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Introduction

Local certi cation is an active eld of research in the theory of distributed computing. On a high level it consists in certifying global properties in such a way that the veri cation can be done locally.

More precisely, for a given property, a local certi cation consists of a labeling (called a certi cate assignment), and of a local veri cation algorithm. If the con guration of the network is correct, then there should exist a labeling of the nodes that is accepted by the veri cation algorithm, whereas if the con guration is incorrect no labeling should make the veri cation algorithm accept.

Local certi cation originates from self-stabilization, and was rst concerned with certifying that a solution to an algorithmic problem is correct. However, it is also important to understand how to certify properties of the network itself, that is, to nd locally checkable proofs that the network belongs to some graph class. There are several reasons for that. First, because certifying some solutions can be hard in general graphs, while they become simpler on more restricted classes.

To make use of this fact, it is important to be able to certify that the network does belong to the restricted class. Second, because some distributed algorithms work only on some speci c graph classes, and we need a way to ensure that the network does belong to the class, before running the algorithm. Third, the distinction between certifying solutions and network properties is rather weak, in the sense that the techniques are basically the same. So we should take advantage of the fact that a lot is known about graph classes to learn more about certi cation.

In the domain of graph classes certi cation, there have been several results on various classes such as trees [START_REF] Korman | Proof labeling schemes[END_REF], bipartite graphs [START_REF] Göös | Locally checkable proofs in distributed computing[END_REF] or graphs of bounded diameter [START_REF] Censor-Hillel | Approximate proof-labeling schemes[END_REF], but until two years ago little was known about essential classes, such as planar graphs. Recently, it has been shown that planar graphs and graphs of bounded genus can be certi ed with O(log n)-bit labels [START_REF] Esperet | Local certi cation of graphs on surfaces[END_REF][START_REF] Feuilloley | Local certi cation of graphs with bounded genus[END_REF][START_REF] Feuilloley | Compact distributed certi cation of planar graphs[END_REF]. This size, O(log n), is the gold standard of certi cation, in the sense that little can be achieved with o(log n) bits, thus O(log n) is often the best we can hope for.

Planar and bounded-genus graphs are classic examples of graphs classes de ned by forbidden minors, a type of characterization that has become essential in graph theory since the Graph minor series of Robertson and Seymour [START_REF] Robertson | Graph minors-a survey[END_REF]. Remember that a graph H is a minor of a graph G, is it possible to obtain H from G by deleting vertices, deleting edges, contracting edges. At this point, the natural research direction is to try to get the big picture of graph classes certi cation, by understanding all classes de ned by forbidden minors. In particular, we want to answer the following concrete question. estion 1 ( [START_REF] Feuilloley | Introduction to local certi cation[END_REF][START_REF] Feuilloley | Local certi cation of graphs with bounded genus[END_REF]). Can any graph class de ned by a nite set of forbidden minors be certi ed

with O(log n)-bit certi cates?

This open question is quite challenging: there are as many good reasons to believe that the answer is positive as negative.

First, the literature provides some reasons to believe that the conjecture is true. Properties that are known to be hard to certify, that is, that are known to require large certi cates, are very di erent from minor-freeness. Speci cally, all these properties (e.g. small diameter [START_REF] Censor-Hillel | Approximate proof-labeling schemes[END_REF], non-3colorability [START_REF] Göös | Locally checkable proofs in distributed computing[END_REF], having a non-trivial automorphism [START_REF] Göös | Locally checkable proofs in distributed computing[END_REF]) are non-hereditary. That is, removing a node or an edge may yield a graph that is not in the class. Intuitively, hereditary properties might be easier to certify in the sense that one does not need to encode information about every single edge or node, as the class is stable by removal of edges and nodes. Minor-freeness is a typical example of hereditary property. Moreover, this property, that has been intensively studied in the last decades, is known to carry a lot of structure, which is an argument in favor of the existence of a compact certi cation (that is a certi cation with O(log n)-bit labels).

