ C

z
5+3α

2

1

〈y − z1〉1+α
. (93)

We conclude that: ∣∣∣∣
d

dt
P1(Γ) + ż1∂yP1(Γ)

∣∣∣∣ ≤
C

z
5+3α

2 〈y − z1〉1+α
.

The same arguments hold to estimate the profile P2. This finishes the proof of Proposition 18. �

3.4. Proof of Proposition 17 and Theorem 16.

Once the construction of the profiles is finished we continue with the estimates of the different terms
involved in the error.

Proof of Proposition 17. To obtain (49), we have the decomposition on ∂yR1:

‖∂yR1φ‖L∞({y≤
z1
2
}) ≤

∥∥∥∥
C

〈y − z1〉1+α

1

〈y〉α
∥∥∥∥
L∞

≤ C

zα
,

‖∂yR1φ‖L∞({y≤
z1
2
}) ≤ ‖∂yR1‖L∞({y≤

z1
2
}) ≤

C

z1+α
.

The same estimate holds for R2. Applying the same argument for the H1-norm, we deduce (49). We
can replace ∂yRi by ΛRi in the former estimates and we get (50).

The estimate (51) and (52) are direct consequences of Proposition 18 and the definition of b.
By Proposition 19 the profiles Pi and ∂yPi for i = 1, 2 belong to L∞(R). Moreover, by definition,

W and ∂yW are also in L∞(R). Then we deduce (53).

By Proposition 19 for the profiles, and since b(z) =
b1

zα+2
, we deduce that :

‖P1‖L∞ + ‖P2‖L∞ + ‖bW‖L∞ ≤ C

z1+α
.

Furthermore, using Ωi = {y ∈ R : y ≤ zi

2
}, we get for i = 1, 2 that:

‖Rk
iΦ

2‖L∞ ≤ ‖Rk
i Φ

2‖L∞(Ωi) + ‖Rk
i Φ

2‖L∞(Ωc
i )
≤ C

z1+α
.

Gathering these estimates, we conclude the first part of (54). Concerning the second term:

‖(V 2 −R2
1)∂yR1‖L2

≤ ‖2R1(R2 − P1 + P2 + bW )∂yR1‖L2 + ‖R2
2∂yR1‖L2 + C‖ − P1 + P2 + bW‖2L∞ ≤ C

z1+α
.

By differentiating V and using Proposition 18, therefore we obtain the estimate (55). �

Proof of Theorem 16. We continue with the inequalities (46), (47) and (48).

We first begin with the estimate on the L2-norm of the term S = SV 3+S1+S2+S̃ with SV 3 , S1, S2, S̃

are respectively defined in (61), (63), (64) and (66).
We begin with SV 3 , by decomposing the different terms. We have, using the decomposition of

Proposition 10:
∥∥∥
Ä
R2

1 − R̃2
1

ä
P2

∥∥∥
L2

≤ C|µ1|
∥∥∥∥

1

〈y − z1〉1+α
P2

∥∥∥∥
L2

. (94)

Let Ω :=
{
y ≤ z1+z2

2

}
. By (73) and (35), we obtain that:

∥∥∥
Ä
R2

1 − R̃2
1

ä
P2

∥∥∥
L2

≤ C
|µ1|
z1+α

Ç∥∥∥∥
1

〈y − z1〉1+α

1

〈y − z2〉1+α

∥∥∥∥
L2(Ω)

+

∥∥∥∥
1

〈y − z1〉1+α

1

〈y − z2〉1+α

∥∥∥∥
L2(ΩC)

å
≤ C

z
5+3α

2

. (95)
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By similar computations, we have that:

∥∥R2
1P2

∥∥
L2 ≤

∥∥∥R̃2
1P2

∥∥∥
L2

+
∥∥∥
Ä
R2

1 − R̃2
1

ä
P2

∥∥∥
L2

≤ C

z
5+3α

2

. (96)

Similarly:

∥∥3R2
1(−bS0(· − z2)) + 3R2

2 (−P1 + b(S0(y − z1)− l))
∥∥
L2 ≤ C

z
5+3α

2

.

For the third and forth terms of SV 3 , by (51), we have:

‖R1R2(−P1 + P2 + bW )‖L2 ≤ ‖R1R2‖L2‖ − P1 + P2 + bW‖L∞ ≤ C

z
5+3α

2

and
∥∥∥(−R1 +R2) (−P1 + P2 + bW )2

∥∥∥
L2

≤ ‖ −R1 +R2‖L2‖ − P1 + P2 + bW‖2L∞ ≤ C

z
5+3α

2

.

Finally, we compute the L2-norm of the bump function W :

‖bW‖L2 ≤ C

z2+α

√
z =

C

z
3
2
+α
,

and therefore:
∥∥(−P1 + P2 + bW )3

∥∥
L2 ≤ ‖(−P1 + P2 + bW )‖2L∞ ‖(−P1 + P2 + bW )‖L2 ≤ C

z
5+3α

2

.

With the previous computations, we conclude that :

‖SV 3‖L2 ≤ C

z
5+3α

2

.

We continue with S1. Notice that by definition of Pi, another formulation of S1 and S2 is available:

S1 = S (1, 2) − F (1, 2, β0, B0)

S2 = −S (2, 1) + F (2, 1, δ0 ,D0).

We focus on S1, the computations are similar for S2. We separate each term of S (1, 2)−F (1, 2, β0 , B0).

First we look at
∥∥∥3R̃2

1(R̃2 −Qapp(· − z2, z))
∥∥∥
L2

. The approximation of Q(· + z) by Qapp(·, z) in (21)

holds on a certain region, thus we begin with
{
y ∈ R; |y − z1| ≤ z

2

}
. In this region, we have:

∥∥∥3R̃2
1(R̃2 −Qapp(· − z1, z))

∥∥∥
L2(|y−z1|≤

z
2
)
≤ C

∥∥∥∥3R̃2
1

Å
1

z3α+1
+

〈y − z1〉
z2α+2

+
〈y − z1〉3
zα+4

ã∥∥∥∥
L2

≤ C

z2α+2
≤ C

z
5+3α

2

.

In the other part, we get:
∥∥∥3R̃2

1(R̃2 −Qapp(· − z1, z))
∥∥∥
L2(|y−z1|≥

z
2
)
≤
∥∥∥3R̃2

1R̃2

∥∥∥
L2(|y−z1|≥

z
2
)
+
∥∥∥3R̃2

1Qapp(· − z2, z)
∥∥∥
L2(|y−z1|≥

z
2
)
.

The first term on the right hand side of the former estimate is bounded by:
∥∥∥3R̃2

1R̃2

∥∥∥
L2(|y−z1|≥

z
2
)
≤ C‖R̃2

1‖L∞(|y−z1|≥
z
2
)‖R̃2‖L2 ≤ C

z
5+3α

2

.

We estimate the second term on the right hand side by:
∥∥∥R̃2

1Qapp(· − z1, z)
∥∥∥
L2(|y−z1|≥

z
2
)

≤ C

z
5+3α

2

+
C

z2+α

∥∥∥R̃2
1(y − z1)

∥∥∥
L2(|y−z1|≥

z
2
)
+

C

z3+α

∥∥∥R̃2
1(y − z1)

3
∥∥∥
L2(|y−z1|≥

z
2
)
≤ C

z
5+3α

2

.

Thus we conclude:
∥∥∥3R̃2

1(R̃2 −Qapp(· − z1, z))
∥∥∥
L2

≤ C

z
5+3α

2

.
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The estimates on the other terms of S1 are obtained by similar computations:
∥∥∥∥6µ1R̃1ΛR̃1

Å
P1 −

B0(· − z1)

z1+α

ã∥∥∥∥
L2

+
∥∥∥6µ1R̃1ΛR̃1

(
R̃2 −

a0

z1+α

)∥∥∥
L2

+

∥∥∥∥3µ2R̃2
1

Å
ΛR̃2 +

1

z1+α

a0(α+ 2)

2(α+ 1)

ã∥∥∥∥
L2

+

∥∥∥∥µ1
Å
P1 −

B0(· − z1)

z1+α

ã∥∥∥∥
L2

≤ C

z
5+3α

2

then we conclude:

‖S1‖L2 ≤ C

z
5+3α

2

.

To finish the proof on S, we have to estimate S̃. We focus on the first part of S̃, which contains

S̃ (1, 2):

3
Ä
R2

1 − R̃2
1

ä
(−P1 + bS0(y − z1)) + 6µ1R̃1ΛR̃1P1 + 3R2

1R2 − 3R̃2
1R̃2 − 6µ1R̃1ΛR̃1R̃2 − 3µ2R̃

2
1ΛR̃2

since the computations are similar for the other part. By using Proposition 10, (35) and (37) we
deduce:

‖3(R2
1 − R̃2

1)bS0(y − z1)‖L2 + ‖3(R2
1 − R̃2

1 − 2µ1R̃1ΛR̃1)P1‖L2 ≤ C

z
5+3α

2

.

To estimate the next terms in S̃, we remark:

R2
1R2 − R̃2

1R̃2 = R2
1(R2 − R̃2) + R̃2(R

2
1 − R̃2

1).

From Proposition 10 and (35), we obtain that:

‖3R2
1(R2 − R̃2)− 3µ2ΛR̃2R̃

2
1‖L2 ≤‖3R2

1(R2 − R̃2)− 3µ2ΛR̃2R
2
1‖L2 + ‖3µ2ΛR̃2

Ä
R2

1 − R̃2
1

ä
‖L2)

≤C
Å
µ22
z1+α

+
|µ1||µ2|
z1+α

ã
≤ C

z
5+3α

2

.

Arguing similarly, we obtain:

‖3R̃2(R
2
1 − R̃2

1)− 6µ1R̃1ΛR̃1R̃2‖L2 ≤ C

z
5+3α

2

.

This concludes the estimate on S̃.
We continue with the estimate on T . We decompose each term of its definition in (60). First, we

have with (24) and (35) :
∥∥∥b(z)

Ä
ΛR1 − ΛR̃1

ä∥∥∥
L2

≤ C
|µ1|
z2+α

∥∥∥∥
1

〈x− z1〉α+1

∥∥∥∥
L2

≤ C

z
5+3α

2

.