On the other hand, from a graph theory perspective, it might be surprising that a general compact certi cation existed for minor-free graphs. Indeed, for the known results, obtaining a compact certi cation is tightly linked to the existence of a precise constructive characterization of the class (e.g. a planar embedding for planar graphs [START_REF] Esperet | Local certi cation of graphs on surfaces[END_REF][START_REF] Feuilloley | Compact distributed certi cation of planar graphs[END_REF], or a canonical path to the root for trees [START_REF] Korman | Proof labeling schemes[END_REF]). Intuitively, this is because forbidden minor characterizations are about structures that are absent from the graphs, and local certi cation is often about certifying the existence of some structures. While such a characterization is known for some restricted minor-closed classes, we are far from having such a characterization for every minor-closed class. Note that there are a lot of combinatorial and algorithmic results on H-minor free graphs, but they actually follow from properties satis ed by H-minor free graphs, not from exact characterizations of such graphs. For certi cation, we need to rule out the graphs that do not belong to the class, hence a characterization is somehow necessary.

Our results

Answering Question 1 seems unfortunately out of reach, at the current state of our knowledge. We have explained above about why designing compact certi cation is hard for classes that do not have a constructive characterization. We will later give some intuition about why lower bounds seem equally di cult to get. In this paper, we intend to build the foundations needed to tackle Question 1.

More precisely, we have four types of contributions. Third, we do a systematic study of small minors to identify which is the rst one that we cannot tackle. We rst prove the following theorem.

Theorem 2. H-minor-free classes can be certi ed in O(log n) bits when H has at most 4 vertices.

Then, we extend this theorem to minors on ve vertices with a speci c shape, proving along the way new purely graph-theoretic characterizations for the associated classes. After this study, we can conclude that the next challenge is to understand K 5 -minor free graphs.

Finally, we prove a general Ω(log n) lower bounds for H-minor-freeness for all 2-connected graphs H. This generalizes and simpli es the lower bounds of [START_REF] Feuilloley | Compact distributed certi cation of planar graphs[END_REF] which apply only to K k and K p,q -minor-free graphs, and use ad-hoc and more complicated techniques.

At the end of the paper, we discuss why the current tools we have, both in terms of upper and lower bounds, do not allow settling Question 1. We list a few key questions that we need to answer before we can fully understand the certi cation of minor-closed classes, from the certi cation of classes with no tree minors to the certi cation k-connectivity, for arbitrary k.

Our techniques General approach and challenges

To give some intuition about our techniques, let us focus on a concrete example: K 4 -minor-free graphs. Remember that a graph has K 4 -minor if we can get a K 4 by deleting vertices and edges, and contracting edges. An alternative de nition is that a graph has a K 4 -minor, if it is possible to nd four disjoint sets of vertices, called bags, such that: each bag is connected, there is a path between each pair of bags, these paths and bags are all vertex-disjoint (except for the endpoints of the paths that coincide with vertices of the bags). See Figure 3.

Figure 3 The graph on the left has a K4 minor. Indeed, the bags of the second de nition are depicted in the picture in the middle, and it is easy to nd the six disjoint paths that link them. Alternatively, one can get a K4 like the one of the right-most picture by contracting all the edges inside the bags, contracting the wavy paths between bags into edges, and deleting the dotted vertices and edges.

An important observation is that, if we take a collection F 1 , ..., F k of K 4 -minor-free graphs, and organize them into a tree, by identifying pairs of vertices like in Figure 4, we get a K 4 -minor-free graph.

Figure 4 The ve graphs with plain edges on the left picture are K4-minor free. Organizing them into a tree by identifying the nodes linked by dotted edges makes a larger K4-minor-free graph.

To see that, suppose that the graph we created has a K 4 -minor. Then there exist bags and paths as described above. If the bags and paths are all contained in the same former F i , then this F i would not be K 4 -minor-free, which is a contradiction. If it is not the case, then the bags and paths use vertices that belong to di erent subgraphs F i and F j . And because of connectivity, they should use a vertex v that connects two such subgraphs (grey vertices in Figure 4). Then the bags and paths cannot be vertex-disjoint as required, because at least two of them should use the vertex v.

As a consequence of the observation above, a classic way to study K 4 -minor-free graphs (as well as other classes) is to decompose the graph into maximal 2-connected components organized into a tree. This is called the block-cut tree of the graph, where every maximal 2-connected component is called a block. (Figure 4 actually show the block-cut structure of the right-most graph.) This is relevant here because 2-connected K 4 -minor-free graphs have a speci c structure; we will come back to this later. Now, from the certi cation point of view, there is a natural strategy: rst certify the structure of the block-cut tree, and then certify the special structure of each block. There are several challenges to face with this approach. First, to certify the block-cut tree, it is essential to be able to certify the connectivity of the blocks. Second, we need to avoid what we call certi cate congestion, which is the issue of having too large certi cates because we use too many layers of certi cation on some nodes. We now detail these two aspects, starting with the latter.

Avoiding certificate congestion

In the block-cut tee of a graph, the blocks are attached to each other by shared vertices, the cut vertices. There is no bound on the number of blocks that are attached to a given cut vertex, and this is problematic for certi cation. Indeed, we cannot give to every node the list of the blocks it belongs to, as we aim for O(log n) certi cates, and such a list could contain Ω(n) blocks. And even if we could x the certi cation of the block-cut tree, the same problem would appear with the certi cation of the speci c structure of each block: the cut vertices would have to hold a piece of certi cation for each block.

We basically have two tools to deal with this problem. The rst one is not new, it is a degeneracy argument that already appeared in [START_REF] Feuilloley | Local certi cation of graphs with bounded genus[END_REF][START_REF] Feuilloley | Compact distributed certi cation of planar graphs[END_REF]. A graph is k-degenerate if in every subgraph there exists a vertex that has degree at most k. Intuitively (and a bit incorrectly), this means that when we need to put a large certi cate on a vertex, we can spread it on its some of its neighbors that have lower degree. A more precise statement is that, for k-degenerate graphs, we can transform a certi cation with O(f (n)) labels on the edges of the graphs, into a classic certi cation with O(k • f (n)) labels on the vertices. This is relevant for our problem, as a priori there is less congestion on the edges, and minor-free classes have bounded degeneracy. Unfortunately, this is not enough for our purpose.

We then build a second, more versatile tool. It consists in proving that it is possible to transform in mechanical way any certi cation of a graph or subgraph, into a certi cation that would put an empty certi cate on some given vertex. Once we have this tool, we can adapt the certi cation of the blocks to work well in the block-cut tree: build the block-cut tree by adding blocks iteratively, making sure that the connecting node has an empty label in the certi cation of the newly added block.

See Section 3 for the details on this topic.

Certifying connectivity properties

Connectivity properties have been studied before in distributed certi cation. Speci cally, certifying that for two given vertices s and t, the st-connectivity is at least k has been studied in [START_REF] Korman | Proof labeling schemes[END_REF] and [START_REF] Göös | Locally checkable proofs in distributed computing[END_REF].

But here we are interested in the connectivity of the graph itself, or in other words, in the stconnectivity between any pair of vertices. Clearly, proving st-connectivity for any pair using the schemes of the literature would lead to huge certi cates. Instead, we use the characterizations of k-connected graphs that are known for small values of k. There are various such characterizations, but they are all based on the same idea of ear decomposition.

To explain ear decompositions, consider a graph that we can build the following way (see Figure 5). Start from an edge, and iteratively apply the following process: take two di erent nodes of the current graph and link them by a path whose internal nodes are new nodes of the graph. It is not hard to see that such a graph is always 2-connected. Remarkably, the converse is also true: any 2-connected graph can be built (or decomposed this way). This is called an open ear decomposition, and similar constructions characterize 2-edge connected graphs and 3-vertex-connected graphs.