Second, we use the inequality (40) as used in Proposition 18, and from the asymptotic development
of ∂yQ, by (25) and (36):

∥∥∥∥β(Γ)
Ä
−∂yR1 + ∂yR̃1

ä
+

β0

z1+α
∂y(µiΛR̃i)

∥∥∥∥
L2

≤
∥∥∥∥
Å
β(Γ)− β0

z1+α

ã
∂y(−R1 + R̃1)

∥∥∥∥
L2

+

∥∥∥∥
β0

z1+α
∂y
Ä
−R1 + R̃1 + µ1ΛR̃1

ä∥∥∥∥
L2

≤ C
|µ1|
z2+α

+ C
µ21
z1+α

≤ C

z
5+3α

2

.

Then, we consider the case of the time derivative on −P1. We have, by (75):
∥∥∥∥
d

dt
(−P1)− µ1∂yPi

∥∥∥∥
L2

≤ C

z
5+3α

2

+
C

z1+α
|ż1 − µ1|

We continue with the the term d
dt
W :

d

dt
W (Γ(t)) = (|D|α + 1)−1

Ä
ż1(t)ΛR̃1 − ż2ΛR̃2

ä
, (97)



20 A.EYCHENNE AND F.VALET

which with (35) and (97) give:
∥∥∥∥
d

dt
(b(z(t))W (Γ(t)))

∥∥∥∥
L2

≤ C
|ż1|+ |ż2|
z2+α

+ C
|ż|
z3+α

‖W‖L2

≤ C

z
5+3α

2

+ C

√
z

z
7+3α

2

≤ C

z
5+3α

2

.

Those previous estimates conclude the bound (48) on T .
Since all the estimates have been established in L2, we need to continue with the first derivative to

establish the bound in H1. We can notice that all the estimates are based on two main arguments:

• An argument of localisation : if two functions are located at a distance z large, and if the
two functions have an explicit decay at infinity, then the product of the two functions can be
quantified in terms of z. The spatial derivative either leaves unchanged the decay property in
terms of z of this product or improves it.

• An argument of smallness of the objects: the objects already have a quantified bound in terms
of z, see for example the L∞-norm of Pi in (73).

Therefore the computations made on the L2-norm are similar to those on the H1-norm.
Concerning the time derivative of S in (47), let us deal with a generic example of a function
1

z(t)1+α g1+µ(t)(y − z(t)), since all the involved functions, except W , are on this form. Either the time

derivative applies to 1
z(t)1+α , or to the scaling parameter 1+µ(t) of the function g or to the translation

parameter −z(t). However, we get in each case either µ̇(t) or ż(t), which by (35) and (36) are bounded

by z−
1+α
2 . Notice also that the time derivative of the considered functions leaves unchanged or improves

the space decay at infinity, and from the remark on the space derivative above, the bound in z still
holds. The time derivative of W has been developed in (97), and ∂tW fits in the previous discussion.
As a result, the estimate on ‖∂tS‖L2 is reduced to the product of two terms: one whose bound is the

one of ‖S‖L2 , and one bounded by z−
1+α
2 . �

4. Modulation

The previous section was dedicated to the expected approximate solution. Here, we prove that if
a solution is close to the approximation V , for two solitary waves far enough one to each other, then
the solution stays close to this approximation on a certain time interval. Furthermore, we can impose
some orthogonality conditions to the error between the solution and the approximation.

Let us define some conditions (CondZ) on a vector Γ = (z1, z2, µ1, µ2) ∈ R
4 dependent on a param-

eter Z:

z1 >
Z

4
, z2 < −Z

4
, 0 < −µ1 <

1

Z
, and 0 < µ2 <

1

Z
, (CondZ)

and the tube:

U(Z, ν) :=
ß
u ∈ H

α
2 (R); inf

Γ satisfying (CondZ )
‖u− V (Γ)‖

H
α
2
≤ ν

™
. (98)

We also shorten the notations by:

Ri(y) = Ri(Γ, y) := Q1+µi(y − zi). (99)

This proposition is time-dependent, and can be found, for example, in [35, 12].

Proposition 20. There exist Z∗ > 0, ν∗ > 0 and a constant K∗ > 0 such that the following holds.
Let v be a solution of (5) in C(R,H α

2 ). Let us define a time interval I. If for Z > 2Z∗ and ν ∈ (0, ν
∗

2 ),
we have :

sup
t∈I

Å
inf

Γ satisfying (CondZ )
‖v(t, ·)− V (Γ, ·)‖

H
α
2

ã
< ν,

then there exists a unique C1-function Γ : I → R
4 such that:

ǫ(t, ·) := v(t, ·) − V (Γ(t), ·)
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satisfies for any i ∈ {1, 2} and for any t ∈ I:

ǫ(t, ·) ⊥ Ri(t, ·) and ǫ(t, , ·) ⊥ ∂yRi(t, ·). (100)

Moreover, for any t ∈ I:

‖ǫ(t, ·)‖
H

α
2
+ |µ1(t)|+ |µ2(t)| ≤ K∗ν, (101)

|ż1(t)|+ |ż2(t)|+ |µ̇1(t)|+ |µ̇2(t)| ≤ K∗, (102)

z1(t) >
Z

8
, z2(t) ≤ −Z

8
. (103)

Proof. We give here some insights of the proof. The proof is composed of two steps. The first part
involves a qualitative version of the implicit function theorem, see section 2.2 in [7], to obtain the
existence of the continuous function Γ. To this end, we study the functional

g :U(Z, ν)× R
∗
+ × R

∗
− × R× R −→ R

4

(w, z1, z2, µ1, µ2) 7−→
Å∫

(w − V (Γ))R1,
∫
(w − V (Γ))∂yR1∫

(w − V (Γ))R2,
∫
(w − V (Γ))∂yR2

ã
,

(104)

at the point (V (Γ̃), Γ̃) with V defined in (42) and Γ̃ satisfying (CondZ). Note that the estimates

obtained on g and dΓg used to verify the implicit function theorem, are uniform in Γ̃ satisfying
(CondZ ), for Z > 2Z∗ with Z∗ large enough, and ν < ν∗

2 with ν∗ small enough. In other words, for

all Γ̃, the function Γ associated with Γ̃ given by the implicit function theorem is defined on a ball
B(V (Γ̃), ν), with ν independent of the point V (Γ̃). Since ν is chosen independently of Γ̃ satisfying
(CondZ ), we can extend by uniqueness the parameters to the whole tube U(Z, ν). Therefore, we get
Γ ∈ C1(U(Z, ν)).

However, the solution u of (5) is only continuous, then we obtain that the function Γ(t) := Γ(v(t, ·))
is only continuous. To get more regularity, we use the Cauchy-Lipischtz theorem. By differentiating
the orthogonality condition, we have that the parameters verify an ODE system. By using the Cauchy-
Lipischtz theorem, we obtain the regularity of the parameters even though u is only continuous.

�

Remark 21. The parameters z1, z2, µ1, µ2 defined in Proposition 20, verify an ODE system which is
globally Lipschitz. In other words, the function Γ is well-defined and C1(R). However, the conclusion
of the Proposition 20 are only verified for t ∈ I.

5. Proof of the Theorem 3

5.1. Bootstrap setting. Let (Sn)
+∞
n=0 be a increasing sequence of times going to infinity, with Sn >

T0, for T0 > 1 large enough to be chosen later. Recall that V is defined in (42). For all n ∈ N, we
define un as being the solution of (5) verifying

vn(Sn, ·) = V (Γin
n , ·), (105)

with

Γin
n := (zin1,n, z

in
2,n, µ

in
1,n, µ

in
2,n), (106)

zin1,n = −zin2,n :=
zinn
2
, µin1,n = −µin2,n :=

µinn
2
, µinn :=

 
−4b1
α+ 1

(
zinn
)−α+1

2 , (107)

(
zinn
)α+3

2 ∈ [a
α+3
2 Sn − S

1
2
+r

n , a
α+3
2 Sn + S

1
2
+r

n ], (108)

with b1 defined in (83), a =
Ä
α+3
2

»
−4b1
α+1

ä 2
α+3

and r = α−1
4(α+3) . The constant zinn will be fixed later.

By choosing T0 large enough and C0 = 2
»

−4b1
α+1 , we can suppose that (34)-(36) and (CondZ) are

satisfied by Γin
n for any n ∈ N. By (105), vn(Sn) ∈ U(Z, ν) and V (Γin

n ) satisfies the assumption of
theorem 16. By continuity of vn (see Corollary 34), on an open time interval In ∋ Sn, {vn(t); t ∈ In}
is in U(Z, ν). By applying Proposition 20, we define a unique function Γn = (z1,n, z2,n, µ1,n, µ2,n, ) on
In such that the conditions (100), (101) and (103) are satisfied and Γn(Sn) = Γin

n by construction. Γn

also satisfies (34)-(36), which justifies the setting of Theorem 16.
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By sake of clarity, we drop the index n, and denote v, Γ, z1, z2, µ1, µ2 instead of vn, Γn, z1,n, z2,n,
µ1,n, µ2,n for the subsections 5.2 and 5.3.

As in Section 3, we denote:

z := z1 − z2, µ := µ1 − µ2, z̄ := z1 + z2, µ̄ := µ1 + µ2 and ǫ := v − V (Γ). (109)

We introduce the bootstrap estimates




‖ǫ(t)‖2
H

α
2
≤ t−

3α+5
α+3 , (110)

|z α+3
2 (t)− a

α+3
2 t| ≤ t

1
2
+r, (111)∣∣∣∣∣µ(t)−

 
−4b1
α+ 1

t−
α+1
α+3

a
α+1
2

∣∣∣∣∣ ≤ C∗t
− 5α+11

4(α+3) , (112)

|z̄(t)| ≤ C∗t
− α−1

2(α+3) , (113)

|µ̄(t)| ≤ C∗t
−2α+1

α+3 , (114)

with C∗ > 1 to be fixed later. Note that the condition (111) implies

|z(t)− at
2

α+3 | ≤ Ct−r. (115)

We define

t∗(zinn ) = inf{t ∈ [T0, Sn] : ∀t̃ ∈ [t, Sn], (110) − (114) is true }. (116)

We want to prove that for an adequate choice of zinn in (108), t∗(zinn ) = T0.
By the previous choice of C0, the assumptions (34)-(36) on the approximation and the condition

(CondZ ) on the modulation are satisfied on (t∗(zinn ), Sn], increasing T0 if necessary.

The section 5.2 provides the tools to get a bound of z1, z2, µ1 and µ2, and the section 5.3 the bound
on ‖ǫ‖

H
α
2
. Next, in the section 5.4, we prove that we can choose zinn to close the bootstrap. We finish

the proof of Theorem 3 in the section 5.5.