The good thing about these constructions is that we can certify them, by describing and certifying every step. This requires some care, as when certifying a new path, we could increase the size of Figure 5 Illustration of an open ear decomposition. The graph on the left can be built with the ear decomposition described on the right. First, put the bold edge. Then add the path of plain edges. Finally, add the dotted path, and the wavy path, which is just one edge.

the certi cates of the endpoints, that are already in the graph. Fortunately, the tools developed to avoid certi cate congestions allow us to control the certi cate size.

The details about the connectivity certi cation can be found in Section 5.

Pu ing things together

Combining these techniques, we can prove the following theorem. Theorem 3. For any 2-connected graph H, if the 2-connected H-minor-free graphs can be certi ed with f (n) bits, then the H-minor-free graphs can be certi ed with O(f (n) + log n) bits. Going back to our example, K 4 -minor-free graphs, given Theorem 3, we are left with certifying the 2-connected K 4 -minor-free graphs. As said above, these have a speci c shape. More precisely, 2-connected K 4 -minor-free graphs have a nested ear decomposition, which is yet another type of ear decomposition, this time with additional constraints related to outerplanarity. We can certify this structure by adapting a construction from [START_REF] Feuilloley | Compact distributed certi cation of planar graphs[END_REF] for outerplanar graphs.

More generally the 2-connected graphs corresponding to most of the classes of Figure 1 have speci c shapes that we can certify quite easily, which imply our compact certi cation schemes.

We do this in Section 6. A special case is K 2,4 , that has a more complicated structure, requiring to consider 3-connected components, and some more complicated substructures. We study this case in Section 7.

Finally, in Section 8, we study all the minors on at most 4 vertices, and in Section 9 all the minors on 5 vertices of some simple form. For these, we do not need new techniques on the certi cation side, but we need to work on the graph theory side to establish new characterizations, as for these minors the literature does not help. The work we do in Section 9 might be of independent interest as we study the natural notion of H-minimal graph, which are the graph that have H as a minor, but for which any vertex deletion would remove this property.

Lower bounds

Towards the end of the paper, we show that Ω(log n)-bit labels are necessary to certify (2-connected) minor-free graph classes. When it comes to Ω(log n) lower bounds in our model, there are basically two complementary techniques (called cut-and-plug techniques in [START_REF] Feuilloley | Introduction to local certi cation[END_REF]). Both techniques basically show that paths cannot be di erentiated from cycles, if the certi cates use o(log n) bits. First, in [START_REF] Göös | Locally checkable proofs in distributed computing[END_REF], the idea is to use many correct path instances, and to prove that we can plug them into an incorrect cycle instance, thanks to a combinatorial result from extremal graph theory. Second, in [START_REF] Feuilloley | Local veri cation of global proofs[END_REF], the idea is to consider a path, to cut it into small pieces, and to show via Sterling formula, that there exists a shu e of these pieces that can be closed into a cycle.

Previous lower bounds for minor-free graphs in [START_REF] Feuilloley | Compact distributed certi cation of planar graphs[END_REF] followed the same kind of strategies as [START_REF] Göös | Locally checkable proofs in distributed computing[END_REF] and [START_REF] Feuilloley | Local veri cation of global proofs[END_REF], with the same type of counting arguments, more complicated constructions, and tackled only minors that were cliques or bicliques.

In this paper, we are able to do a black-box reduction between the path/cycle problem and the H-minor-freeness for any 2-connected H. This way we avoid explicit counting arguments, and get a more general result with a simpler proof.

Related work

Local certi cation rst appeared under the name of proof-labeling schemes in [START_REF] Korman | Proof labeling schemes[END_REF], inspired by works on self-stabilizing algorithms (see [START_REF] Dolev | Self-Stabilization[END_REF] for a book on self-stabilization). It has then been generalized under the name of locally checkable proofs in [START_REF] Göös | Locally checkable proofs in distributed computing[END_REF], and the eld has been very active since these seminal papers. In the following, we will focus on the papers about local certi cation of graph classes, but we refer to [START_REF] Feuilloley | Introduction to local certi cation[END_REF] and [START_REF] Feuilloley | Survey of distributed decision[END_REF] for an introduction and a survey of local certi cation in general.

As said earlier, certi cation was rst mostly about checking that the solution to an algorithmic problem was correct, a typical example being the veri cation of a spanning tree [START_REF] Korman | Proof labeling schemes[END_REF]. Some graph properties have also been studied, for example symmetry in [START_REF] Göös | Locally checkable proofs in distributed computing[END_REF], or bounded diameter in [START_REF] Censor-Hillel | Approximate proof-labeling schemes[END_REF]. Very recently, classes that are more central in graph theory have attracted attention. It was rst proved in [START_REF] Naor | The power of distributed veri ers in interactive proofs[END_REF], as an application of a more general method, that planar graphs can be certi ed with O(log n) bits in the more general model of distributed interactive proofs. Then it was proved in [START_REF] Feuilloley | Compact distributed certi cation of planar graphs[END_REF] that these graphs can actually be certi ed with O(log n) bits in the classic model, that is, without interaction. This result was extended to bounded-genus graphs in [START_REF] Feuilloley | Local certi cation of graphs with bounded genus[END_REF]. Later, [START_REF] Esperet | Local certi cation of graphs on surfaces[END_REF] provided a simpler proof of both results via di erent techniques. It was also proved in [START_REF] Jauregui | Distributed interactive proofs for the recognition of some geometric intersection graph classes[END_REF][START_REF] Montealegre | Compact distributed interactive proofs for the recognition of cographs and distance-hereditary graphs[END_REF] that cographs, distance-hereditary graphs, and some intersection graphs have compact distributed interactive proofs.

After the publication of the rst version of this paper, some progress has been done on Question 1.

On the one hand, a positive answer has been given for an approximate version of the question.

More precisely, by allowing mistakes for graphs that are close to being H-minor-free (in the spirit of property testing) one can de ne a compact certi cation [START_REF] Esperet | Testability and local certi cation of monotone properties in minor-closed classes[END_REF] (follows from Theorem 6). (An approximate certi cation for bounded degree planar graphs with constant size labels had been established before, in [START_REF] Elek | Planarity can be veri ed by an approximate proof labeling scheme in constant-time[END_REF].) On the other hand, two papers have established meta-theorems that answer the question for speci c minor shapes. More precisely, by proving that monadic second order properties can be certi ed with O(log n) when the treedepth is bounded [START_REF] Feuilloley | What can be certi ed compactly? compact local certi cation of MSO properties in tree-like graphs[END_REF], and O(log 2 n) bits when treewidth is bounded [START_REF] Fraigniaud | A meta-theorem for distributed certi cation[END_REF], these papers prove as corollaries that the same sizes su ce for path minors and planar minors, respectively. Still in distributed computing, but outside local certi cation, the networks with some forbidden structures have attracted a lot of attention recently. A popular topic is the distributed detection of some subgraph H, which consists, in the CONGEST (or CONGEST-CLIQUE) model to decide whether the graph contains H as a subgraph or not (see [START_REF] Censor-Hillel | Fast distributed algorithms for girth, cycles and small subgraphs[END_REF] and the references therein). A related task is H-freeness testing, which is the similar but easier task consisting in deciding whether the graph is H-free or far from being H-free (in terms of the number of edges to modify to get a H-free graph). This line of work was formalized by [START_REF] Censor-Hillel | Fast distributed algorithms for testing graph properties[END_REF] after the seminal work of [START_REF] Brakerski | Distributed discovery of large near-cliques[END_REF] (see [START_REF] Fraigniaud | Distributed detection of cycles[END_REF] and the references therein). To our knowledge, no detection/testing algorithm or lower bounds have been designed for H-minor-freeness.