Remark 22. Notice that different parameters are involved along this section. We clarify the order in
which they are fixed. First, we fix the parameter A, introduced in subsection 5.3; then the parameter
C∗ involved in the bootstrap dependently of A, and finally, the initial time T0 dependently of A and
C∗.

5.2. System of ODE. We now continue with the system of ODEs ruling the parameters z1, z2, µ1
and µ2. To do so, we compute the time derivative of the orthogonality conditions.

Proposition 23. The functions z1, z2, µ1 and µ2 satisfy that for all i ∈ {1, 2} :

2∑

i=1

|µ̇i(t) + (−1)ib(z(t))| ≤C
Ç

1

z
3α+5

2 (t)
+

1

zα+5(t)
‖ǫ(t)‖

H
α
2
+ ‖ǫ(t)‖2

H
α
2

å
, (117)

and

|ż1(t)− µ1(t) + β(Γ(t))| + |ż2(t)− µ2(t) + δ(Γ(t))| ≤C
Ç

1

z
3α+5

2 (t)
+ ‖ǫ(t)‖

H
α
2

å
. (118)

Proof. We begin with the first orthogonality condition
∫
ǫR1. Since ǫ = v − V and v solves (5), we

deduce that:

∂tǫ+ ∂y
Ä
−|D|αǫ− ǫ+ (ǫ+ V )3 − V 3

ä
= −EV .

By differentiating in time the equality 0 =
∫
ǫR1 and using the fact

∫
ǫ∂yR1 = 0, we obtain that:

0 =
d

dt

∫
ǫR1 =

∫ (
−|D|αǫ− ǫ+ 3R2

1ǫ
)
∂yR1 +

∫ (
(V + ǫ)3 − V 3 − 3R2

1ǫ
)
∂yR1

−
∫

−→m · −−→MVR1 −
∫
∂ySR1 −

∫
TR1 + µ̇1

∫
ǫΛR1.
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By using the equation of R1 and the condition ǫ ⊥ ∂yR1, we deduce that:
∫ (

−|D|αǫ− ǫ+ 3R2
1ǫ
)
∂yR1 =

∫ (
−|D|αǫ− (1 + µ1)ǫ+ 3R2

1ǫ
)
∂yR1 = 0.

Now, we continue with
∫ (

(V + ǫ)3 − V 3 − 3R2
1ǫ
)
∂yR1. First, note that:

(V + ǫ)3 − V 3 − 3R2
1ǫ = 3V ǫ2 + ǫ3 + 3ǫ

Ä
−2R1 (R2 − P1 + P2 + bW ) + (R2 − P1 + P2 + bW )2

ä
.

We recall ‖V ‖L∞ + ‖∂yR1‖L∞ ≤ C. Therefore, using the Sobolev embedding H
1
6 (R) −֒→ L3(R), we

have that:
∣∣∣∣
∫ (

3ǫ2V + ǫ3
)
∂yR1

∣∣∣∣ ≤ C
Ä
‖ǫ‖2L2 + ‖ǫ‖3

H
α
2

ä
.

Furthermore, |R2∂yR1| ≤ C
z1+α and |P1|+ |P2|+ |bW | ≤ C

z1+α , we conclude that:
∣∣∣∣
∫ (

(V + ǫ)3 − V 3 − 3R2
1ǫ
)
∂yR1

∣∣∣∣ ≤ C

Å‖ǫ‖L2

zα+1
+ ‖ǫ‖2L2 + ‖ǫ‖3

H
α
2

ã
.

Let us estimate
∫ −→m · −−→MV R1. Using the set {y ∈ R : y ≤ z1+z2

2 }, we get that:
∣∣∣∣
∫

ΛR2R1

∣∣∣∣+
∣∣∣∣
∫
∂yR2R1

∣∣∣∣ ≤
C

zα+1
.

Moreover, with R1 ⊥ ∂yR1, we obtain that:
∣∣∣∣
∫

−→m · −−→MVR1 − (−µ̇1 + b(z))

∫
ΛR1R1

∣∣∣∣ ≤
C

zα+1
(|µ̇2 + b(z)|+ |ż2 − µ2 + δ(Γ)|) .

Finally, using Cauchy-Schwarz inequality, (46) and (48) we get that:
∣∣∣∣
∫
∂ySR1

∣∣∣∣+
∣∣∣∣
∫
TR1

∣∣∣∣+ |µ̇1|
∣∣∣∣
∫
ǫΛR1

∣∣∣∣ ≤ C

Å
1

z
3α+5

2

+ |µ̇1|‖ǫ‖L2

ã
.

Gathering these estimates, and thanks to the facts ‖ǫ‖
H

α
2
≤ Cκ and |µ̇i| + |żi| ≤ C from (101) and

(102), we obtain that:

α− 1

2(α+ 1)
‖Q‖2L2 |µ̇1 − b(z)| ≤ C

zα+1
(|µ̇2 + b(z)| + |ż2 − µ2 + δ(Γ)| + ‖ǫ‖L2) +

C

z
3α+5

2

(119)

+ C
Ä
|µ̇1|‖ǫ‖H α

2
+ ‖ǫ‖2

H
α
2

ä
.

By similar computations, we also deduce that:

α− 1

2(α+ 1)
‖Q‖2L2 |µ̇2 + b(z)| ≤ C

zα+1
(|µ̇1 − b(z)| + |ż1 − µ1 + β(Γ)|+ ‖ǫ‖L2) +

C

z
3α+5

2

(120)

+ C
Ä
|µ̇1|‖ǫ‖H α

2
+ ‖ǫ‖2

H
α
2

ä
.

Therefore, by adding (119) and (120) we obtain:

2∑

i=1

|µ̇i + (−1)ib(z)| ≤ C

zα+1
(|ż1 − µ1 + β(Γ)|+ |ż2 − µ2 + δ(Γ)|)

+C

Å
1

z
3α+5

2

+

Å
|µ̇1|+ |µ̇2|+

1

z1+α

ã
‖ǫ‖

H
α
2
+ ‖ǫ‖2

H
α
2

ã
. (121)

Let us continue with the second orthogonality condition:

0 =
d

dt

∫
ǫ∂yR1 =

∫ (
−|D|αǫ− ǫ+ (V + ǫ)3 − V 3

)
∂2yR1 −

∫
−→m · −−→MV ∂yR1

+

∫
S∂2yR1 −

∫
T∂yR1 + µ̇1

∫
ǫ∂yΛR1 − ż1

∫
ǫ∂2yR1.
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Since |V | +
∣∣(∂2y + |D|α∂2y)R1

∣∣ ≤ C and using the Sobolev embedding , H
1
6 (R) −֒→ L3(R), we deduce

that: ∣∣∣∣
∫ (

−|D|αǫ− ǫ+ (V + ǫ)3 − V 3
)
∂2yR1

∣∣∣∣ ≤ C
Ä
‖ǫ‖

H
α
2
+ ‖ǫ‖2

H
α
2
+ ‖ǫ‖3

H
α
2

ä
.

By developing −→m · −−→MV and using the facts
∣∣∫ ∂yR1 (∂yR2 + ΛR2)

∣∣ ≤ C
zα+1 and

∫
∂yR1ΛR1 = 0 since

∂yR1 is odd, we get that:
∣∣∣∣
∫

−→m · −−→MV ∂yR1 − (ż1 − µ1 + β(Γ))

∫
(∂yR1)

2

∣∣∣∣ ≤
C

zα+1
(|µ̇2 + b(z)| + |ż2 − µ2 + δ(Γ)|) .

We estimate the last terms by applying Cauchy-Schwarz inequality, (46) and (48). We have that:
∣∣∣∣
∫
S∂2yR1

∣∣∣∣+
∣∣∣∣
∫
T∂yR1

∣∣∣∣+
∣∣∣∣µ̇1
∫
ǫ∂yΛR1

∣∣∣∣+
∣∣∣∣ż1
∫
ǫ∂2yR1

∣∣∣∣ ≤ C

Å
1

z
3α+5

2

+ (|µ̇1|+ |ż1|) ‖ǫ‖L2

ã
.

Gathering these estimates and using ‖ǫ‖
H

α
2
≤ Cκ and the fact |µ̇i|+ |żi| ≤ C (102), we conclude that:

|ż1 − µ1 + β(Γ)|
∫

(∂yQ)2 ≤ C

Å
1

zα+1
|µ̇2 + b(z)| + |ż2 − µ2 + δ(Γ)| + 1

z
3α+5

2

+ ‖ǫ‖
H

α
2

ã
. (122)

By similar arguments, we deduce that:

|ż2 − µ2 + δ(Γ)|
∫

(∂yQ)2 ≤ C

Å
1

zα+1
|µ̇1 − b(z)|+ |ż1 − µ1 + β(Γ)|+ 1

z
3α+5

2

+ ‖ǫ‖
H

α
2

ã
. (123)

Then, by adding (122) and (123), we obtain:

|ż1 − µ1 + β(Γ)| + |ż2 − µ2 + δ(Γ)| ≤C
Å

1

zα+1
(|µ̇1 − b(z)|+ |µ̇2 + b(z)|) + 1

z
3α+5

2

+ ‖ǫ‖
H

α
2

ã
. (124)

Gathering (121) and (124), we obtain (118), and

2∑

i=1

|µ̇i + (−1)ib(z)| ≤C
Å

1

z
3α+5

2

+

Å
|µ̇1|+ |µ̇2|+

1

zα+1

ã
‖ǫ‖

H
α
2
+ ‖ǫ‖2

H
α
2

ã
.

Since |µ̇i| ≤ |µ̇i+(−1)ib(z)|+ b(z), by applying the former inequality and (37), we conclude (117). �

5.3. Monotonicity. We define:

φ(y) =

Å∫ +∞

−∞

ds

〈s〉1+α

ã−1 ∫ +∞

y

ds

〈s〉1+α
, (125)

and

φ1(t, y) :=
1− φ(y)

(1 + µ1(t))2
+

φ(y)

(1 + µ2(t))2
and φ2(t, y) :=

µ1(t)

(1 + µ1(t))2
(1− φ(y)) +

µ2(t)

(1 + µ2(t))2
φ(y).

(126)

Let A > 0, we define the rescaled functions:

φA(y) = φ
( y
A

)
, φ1,A(t, y) := φ1

(
t,
y

A

)
, φ2,A(t, y) := φ2

(
t,
y

A

)
, (127)

the derivatives by:

Φ(y) =
»
|φ′(y)|, Φi(t, y) =

»
|φ′i(t, y)|, Φi,A(t, y) = Φi

(
t,
y

A

)
. (128)

By direct computation, we have:

Φ1(y) =
c

〈y〉 1+α
2

µ
1
2 (2 + µ̄)

1
2

(1 + µ1)(1 + µ2)
and Φ2(y) =

c

〈y〉 1+α
2

µ
1
2 (1− µ1µ2)

1
2

(1 + µ1)(1 + µ2)
. (129)

We also define the functional:

F (t) =

∫ Ç
ǫ|D|αǫ

2
+
ǫ2

2
− (V + ǫ)4

4
+
V 4

4
+ V 3ǫ− Sǫ

å
φ1,A +

ǫ2

2
φ2,A. (130)

We claim the following theorem that will help us to get the estimate (110) on the error ǫ.
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Theorem 24. The following bound on the functional holds:

F (t) ≤ Ct
− 7α+9

2(α+3) . (131)

5.3.1. Preliminary results. To get the monotinicity properties of the modified energy, we need to recall
a result from Lemma 6 and Lemma 7 from [25] and Lemma 3.2 from [12].

Lemma 25. Let α ∈]0, 2[. In the symmetric case, there exists C > 0 such that:
∣∣∣∣
∫

(|D|αu)uΦ2
j,A −

∫ Ä
|D|α2 (uΦj,A)

ä2∣∣∣∣ ≤
C

Aα

∫
u2Φ2

j,A, (132)

and ∣∣∣∣
∫

(|D|αu) ∂xuφj,A + (−1)j+1α− 1

2

∫ Ä
|D|α2 (uΦj,A)

ä2∣∣∣∣ ≤
C

Aα

∫
u2Φ2

j,A, (133)

for any u ∈ S(R), A > 1 and j ∈ {1, · · · , N}.
In the non-symmetric case, there exists C > 0 such that:

∣∣∣∣
∫

((|D|αu) v − (|D|αv) u) Φ2
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A
α
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(134)

and ∣∣∣∣
∫

((|D|αu) ∂xv + (|D|αv) ∂xu)φj,A + (−1)j+1(α− 1)

∫
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A
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Ä
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ä2)
Φ2
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, (135)

for any u, v ∈ S(R), A > 1 and j ∈ {1, · · · , N}.
The estimates (132)-(133) are proved in Lemmas 6 and 7 in [25] for α ∈ [1, 2]. Observe however that

their proofs extend easily to the case α ∈]0, 2[. Note also that while only one side of the inequalities
in (132)-(133) is stated in Lemmas 6 and 7 in [25] , both sides are actually proved.

Lemma 26 ([12], Lemma 3.3). Let 0 ≤ α ≤ 2. For all u ∈ S(R), we have that:
∣∣∣∣
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ä2 −
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1,A
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ä
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1,A. (136)

The following estimates are proved in Appendix C.

Lemma 27. For α ∈]0, 2[, then for all u ∈ S(R) we have that:

∥∥∥∥ [|D|α,Φj,A] u

∥∥∥∥
2
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≤
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(137)

Lemma 28. Let α ∈]0, 2[, then for all u ∈ S(R) there exists C > 0 such that:
∣∣∣∣
∫

|D|α (uΦj,A) ((|D|αu)Φj,A)−
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(|D|αu)2Φ2
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Ä
|D|α2 u

ä2
+ (|D|αu)2

)
Φ2
j,A, (138)

for all u ∈ S(R), A > 1 and j ∈ {1, · · · , N}.
Lemma 29. Let 1 ≤ α ≤ 2. For all u ∈ S(R), we have that:

‖[|D|α, φ1,A]u‖L2 ≤ C

∣∣∣∣
1

(1 + µ1)2
− 1

(1 + µ2)2

∣∣∣∣
1
2

‖uΦ1,A‖H1 .
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Remark 30. Notice that the scaling in A is not coherent with the previous inequality. In the proof in
the appendix, we establish this inequality in H

α
2 (R) and use at the very end the embedding H

α
2 (R) ⊂

H1(R).

Lemma 31. Let 0 ≤ α ≤ 2. For all u ∈ S(R), we have that:

‖[|D|α,
√
φA]u‖L2 + ‖[|D|α,

√
1− φA]u‖L2 ≤





C

Aα
‖u‖L2 , α ∈ (0, 1]

C

A
α
2

‖u‖
H

α
2
, α ∈ (1, 2]

.

5.3.2. Proof of the Theorem 24. In this part, we study the functional F defined in (130), dependent
on the two functions φ1,A and φ2,A. For sake of clearness, we drop the indices A in this part only and
denote those functions by φ1 and φ2. The parameter A will appear explicitly when needed.

We recall the equation satisfied by ǫ:

∂tǫ+ ∂y
Ä
−|D|αǫ− ǫ+ (ǫ+ V )3 − V 3

ä
= −EV .

We differentiate in time the functional F defined in (130), by using (44) we deduce that:

d

dt
F (t) =
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2
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4
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4
+ V 3ǫ− Sǫ

å
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∫
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2
∂tφ2

=I1 + · · ·+ I6.

Estimate on I1: Using integration by parts and the definition of EV , we deduce that:
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1
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)2
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1

= I1,1 + · · · + I1,5.

We start with I1,1. By direct computations, we get that:

1

2

∫
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By using the estimate (132), we obtain that:
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C

Aα

∫
ǫ2Φ2

1.

Since V 3 − (V + ǫ)3 = −3V 2ǫ− 3V ǫ2 − ǫ3, by applying Young’s inequality, the bound on V (53) and
Cauchy-Schwarz’ inequality, we have that:

|I1,1,2| ≤
C
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∫
(|D|αǫ)2 Φ2
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∫ (
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)
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We recall that 2µ1 = µ + µ̄, 2µ2 = µ̄− µ and α > 1. Therefore, using the bootstrap estimates (110),
(112) and (114) and (54), we conclude for I1,1 that:
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Let us estimate I1,2. By using the definition of −→m · −−→MV in (45), we obtain that:
∫
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Thanks to the identity (V + ǫ) − V 3 = ǫ3 + 3ǫ2V + 3ǫV 2, the fact α < 2, and by Cauchy-Schwarz’
inequality, we get that:
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Moreover, we recall LΛQ = −Q and since ǫ ⊥ Ri, we deduce that:
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Applying Cauchy-Schwarz’ inequality, and Sobolev embedding H
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3 (R) −֒→ L6(R) , we have that:
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Now, let us estimate J2. We focus on the first term of J2 with ∂yR1, the second is similar. We
decompose this term into:

(ż1 − µ1 + β(Γ))
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By applying the Cauchy-Schwarz’ inequality and Sobolev embedding H
1
3 (R) −֒→ L6(R), we obtain

that:
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Since ǫ ⊥ ∂yRi and LQ′ = 0, we deduce that:

J2,2 = 0.

Moreover, by Cauchy-Schwarz inequality and Sobolev embedding , H
1
6 (R) −֒→ L3(R) we have that:
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By Cauchy-Schwarz’ inequality, we have that:
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ä
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Gathering those identities, and using the estimate on T (48), the estimates on the solitary waves
(49), (50), (54), the bootstrap estimates (110), (112), (114) and the equation on µ̇i (117) and żi (118),
we get that:

|I1,2| ≤ Ct
−

3(3α+5)
2(α+3) .

Let us estimate I1,3. By Cauchy-Schwarz inequality, the estimate on S (46) and the bootstrap estimate
on ǫ (110), we obtain that:
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Using the definition of −→m · −−→MV , the estimate on µ̇i (117), żi (118) and the estimate on S (46), we
deduce that:
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Finally, by the estimate on S (46):
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Conclusion:
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Estimate on I2: From the equation of ǫ, since φ1 is decreasing and integration by parts, we deduce
that:
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Let us estimate I2,2 and I2,3. Using the commutator estimates in the non-symmetric case (134), (135)
with v = |D|αǫ, the commutator estimates in the symmetric case (132), (133) , and Lemma 28 we get
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From Cauchy-Schwarz inequality and Lemma 29, we get that:
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Therefore, by using the estimates on µ̇i (117), on żi (118), the estimates on S (46), T (48), the
interaction between ∂yRi or ΛRi and Φ (50) and the bootstrap estimates (110)-(114), we have that:

|I2,4| ≤ t
−

3(3α+5)
2(α+3) .

Now, we estimate I2,5. Note that:

(V + ǫ)3 − V 3 = 3V 2ǫ+ 3V ǫ2 + ǫ3.
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Then, we decompose I2,5 as:
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Let v ∈ {3ǫV 2, 3ǫ2V, ǫ3} . Using integration by parts, the commutator estimates in the non-symmetric
case (134) and (135), we get that:
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Moreover, from Young’s inequality, we obtain that:
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By using Young’s inequality and (136), we deduce that:
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Moreover, applying the estimate (54), (110) and (111), we get that:
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(139)

Estimate on I3: We decompose I3 as:
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By adding 0 and integrating by part, we deduce that:
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Using the same argument, we deduce that:
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Using the definition of V and φ2:

|I3,1,3| ≤ C‖ǫ‖2L2 (|µ1|+ |µ2|) ‖∂y (P2 − P1 + bWχ) ‖L∞

and

|I3,1,4| ≤ C‖ǫ‖2L2 ((|µ̇1|+ |µ̇2|) + (|µ1|+ |µ2|) ‖∂t (P2 − P1 + bWχ) ‖L∞) .

Gathering these identities, and using the bootstrap hypothesis, the time estimate of the different
terms and (51) and (52), we conclude that:

|I3,1| ≤ Ct
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For I3,2, using integration by parts and Sobolev embedding, and the bootstrap hypothesis, we
deduce that:
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H
α
2
‖∂tV ‖L∞ + (|µ1|+ |µ2|)(‖V ‖L∞ + ‖∂yV ‖L∞)‖ǫ‖3

H
α
2
+ (|µ1|+ |µ2|)‖ǫ‖4

H
α
2

ä

≤ Ct
− 3(3α+5)

2(α+3) .

Using integration by part, the commutator estimates in the symmetric case (132) and (133), and since
∂yφ2 < 0, we obtain that:

I3,3 ≥ −α+ 1

2

∫ Ä
|D|α2 (ǫΦ2)

ä2 −
Å
1

2
+

C

Aα

ã ∫
ǫ2Φ2

2.

Moreover with (129), we have:

Φ2
2 =

∣∣∣∣
µ1µ2 − 1

2 + µ1 + µ2

∣∣∣∣Φ2
1.