Finally, we have mentioned in the introduction that certifying that the graph belongs to some given class is important because some algorithms are specially designed to work on some speci c classes. For example, there is a large and growing literature on approximation algorithms for e.g. planar, bounded-genus, minor-free graphs. We refer to [START_REF] Feuilloley | Bibliography of distributed approximation on structurally sparse graph classes[END_REF] for a bibliography of this area. There are also interesting works for exact problems in the CONGEST model, e.g. in planar graphs [START_REF] Gha | Distributed algorithms for planar networks II: low-congestion shortcuts, MST, and min-cut[END_REF], graphs of bounded treewidth or genus [START_REF] Haeupler | Near-optimal low-congestion shortcuts on bounded parameter graphs[END_REF] and minor-free graphs [START_REF] Haeupler | Minor excluded network families admit fast distributed algorithms[END_REF]. In particular the authors of [START_REF] Haeupler | Minor excluded network families admit fast distributed algorithms[END_REF] justify the focus on minor-free graphs by the fact that this class allows for signi cantly better results than general graphs, while being large enough to capture many interesting networks.

Very recently, [START_REF] Gha | Low-congestion shortcuts for graphs excluding dense minors[END_REF] proved general tight results on low-congestion short-cuts (an essential tool for algorithms in the CONGEST model) for graphs excluding a dense minor.

Preliminaries

In this section, we de ne formally the notions we use and describe some useful known certi cation building blocks. 

Graphs and minors

Let G = (V, E) be a graph. Let X ⊆ V . The subgraph of G induced by X is the graph with vertex set X and edge set E ∩ X 2 . The graph G \ X is the subgraph of G induced by V \ X. A graph G is a subgraph of G if V ⊆ V and E ⊆ E. For every v ∈ V , N (v)
. Let u, v ∈ V , a path from u to v is a sequence of vertices v 0 = u, v 1 , . . . , v = v such that for every i ≤ -1, v i v i+1 is an edge. It is a cycle if v v 0 also exists.
A graph G is connected if there exists a path from u to v for every pair u, v ∈ V . All along the paper, we only consider connected graphs. Indeed, in certi cation, the nodes can only communicate with their neighbors, so no node can communicate with nodes of another connected component.

A vertex v is a cut-vertex if G \ {v} is not connected. If G does not contain any cut-vertex, G is 2-(vertex)-connected.
If the removal of any edge does not disconnect the graph, we say that G is 2-edge-connected. A graph is k-(vertex)-connected if there does not exist any set X of size k -1 such that G \ X is not connected. To avoid cumbersome notations, we will simply write k-connected for k-vertex-connected.

A graph H is a minor of G if H can be obtained from G by deleting vertices, deleting edges and contracting edges. Equivalently, it means that, if G is connected, there exists a partition of V into connected sets V 1 , . . . , V |H| such that there is (at least) an edge between V i and V j if h i h j is an edge of H. We say that V 1 , . . . , V |H| is a model of H. The graph G is H-minor-free if it does not contain H as a minor.

Local computation and certification

We assume that the graph is equipped with unique identi ers in polynomial range [1, n k ], thus these identi ers can be encoded on O(log n) bits.

Local certi cation is a mechanism for verifying properties of labeled or unlabeled graphs. In this paper we will use a local certi cation at distance 1, which is basically the model called proof-labeling schemes [START_REF] Korman | Proof labeling schemes[END_REF]. A convenient way to describe a local certi cation is with a prover and a veri er. The prover is an external entity that assigns to every node v a certi cate c(v). The veri er is a distributed algorithm, in which every node v acts as follows: v collects the identi ers and the certi cates of its neighbor and itself, and outputs a decision accept or reject. A local certi cation certi es a graph class C if the following two conditions are veri ed:

1. For every graph of C, the prover can nd a certi cate assignment such that the veri er accepts, that is, all nodes output accept.