Then, we get that:

I3,3 ≥ −α+ 1

2

1− µ1µ2

2 + µ1 + µ2

∫ Ä
|D|α2 (ǫΦ1)

ä2 −
Å
1

2
+

C

Aα

ã
1− µ1µ2

2 + µ1 + µ2

∫
ǫ2Φ2

1.

Since 1−µ1µ2

2+µ1+µ2
≤ 3

4 by (112) and (114), we deduce that:

I3,3 ≥ −3(α+ 1)

8

∫ Ä
|D|α2 (ǫΦ1)

ä2 −
Å
3

8
+

C

Aα

ã ∫
ǫ2Φ2

1.

Let us estimate the last term of I3. Using the definition of EV and Cauchy-Schwarz inequality, we
have that:

|I3,4| ≤ C(|µ1|+ |µ2|)‖ǫ‖L2 (‖∂yS‖L2 + ‖T‖L2) +

∣∣∣∣
∫

−→m · −−→MV ǫφ2

∣∣∣∣ .

Using the definition of −→m · −−→MV and the orthogonality condition ǫ ⊥ ∂yRi, we deduce that:

∣∣∣∣
∫

−→m · −−→MV ǫφ2

∣∣∣∣ ≤ C‖ǫ‖L2(|µ1|+ |µ2|)
(

2∑

i=1

|(−1)iµ̇i − b(z)| + |żi − µi| ‖∂yRi(φ− δ2,i)‖L2

)
.

Therefore with (49), we get that:

|I3,4| ≤ Ct
−

3(3α+5)
2(α+3) .

Conclusion:

I3 ≥ −3(α+ 1)

8

∫ Ä
|D|α2 (ǫΦ1)

ä2 −
Å
3

8
+

C

Aα

ã ∫
ǫ2Φ2

1 − Ct
−

3(3α+5)
2(α+3) .

Estimate on I4: Applying Cauchy-Schwarz inequality and the estimate on the time derivative of S
(47), we obtain that:

|I4| ≤ C‖∂tS‖L2‖ǫ‖L2 ≤ Ct
−

3(3α+5)
2(α+3) .

Estimate on I5: First, note by direct computation, we have:

|∂tφ1| =
∣∣∣∣

2µ̇1
(1 + µ1)3

(1− φ) +
2µ̇2

(1 + µ2)3
φ

∣∣∣∣ ≤ C (|µ̇1|+ |µ̇2|) .
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Then, by the Sobolev embedding H
1
3 (R) −֒→ L6(R) and H

1
4 (R) −֒→ L4(R), we deduce that:

∣∣∣∣
∫ Ç

ǫ2

2
− (V + ǫ)4

4
+
V 4

4
+ V 3ǫ

å
∂tφ1

∣∣∣∣ ≤ C (|µ̇1|+ |µ̇2|)
Ä
‖ǫ‖2

H
α
2
+ ‖ǫ‖3

H
α
2
+ ‖ǫ‖4

H
α
2

ä
.

Moreover, by Cauchy-Schwarz inequality, we get:
∣∣∣∣
∫
Sǫ∂tφ1

∣∣∣∣ ≤ C (|µ̇1|+ |µ̇2|) ‖S‖L2‖ǫ‖L2 .

Now, let us estimate the first term in I5. By direct computations, we have that:
∫
ǫ|D|αǫ∂tφ1 = − 2µ̇1

(1 + µ1)3

Å∫
D

α
2 ǫ[|D|α2 , (1− φ)]ǫ+

∫ Ä
|D|α2 ǫ

ä2
(1− φ)

ã

− 2µ̇2
(1 + µ2)3

Å∫
D

α
2 ǫ[|D|α2 , φ]ǫ+

∫ Ä
|D|α2 ǫ

ä2
φ

ã
.

Using Lemma 31, we deduce that:
∣∣∣∣
∫
ǫ|D|αǫ∂tφ1

∣∣∣∣ ≤ C(|µ̇1|+ |µ̇2|)‖ǫ‖2
H

α
2
.

Conclusion:

|I5| ≤ C(|µ̇1|+ |µ̇2|)
Ä
‖S‖L2‖ǫ‖

H
α
2
+ ‖ǫ‖2

H
α
2
+ ‖ǫ‖3

H
α
2
+ ‖ǫ‖4

H
α
2

ä
≤ Ct

− 3(3α+5)
2(α+3) .

Estimate on I6: By definition of φ2, we obtain that:

|∂tφ2| ≤ C (|µ̇1|+ |µ̇2|) .

then, by using the estimate on µ̇i (117), the bootstrap estimates (110), (111), we have that:

|I6| ≤ Ct
−

3(3α+5)
2(α+3) .

Gathering the estimates on I1, ..., I6, we obtain that:

d

dt
F (t) ≥α+ 1

2

∫
(|D|αǫ)2Φ2

1 +

Å
1 +

α

2
− 3(α + 1)

8

ã ∫
(|D|α2 (ǫΦ1))

2 +

Å
1

2
− 3

8

ã ∫
ǫ2Φ2

1

− C

A
α
2

∫
(ǫ2 + (|D|α2 ǫ)2 + (|D|αǫ)2)Φ2

1 − CAαt
− 3(3α+5)

2(α+3) .

To compare the quantities
∫
(|D|αǫ)2 Φ2

1 and
∫
(|D|αǫΦ1)

2 we use (136), thus we have:

d

dt
F (t) ≥α+ 1

2

∫
(|D|αǫ)2 Φ2

1 +

Å
1 +

α

2
− 3(α+ 1)

8

ã∫
(|D|α2 ǫ)2Φ2

1 +

Å
1

2
− 3

8

ã∫
ǫ2Φ2

1

− C

A
α
2

∫
(ǫ2 + (|D|α2 ǫ)2 + (|D|αǫ)2)Φ2

1 − CAαt
−

3(3α+5)
2(α+3) .

By taking A > A1 large enough, T0 large enough, we deduce that:

d

dt
F (t) ≥ −CAαt

−
3(3α+5)
2(α+3)

However, the choice of A is independent of parameters. We set A > max(A1, A2), with A2 defined
in Claim 39 for the coercivity of the localized linearized operator. For now, A is a constant. Then,
integrating in time from t to Sn we conclude that:

F (t) ≤ Ct
− 7α+9

2(α+3) ,

with the constant C independent of the different parameters.
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5.4. Topological argument. We argue by contradiction. Let suppose for all zinn in (108), we have
t∗(zinn ) > T0.

Suppose first that one of the bootstrap estimates (110), (112), (113) or (114) is saturated, in the
sense that the equality is achieved.

1) Closing bootstrap for ǫ. First we start to show we can improve (110). We recall that the notations
φ, φ1 and φ2 holds respectively for φA, φ1,A and φ2,A. Using the Cauchy-Schwarz inequality, (46),
(110) and the definition of φ1 , we get that:

F (t) ≥− Ct
3(3α+5)
2(α+3) +

1

2

∫ Ä
ǫ|D|αǫ+ ǫ2 − 3R̃2

1ǫ
2
ä 1− φ

(1 + µ1)2
+

1

2

∫ Ä
ǫ|D|αǫ+ ǫ2 − 3R̃2

2ǫ
2
ä φ

(1 + µ2)2

+

∫
ǫ2

2
φ2 +

∫ Ç
V 4

4
+ V 3ǫ− (V + ǫ)4

4

å
φ1 +

3

2
R̃2

1ǫ
2 1− φ

(1 + µ1)2
+

3

2
R̃2

2ǫ
2 φ

(1 + µ2)2
. (140)

First of all, we estimate the last term on the right hand side. We get that, by straight forward
computations:

V 4

4
+ V 3ǫ− (V + ǫ)4

4
= −3

2
V 2ǫ2 − ǫ3V − ǫ4

4
.

Using the Sobolev embedding and the bootstrap estimates on ǫ (110), we deduce that:
∣∣∣∣
∫

(ǫ3V +
1

4
ǫ4)φ1

∣∣∣∣ ≤ Ct
− 3(3α+5)

2(α+3) .

Moreover, we have that:

R̃2
1

1− φ

(1 + µ1)2
+ R̃2

2

φ

(1 + µ2)2
− V 2φ1 =

Ä
R̃2

1 −R2
1

ä
φ1 +

Ä
R̃2

2 −R2
2

ä
φ1 − R̃2

1

φ

(1 + µ2)2
− R̃2

2

1− φ

(1 + µ1)2

+ 2R1R2φ1 − 2(−R1 +R2)(−P1 + P2 + bW )φ1 − (−P1 + P2 + bW )2φ1

Therefore, by applying the bootstrap estimate on ǫ (110), the estimate on the profile Pi (73), the
estimate on the solitary waves (49), the estimate on ΛQ (24) and finally the bootstrap estimate on z
(111), we get that:

∣∣∣∣∣

∫ Ç
V 4

4
+ V 3ǫ− (V + ǫ)4

4

å
φ1 +

3

2
R̃2

1ǫ
2 1− φ

(1 + µ1)2
+

3

2
R̃2

2ǫ
2 φ

(1 + µ2)2

∣∣∣∣∣ ≤ Ct
− 4α+6

α+3 .

Moreover, from the bootstrap estimates on µ (112) and µ̄ (114) we have that:
∣∣∣∣
∫
ǫ2φ2

∣∣∣∣ ≤ Ct
−α+1

α+3 ‖ǫ‖2L2 .

Now, we estimate the two first integrals in (140). We claim the following:
∫ Ä

ǫ|D|αǫ+ ǫ2 − 3R̃2
i ǫ

2
ä 1− φ

(1 + µ1)2
+
Ä
ǫ|D|αǫ+ ǫ2 − 3R̃2

i ǫ
2
ä φ

(1 + µ2)2
≥ κ‖ǫ‖2

H
α
2
, i = 1, 2. (141)

The proof of this inequality is given in Claim 39 in the Appendix D. The proof is based on the
coercivity of the linearized operator L. By combining the former inequalities and using Theorem 5.3,
we deduce that:

κ‖ǫ‖2
H

α
2
− Ct

− 4α+6
α+3 − Ct

−α+1
α+3‖ǫ‖2L2 ≤ F (t) ≤ Ct

− 7α+9
2(α+3) .

Therefore for T0 large enough, we conclude that:

‖ǫ‖2
H

α
2
≤ Ct

− 7α+9
2(α+3) .

Therefore, we strictly improved the bound (110) on ǫ. This concludes the proof for ǫ.
2) Closing bootstrap for µ,µ̄ and z̄. Now, we improve the bound on µ (112). We recall µ = µ1 − µ2

and z = z1 − z2. Combining the bootstrap estimate on ǫ (110) and z (111) on the right hand side of
the estimate of µ̇i in (117) we deduce that:

∣∣∣∣µ̇− 2b1
zα+2

∣∣∣∣ ≤ Ct−
3α+5
α+3 .
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Because b1 < 0 and by the equivalent of z in (115), we have µ̇ < 0. By the initial condition µ(Sn) > 0,
see (107), µ is positive on (t∗, Sn].

Then, multiplying by µ, using the estimate on żi (118) and the bootstrap on z (111) and µ (112),
we obtain that:

∣∣∣∣∣∣∣

˙︷︸︸︷
µ2

2
+

2b1
α+ 1

˙︷ ︸︸ ︷
1

zα+1

∣∣∣∣∣∣∣
≤ Ct−

4α+6
α+3 .

By the choice of the initial data, we have that:

µ2(Sn) = − 4b1
α+ 1

1

zα+1(Sn)
.

Therefore, by integrating from t to Sn, we get that:
∣∣∣∣
µ2

2
+

2b1
α+ 1

1

zα+1

∣∣∣∣ ≤ Ct
−

3(α+1)
α+3 . (142)

With the bootstrap hypothesis on z (111), we deduce that:
∣∣∣∣∣µ−

 
−4b1
α+ 1

t
−α+1

α+3

a
α+1
2

∣∣∣∣∣ ≤ C1t
− 5α+11

4(α+3) ,

with the constant C1 > 0.
Let us compute the bound on µ̄. From the estimate on µ̇i (117) and the bootstrap estimate on ǫ

(110) and z (111), we obtain that:

| ˙̄µ| ≤ Ct
− 3α+5

α+3 .

By the choice of the initial data, we have that µ1(Sn) = −µ2(Sn). Thus, by integrating we deduce
that:

|µ̄| ≤ C2t
− 2(α+1)

α+3 (143)

with the constant C2 > 0.

Let us get a bound on z̄. Using the fact that |β(Γ)| + |δ(Γ)| ≤ 2(β0+δ0)
zα+1 , the bound obtain for µ̄

(143) and the estimate on żi (118), we deduce that:

| ˙̄z| ≤| ˙̄z − µ̄+ β(Γ) + δ(Γ)| + |µ̄|+ |β(Γ) + δ(Γ)| leqC3t
− 3α+5

2(α+3) + (2(β0 + δ0) + C2)t
− 2(α+1)

α+3

≤ 2C3t
− 3α+5

2(α+3) .

Therefore by integrating, we conclude that:

|z̄| ≤ 2C3(2(α+ 3))

α− 1
t
− α−1

2(α+3)

Hence, by taking the constant C∗ > max

Å
C1, C2,

2C3(2(α+ 3))

α− 1

ã
, we can close the bootstrap esti-

mate on µ, µ̄ and z̄. Then, none of the previous inequalities on µ̇, ˙̄µ and ˙̄z can saturate independently
of the initial condition zinn .

3) Closing bootstrap for z. Subsequently, the inequality (111) saturates for any zinn . We now prove
that this equality is the source of a contradiction on t∗(zinn ).

First, we remark zinn =

Å
a

α+3
2 Sn + λnS

1
2
+r

n

ã 2
α+3

, for some λn ∈ [−1, 1]. Therefore, we can write

t∗(zinn ) = t∗(λn). We set:

Φ : [−1, 1] −→ {−1, 1} (144)

λ 7−→
Ä
z

α+3
2 (t∗(λ)) − a

α+3
2 t∗(λ)

ä
(t∗(λ))−

1
2
−r ,



34 A.EYCHENNE AND F.VALET

and

f : R −→ R
+ (145)

s 7−→
Ä
z

α+3
2 (s)− a

α+3
2 s
ä2
s−1−2r.

By assumption, we have for any λ ∈ [−1, 1], t∗(λ) > T0 and thus:

|z α+3
2 (t∗(λ))− a

α+3
2 t∗(λ)| = (t∗(λ))

1
2
+r. (146)

We claim:

Claim 32. (1) Transversality condition: Let s0 > T0 such that (146) is verified at s0, then:

f is decreasing on a neighbourhood of s0. (147)

(2) Continuity: Φ ∈ C0([−1, 1] : {−1, 1}).

Let us assume the claim and finish the proof. The transversality condition (147) implies that
t∗(±1) = Sn. Moreover, Φ(±1) = ±1. This contradicts (2) of the former claim. Now, we prove the
claim. First, we prove the transversality condition (147). By direct computations, we have that:

f ′(s) = 2

Ç
˙̄

z
α+3
2 (s)− a

α+3
2

åÄ
z

α+3
2 (s)− a

α+3
2 s
ä
s−1−2r − (1 + 2r)

Ä
z

α+3
2 (s)− a

α+3
2 s
ä2
s−2−2r.

From the estimate obtain on µ2 (142) and the estimate on żi (118), we obtain that:

∣∣∣∣∣
˙̄

z
α+3
2 (t)− α+ 3

2

 
−4b1
α+ 1

∣∣∣∣∣ ≤ Ct
−α+1

α+3 . (148)

Therefore, by using (146) and (148), and since a
α+3
2 = α+3

2

»
−4b1
α+1 , we deduce that:

f ′(s0) < Cs−1−3r
0 − (1 + 2r) s−1

0 .

Since r > 0 and for T0 large enough, we conclude that:

f ′(s0) < 0.

To prove the second part of the former claim, it is enough to show that λ 7→ t∗(λ) is continuous.
Let us fix λ ∈ [−1, 1]. From the transversality condition, there exists ǫλ > 0 such that ∀ǫ ∈ (0, ǫλ),
∃δ > 0 and the two following conditions are verified: f(t∗(λ)− ǫ) > 1+ δ, and for all t ∈ [t∗(λ)+ ǫ, Sn]
(possibly empty), f(t) < 1− δ.

Note that the function is well defined, since the function z is globally well defined, see Remark (21).
Then by the continuity of the flow, there exists η > 0 such that for all |λ − λ̄| < η, with λ̄ ∈ [−1, 1],
the corresponding f̄ verifies |f̄(s)− f(s)| < δ

2 for s ∈ [t∗(λ)− ǫ, Sn]. Therefore, we obtain that for all
s ∈ [t∗(λ) + ǫ, Sn]:

f̄(s) < |f̄(s)− f(s)|+ f(s) < 1− δ

2
.

Thus, t∗(λ̄) < t∗(λ) + ǫ. Furthermore,

f̄(t∗(λ)− ǫ) > f(t∗(λ)− ǫ)− |f̄(t∗(λ)− ǫ)− f(t∗(λ)− ǫ)| > 1 +
δ

2
.

In other words, t∗(λ)− ǫ < t∗(λ̄), and then Φ is continuous.
This contradicts the fact t∗(λ) > T0 and implies the existence of zinn such that (110)-(114) are true

for all t ∈ [T0, Sn].
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5.5. Conclusion. In this section we have proved that there exists (zinn )
α+3
2 ∈ [a

α+3
2 S

1
2
+r

n −Sn, a
α+3
2 Sn+

S
1
2
+r

n ] such that the bootstrap estimates (110)-(114) are true for all t ∈ [T0, Sn]. Let us show this
implies Theorem 3. From (110), we obtain that:
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2
≤ ‖ǫn(T0, ·)‖H α

2
+ ‖V (Γn(T0), ·)‖H α

2
≤ C.

Therefore, by Banach-Alaoglu, there exists w0 ∈ H
α
2 (R) and a sub-sequence also denoted by (vn)n

such that:

vn(T0)⇀ w0.

Thus, we denote by w the solution of (5) such that w(T0) = w0. Let t > T0. From the weak continuity
of the flow of Theorem 35, we have that:∥∥∥w(t, ·) +Q
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Then, by using (110)-(113), we conclude that:
∥∥∥w(t, ·) +Q

(
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)
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Appendix A. Local well-posedness

We recall the results of well-posedness of (5).

Theorem 33 ([18], Theorem 1.5). Let α ∈ (1, 2), and u0 ∈ Hs(R), with s ≥ 1
2 − α

4 . There exists a
time T = T (‖u0‖

H
1
2−α

4 (R)
) > 0, and a unique solution u ∈ C([−T, T ],Hs(R)) of (5). Furthermore,

the flow u0 7→ u is locally Lipschitz continuous from Hs(R) to C([−T, T ],Hs(R)).

Because the equation is subcritical, we obtain as a corollary the global well-posedness.

Corollary 34 ([18], Corollary 1.6). For any initial condition u0 ∈ H
α
2 (R), there exists a unique global

solution of 5 in C(R,H α
2 (R)).

We continue with another property of the flow, which is the weak-continuity in H
α
2 (R).

Theorem 35 (Weak continuity of the flow). Let α ∈ (1, 2). Suppose that u0,n ⇀ u0 ∈ H
α
2 (R).

We consider un solutions of (5) corresponding to the initial data un(0) = un,0 and satisfying un ∈
C([0, T ] : H

α
2 (R)) for any T > 0. Then, un(t)⇀ u(t) in H

α
2 (R), for all t ≥ 0.

The proof of the weak continuity of the flow relies on the well-posedness result given in the Corollary
34. We refer to [12] Appendix A, [17] for a proof of this result.

Appendix B. Justification of the definition of S0

First, we recall some well-known results on pseudo-differential operators (see [2], or [21] chapter
18). Let D = −i∂x. We define the symbolic class Sm,q by

Sm,q :=
¶
a ∈ C∞(Rx × Rξ); ∀k, β ∈ N,∃Ck,β > 0 such that |∂kx∂βξ a(x, ξ)| ≤ Ck,β〈x〉q−k〈ξ〉m−β

©
.

For all u in the Schwartz space S(R), we set the operator associated to the symbol a(x, ξ) ∈ Sm,q by

a(x,D)u :=
1

2π

∫
eixξa(x, ξ)F(u)(ξ)dξ.

We state the three following results

(1) Let a ∈ Sm,q, there exists C > 0, such that for all u ∈ S(R)
‖a(x,D)u‖L2 ≤ C‖〈x〉q〈D〉mu‖L2 . (149)
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(2) Let a ∈ Sm,q and b ∈ Sm′,q′ , then there exists c ∈ Sm+m′,q+q′ such that

a(x,D)b(x,D) = c(x,D). (150)

(3) If a ∈ Sm,q and b ∈ Sm′,q′ are two operators, we define the commutator by [a(xD), b(x,D)] :=

a(x,D)b(x,D) − b(x,D)a(x,D). Moreover there exists c ∈ Sm+m′−1,q+q′−1 such that

[a(x,D), b(x,D)] = c(x,D). (151)

(4) Let a ∈ Sm,q, we have the following development for the adjoint a∗ of a. Let k ∈ N, then

a∗(x, ξ) =
∑

β≤k

1

β!
∂
β
ξD

β
x ā(x, ξ) +Rk(x, ξ) (152)

with ∂βξD
β
x ā ∈ Sm−β,q−β and Rk ∈ Sm−β−1,q−β−1. Moreover the rest Rk is given by

Rk(x, ξ) =
1

2π

∫ 1

0
(1− t)2k+1dt

∫
e−iyη

∑

β+γ=2k+2

2k + 2

β!γ!
∂βy ∂

γ
η ā(x− ty, ξ − tη)yβηβdydη. (153)

As a consequence of (150), 〈D〉m〈x〉q〈D〉−m ∈ S0,q. Therefore, by (149), we have

‖〈D〉m〈x〉qu‖L2 = ‖〈D〉m〈x〉q〈D〉−m〈D〉mu‖L2

≤ C2‖〈x〉q〈D〉mu‖L2 ,

for C2 > 0. By the same computations with 〈x〉q instead of 〈D〉m, there exists C1 > 0 such that

C1‖〈x〉q〈D〉mu‖L2 ≤ ‖〈D〉m〈x〉qu‖L2 .

Gathering these two estimates, we conclude that

C1‖〈x〉q〈D〉mu‖L2 ≤ ‖〈D〉m〈x〉qu‖L2 ≤ C2‖〈x〉q〈D〉mu‖L2 . (154)

We recall also the Schur’s test.

Theorem 36 (Schur’s test [20], Theorem 5.2). Let p, q be two non-negative measurable functions. If
there exists α, β > 0 such that

(1)

∫

Y

|K(x, y)|q(y)dy ≤ αp(x) a.e. x ∈ X.

(2)

∫

X

|K(x, y)|p(x)dx ≤ βq(y) a.e. y ∈ Y .

Then Tf :=

∫

Y

K(x, y)f(y)dy is a bounded operator on L2(R).

We recall two other lemmas useful for the rest of the appendix. The definition of φ is given in (125).

Lemma 37 ([25] Claim 5). There exists C > 0 such that

|φ(x)− φ(y)| ≤ C
|x− y|

(〈x〉〈y〉)
α+1
2

+ C
|x− y|2

(〈x〉+ 〈y〉)α+2 if |x− y| ≤ 1

2
(〈x〉+ 〈y〉) ,

|φ(x)− φ(y)| ≤ C if |x− y| ≥ 1

2
(〈x〉+ 〈y〉) .

Lemma 38 ([25], Lemma A.2). Let p be a homogeneous function of degree β > −1. Let χ ∈ C∞
0 (R)

such that 0 ≤ χ ≤ 1, χ(ξ) = 1 if |ξ| < 1 and χ(ξ) = 0 if |ξ| > 2. Let

k(x) =
1

2π

∫
eixξp(ξ)χ(ξ)dξ.

Then for all q ∈ N, there exists Cq > 0 such that, for all x ∈ R,

|∂qxk(x)| ≤
Cq

〈x〉β+q+1
. (155)

Now, we can start the proof of the justification of the definition of S0.
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Proof. We recall the definition of ΛQ, and estimate on Q from [15]:

ΛQ =
α

2(α+ 1)
Q+

1

α+ 1
x∂xQ, |Q|+ |x∂xQ| ≤ 1

1 + |x|1+α
.

Since ΛQ ∈ L2(R), we can define by the Fourier transform (1 + |D|α)−1ΛQ ∈ Hα(R):

∥∥(1 + |D|α)−1ΛQ
∥∥2
Hα =

∥∥∥∥∥
(1 + |ξ|2)α

2

1 + |ξ|α Λ̂Q

∥∥∥∥∥

2

L2

. ‖ΛQ‖L2 <∞.

The integral of (1 + |D|α)−1ΛQ on a finite interval is well-defined since it is in L2(R). However, it is
not clear that the integral over an infinite interval is finite. We use the pseudo-differential theory to
prove that the limit is finite. Let us define χ, a cut-off function equal to 1 in a neighbourhood of 0,
with compact support. Let I be a compact interval. By the Cauchy-Schwarz inequality :∫

I

∣∣∣(1 + |D|α)−1ΛQ
∣∣∣ ≤

∫

I

∣∣∣(1− χ(D)) (1 + |D|α)−1ΛQ
∣∣∣+
∫

I

∣∣∣χ(D) (1 + |D|α)−1ΛQ
∣∣∣

≤ C
∥∥∥〈x〉 3

4 (1− χ(D)) (1 + |D|α)−1 ΛQ
∥∥∥
L2(I)

+ C
∥∥∥〈x〉 3

4χ(D) (1 + |D|α)−1 ΛQ
∥∥∥
L2(I)

= I1 + I2.
Note that the previous constant can be chosen independently of I. We have from (151) that the

symbol 〈x〉 3
4 (1− χ(ξ))(1 + |ξ|α)−1 belongs to S−α, 3

4 ⊂ S0, 3
4 . Thus, since 〈x〉 3

4ΛQ ∈ L2(R):

I1 . ‖〈x〉 3
4ΛQ‖L2(R) <∞.

We can not deal with the integral I2 with symbols only, because χ(ξ)(1 + |ξ|α)−1 is not smooth
around 0. We use the commutator to bring the decay in x close to ΛQ (notice the integral is over R):

I2
2 .

∫

R

Äî
〈x〉 3

4 , χ(D)(1 + |D|α)−1
ó
ΛQ
ä2

+

∫

R

Ä
χ(D)(1 + |D|α)−1〈x〉 3

4ΛQ
ä2
.

By the Plancherel formula, the second term can be bounded by
∥∥∥〈x〉 3

4ΛQ
∥∥∥
2

L2
< ∞. The first term

needs to develop the commutator. First, let us define the kernel k satisfying:

χ(D)(1 + |D|α)−1u(x) =
1

2π

∫
eiξx

χ(ξ)

1 + |ξ|α û(ξ)dξ = k ⋆ u(x), so k̂(ξ) =
χ(ξ)

1 + |ξ|α .

The kernel k is well-defined as the inverse Fourier transform of a function in L2. We thus get:
î
〈x〉 3

4 , χ(D)(1 + |D|α)−1
ó
u = 〈x〉 3

4 k ⋆ u(x)− k ⋆
Ä
〈x〉 3

4u
ä
(x)

=

∫
k(x− y)

Ä
〈x〉 3

4 − 〈y〉 3
4

ä
u(y)dy.

By Lemma 36 and the symmetry of k, it is enough to prove that y 7→ k(x− y)
Ä
〈x〉 3

4 − 〈y〉 3
4

ä
∈ L1(R).

First, we have to estimate k. By integrating by parts twice, we deduce that :

1

1 + x2
(1− ∂2ξ )e

ixξ = eixξ and |k(x)| =
∣∣∣∣
1

2π

∫
eixξ

χ(ξ)

1 + |ξ|α dξ
∣∣∣∣ ≤

Cα

〈x〉2 . (156)

Let A1 := {y ∈ R : |x − y| ≤ 1
2 (〈x〉+ 〈y〉)}, and A2 := {y ∈ R : |x − y| > 1

2 (〈x〉+ 〈y〉)}. Notice the
following equivalences :

|x− y| ≤ 1

2
(〈x〉+ 〈y〉) ⇒ 〈x〉 ∼ 〈y〉, (157)

and

|x− y| > 1

2
(〈x〉+ 〈y〉) ⇒ 〈x− y〉 ∼ |x− y| ∼ 〈x〉+ 〈y〉. (158)

Then, from (156) and (158), we deduce that
∣∣∣∣
∫

A2

k(x− y)
Ä
〈x〉 3

4 − 〈y〉 3
4

ä
dy

∣∣∣∣ ≤
∫

A2

〈x〉 3
4 + 〈y〉 3

4

(〈x〉+ 〈y〉)
3
4

1

〈x− y〉 5
4

dy ≤ C. (159)
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Moreover by (157), we obtain that A1 ⊂ [−c2|x|,−c1|x|] ∪ [c1|x|, c2|x|], for some 0 < c1 < c2 < +∞
independent of x. Moreover, by the mean value theorem and ln(x+ 〈x〉)′ = 1

〈x〉 , we get that
∣∣∣∣
∫

A1

k(x− y)
Ä
〈x〉 3

4 − 〈y〉 3
4

ä
dy

∣∣∣∣ ≤ C〈x〉− 1
4

∫

A1

1

〈x− y〉dy ≤ C〈x〉− 1
4 ln(C(|x|+ 〈x〉)) ≤ C. (160)

Gathering (159) and (160), we conclude that k defines a bounded operator on L2(R). It implies that
I2 is bounded, and thus

∫
I
|(1 + |D|α)ΛQ| is bounded independently of I. This achieves the proof of

the well-posedness of S0, and that S0 has a finite limit at −∞. �

Appendix C. Proof of the preliminary results

Proof of Lemma 27. Let χ be a smooth cut-off function supported around 0. To estimate this commu-
tator we split the norm in low and high frequency. For the low frequency we use the Schur’s Lemma
(Lemma 36), and the pseudo-differential calculus for the high frequency. To get an explicit dependence
in A we prove the estimate

∥∥∥∥ [|D|α,Φ]u
∥∥∥∥
2

L2

≤
{
C
∫
u2Φ2, if α ∈]0, 1]

C
∫ (

u2 +
Ä
|D|α2 u

ä2)
Φ2, if α ∈]1, 2]

Then, we conclude Lemma 27 by changing the variable x = x′

A
and multiplying by

∣∣∣ 1
(1+µ1)2

− 1
(1+µ2)2

∣∣∣.
Let us start the proof. By the Schur’s lemma (Lemma 36), we deduce that

∥∥∥∥ [χ(D))|D|α,Φ]u
∥∥∥∥
2

L2

≤ C

∫
u2Φ2

From pseudo-differential calculus, and 〈x〉α
2 ∼ 1 + x

α
2 , we get that

∥∥∥∥ [(1− χ(D))|D|α,Φ]u
∥∥∥∥
2

L2

≤





C

∫
u2Φ2, if α ∈]0, 1]

C

∫
u2Φ2 + C

∫ Ä
|D|α2 (uΦ)

ä2
, if α ∈]1, 2]

.

Again, by applying the pseudo-differential calculus, we deduce that
∫ Ä

|D|α2 (uΦ)
ä2 ≤ C

Å∫ Ä
χ(D)|D|α2 (uΦ)

ä2
+

∫ Ä
(1− χ(D))|D|α2 (uΦ)

ä2ã

≤ C

Å∫
u2Φ2 +

∫
(|D|α2 u)2Φ2

ã
.

Then, by changing the variable x = x′

A
and multiplying by

∣∣∣∣ 1
(1+µ1)2

− 1
(1+µ2)2

∣∣∣∣, we conclude the proof

of Lemma 27. �

Proof of Lemma 28. By direct computations and Young’s inequality, we have that∫
|D|α (uΦj,A) ((|D|αu)Φj,A)−

∫
(|D|αu)2 Φ2

j,A =

∫
|D|αuΦ1,A[|D|α,Φ1,A]u

≤ C

A
α
2

∫
(|D|αu)2 Φ2

1,A + CA
α
2 ‖[|D|α,Φ1,A]u‖2L2 .

(161)

and by the change of variable x′ = x
A

and v(x′) = u(x):

‖[|D|α,Φ1,A]u‖2L2 =
1

A2α−1
‖[|D|α,Φ1]v‖2L2 .

We write

‖[|D|α,Φ1]v‖2L2 ≤ C
Ä
‖[|D|αχ(D),Φ1]v‖2L2 + ‖[|D|α(1− χ(D)),Φ1]v‖2L2

ä
.

Using Theorem 36, we deduce that

‖[|D|αχ(D),Φ1]v‖2L2 ≤ C

∫
v2Φ2

1.
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Moreover, using pseudo-differential calculus, we deduce that

‖[|D|α(1− χ(D)),Φ1]v‖2L2 ≤ C

∫ (
v2 +

Ä
|D|α2 v

ä2)
Φ2
1.

Gathering those estimates and coming back to the initial data, we get:

‖[|D|α(1− χ(D)),Φ1,A]u‖2L2 ≤ C

Aα

∫ Ä
u2 +

Ä
|D|α2 u

ää2
Φ1,A.

Using this last inequality in (161), we conclude the lemma. �

Proof of Lemma 29. We recall that if A,B are two pseudo-differential operators then the commutator
[A,B] is also a pseudo-differential C. Moreover the principal symbol of C is given by

{a, b} = ∂ξa∂yb− ∂ya∂ξb, (162)

with a, b respectively symbol of A and B. Therefore, [(1 − χ(D))|D|α, φ1] ∈ Sα−1,−α−1 ⊂ S
α
2
,−α−1.

Then, by applying the pseudo-differential calculus and the fact ∂yφ1 =
Ä

1
(1+µ2)2

− 1
(1+µ1)2

ä
∂yφ, we

have that

‖[(1− χ(D))|D|α, φ1]u‖L2 ≤ C

∣∣∣∣
1

(1 + µ1)2
− 1

(1 + µ2)2

∣∣∣∣
1
2

‖uΦ1‖H α
2
.

Now, we estimate the low frequency. Let k be the operator defined by F(k(u))(ξ) = χ(ξ)|ξ|αF(u)(ξ).
Then, we have that

[χ(D)|D|α, φ1]u =

Å
1

(1 + µ2)2
− 1

(1 + µ1)2

ã∫
k(x− y)(φ(y)− φ(x))u(y)dy.

To prove that [χ(D)|D|α, φ1] defines an operator bounded on L2(R), we use the Schur’s lemma (Lemma

36) on x 7→
∫
k(x− y)(φ(y) − φ(x))u(y)dy and by using Lemma 37 and 38. Notice that this process

gives us an explicit constant in term of µ1 and µ2. By changing the variable x =
x′

A
, we deduce that:

‖[|D|α, φ1,A]u‖L2 ≤ C

A
α−1
2

∣∣∣∣
1

(1 + µ1)2
− 1

(1 + µ2)2

∣∣∣∣
1
2

‖uΦ1,A‖H α
2
.

We obtain by definition of the Sobolev space:

‖[|D|α, φ1,A]u‖L2 ≤ C

∣∣∣∣
1

(1 + µ1)2
− 1

(1 + µ2)2

∣∣∣∣
1
2

‖uΦ1,A‖H1 .

This concludes the proof of Lemma 29. �

Proof of Lemma 31. The proof is based on the same arguments as the former lemmas. For the high
frequency we use the pseudo-differential calculus, except that we use the function

√
φ instead of φ.

Using the Poisson bracket in (162), we deduce that the commutator satisfies [(1 − χ(D))|D|α,
√
φ] ∈

Sα−1,−1−α
2 ⊂ S

α
2
,0, and we can use the same arguments as above. For the low frequency we use the

Schur’s lemma (Lemma 36). �

Appendix D. Proof of the coercivity property

We prove the following result of coercivity which is time-independent, with R1, R2, R̃1 and R̃2

defined in (99) and dependent on Γ satisfying the condition (CondZ):

Claim 39. Let ǫ ∈ H
α
2 (R) satisfying the four orthogonality conditions:

0 =

∫
ǫR1 =

∫
ǫ∂yR1 =

∫
ǫR2 =

∫
ǫ∂yR2,

and Γ = (z1, z2, µ1, µ2) satisfying (CondZ ). Then, there exists A2, Z
∗
1 , κ > 0 such that for all A > A2

and Γ satisfying (CondZ∗
1
):

2∑

i=1

∫ Ä
ǫ|D|αǫ+ ǫ2 − 3R̃2

i ǫ
2
ä
ψi,A ≥ κ‖ǫ‖2

H
α
2
, i = 1, 2,
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with ψ1,A :=
1− φA

(1 + µ1)2
or ψ2,A :=

φA

(1 + µ2)2
.

Proof. Since ψi,A > 0, and L is coercive, see (28), we deduce that:
∫ Ä

ǫ|D|αǫ+ ǫ2 − 3R̃2
i ǫ

2
ä
ψi,A

=

∫ Ä
|D|α2

Ä
ǫ
»
ψi,A

ää2
+
Ä
ǫ
»
ψi,A

ä2
− 3R̃2

i

Ä
ǫ
»
ψi,A

ä2
+

∫
ǫ
»
ψi,A

î
|D|α,

»
ψi,A

ó
ǫ

≥ κ1

∥∥∥ǫ
»
ψi,A

∥∥∥
2

H
α
2
+

∫
ǫ
»
ψi,A

î
|D|α,

»
ψi,A

ó
ǫ− 1

κ1

Å∫
ǫ
»
ψi,AR̃i

ã2
− 1

κ1

Å∫
ǫ
»
ψi,A∂yR̃i

ã2
.

Since 〈ξ〉α
2 ≥ κ2(1 + |ξ|α2 ), we obtain that:
∥∥∥ǫ
»
ψi,A

∥∥∥
2

H
α
2
≥ κ2

∫ Ä
ǫ2 + (|D|α2 ǫ)2

ä
ψi,A + κ2

∫
(|D|α2 (ǫ

»
ψi,A))

2 − (|D|α2 ǫ)2ψi,A.

Notice that:∫
(|D|α2 (ǫ

»
ψi,A))

2 − (|D|α2 ǫ)2ψi,A = 2

∫ Ä
|D|α2 (ǫ

»
ψi,A)

ä
[|D|α2 ,

»
ψi,A]ǫ−

∫ Ä
[|D|α2 ,

»
ψi,A]ǫ

ä2
.

Using Lemma 31 and Young’s inequality, we obtain that:

κ1

∥∥∥ǫ
»
ψi,A

∥∥∥
2

H
α
2
+

∫
ǫ
»
ψi,A

î
|D|α,

»
ψi,A

ó
ǫ ≥κ1κ2

∫ Ä
ǫ2 + (|D|α2 ǫ)2

ä
ψi,A − C

A
α
2

∫
ǫ2 + (|D|α2 ǫ)2.

Note that since ǫ ⊥ Ri, we have that:
∫
ǫ
»
ψi,AR̃i =

∫
ǫ
Ä»

ψi,A − 1
ä
Ri +

∫
ǫ
»
ψi,A

Ä
R̃i −Ri

ä

Then, by using the Cauchy-Schwarz’ inequality, (49), we get that:
Å∫

ǫ
»
ψi,AR̃i

ã2
+

Å∫
ǫ
»
ψi,A∂yR̃i

ã2
≤ C‖ǫ‖2L2

Å
1

zα
+ ‖Ri − R̃i‖2H1

ã
.

Moreover, we have that ψ1,A + ψ2,A ≥ κ3 > 0. Therefore, we can conclude, with (24):

‖Ri − R̃i‖H1 ≤ Cµ2i ,

by taking Z and A > A2 large enough, that there exists κ > 0 such that:

2∑

i=1

∫ Ä
ǫ|D|αǫ+ ǫ2 − 3R̃2

i ǫ
2
ä
ψi,A ≥ κ‖ǫ‖2

H
α
2
.

�

References

[1] John P. Albert, Jerry L. Bona, and Jean-Claude Saut. Model equations for waves in stratified fluids. Proceedings
of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 453(1961):1233–1260,
1997.

[2] Serge Alinhac and Patrick Gérard. Opérateurs pseudo-différentiels et théoreme de Nash-Moser. EDP Sciences, 2012.
[3] Jaime Angulo Pava. Stability properties of solitary waves for fractional KdV and BBM equations. Nonlinearity,

31(3):920–956, 2018.
[4] Shrey Aryan. Existence of two-solitary waves with logarithmic distance for the nonlinear Klein-Gordon equation.

Commun. Contemp. Math., 24(1):Paper No. 2050091, 25, 2022.
[5] J. L. Bona and H. Kalisch. Singularity formation in the generalized Benjamin-Ono equation. Discrete Contin. Dyn.

Syst., 11(1):27–45, 2004.
[6] Luis Caffarelli and Luis Silvestre. An extension problem related to the fractional Laplacian. Comm. Partial Differ-

ential Equations, 32(7-9):1245–1260, 2007.
[7] Shui Nee Chow and Jack K. Hale. Methods of bifurcation theory, volume 251 of Grundlehren der Mathematischen

Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York-Berlin, 1982.
[8] Vianney Combet and Yvan Martel. Construction of multibubble solutions for the critical GKDV equation. SIAM J.

Math. Anal., 50(4):3715–3790, 2018.
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