2. For every graph not in C, there is no certi cate assignment that makes the veri er accept, that is for every assignment, there is at least one node that rejects.

The size of the certi cate of C is the largest size of a certi cate assigned to a node of a graph of C.

Note that to describe a local certi cation, the only essential part is the veri er algorithm, the prover is just a way to facilitate the description of a scheme.

In this paper, we are going to use a variant of the model above, called edge certi cation, where the certi cates can be assigned on both the nodes and the edges. See Subsection 3.1.

Known building blocks for graph certification

There are few known certi cation schemes that we are going to use intensively as building blocks in the paper.

Lemma 4 ( [START_REF] Afek | Memory-e cient self stabilizing protocols for general networks[END_REF][START_REF] Korman | Proof labeling schemes[END_REF]). Acyclicity can be certi ed in O(log n) bits.

The classic way to certify that the graph is acyclic, is for the prover to choose a root node, and then to give to every node as its certi cate its distance to the root. The nodes can simply check that the distances are consistent.

The same idea can be used to certify a spanning tree of the graph, encoded locally at each node by the pointer to its parent, which is simply the ID of this parent. The scheme is the same, except that the prover, in addition to the distances, gives the ID of the root, and the veri cation algorithm checks that all nodes have been given the same root-ID, and only takes into account the edges that correspond to pointers (also the root checks that its ID is the root-ID). A spanning tree is a very useful tool to broadcast the existence of a vertex satisfying a locally checkable property: simply choose a spanning tree rooted at the special vertex, encode it locally with pointers and certify it.

Then the root can check that indeed it has the right property, and all the other vertices know that such a vertex exists.

Finally, with the same ideas, one can easily deduce O(log n) certi cation for paths. We just add to the acyclicity scheme the veri cation that the degree of every node is at most 2. Note that cycles do not need certi cates to be veri ed: every node just checks that it has degree exactly 2.

Let us now de ne a graph class that will appear in several decompositions. Definition 5. A path-outerplanar graph is a graph that admits a path P that can be drawn on a horizontal line, such that all the edges that do not belong to P can be drawn above that line without crossings. The edges are said to be nested.

We are going to use the following result as a black box.

Lemma 6 ([22]). Path-outerplanar graphs can be certi ed with O(log n)-bit certi cates.

The following classic result will also be useful at some point of the paper.

Lemma 7 ([33]

). Every graph class can be certi ed with O(n 2 ) bits.

The idea of the scheme is that the prover gives to every node v the map of the graph, e.g. as an adjacency matrix, along with the position of v in this map. Then every node can check that it has been given the same map as its neighbors, and that the map is consistent with its neighborhood in the network.

Avoiding certificate congestion

One can obtain many structured graph classes like minor free graphs with "gluing" operations, for instance, by identifying vertices of two graphs of the class. If we have a certi cation for both graphs, we would like to simply take both certi cate assignments to certify the new graph. However, for the vertex on which the two graphs are glued, the size of the certi cate might have doubled.

While it is not a problem for bounded degree graphs, it can become problematic if many gluing operations occur around the same vertex, since this vertex would get an additional certi cate from each operation. In this section, we present two ways to tackle these issues, that will be used in the forthcoming sections.

The rst one consists in shifting the certi cation on edges instead of vertices, which helps in the sense that when gluing on vertices the edge certi cate can remain unchanged. As we will see, the edge setting is equivalent to the usual vertex certi cation for nice enough classes. The second option uses that one can (almost) freely assume that a given vertex has an empty label in a correct certi cation.

Edge certification and degeneracy

Transforming a node certi cation into an edge certi cation can always be done without additional asymptotic costs: just copy on every edge the certi cate of the two endpoints, and adapt the veri cation algorithm accordingly. Transforming an edge certi cation into a node certi cation is also always possible, by giving a copy of the edge label to each of its endpoint. But this transformation can drastically increase the certi cate size: if an edge certi cation uses Ω(f (n))-bit labels, the associated node certi cation might use Ω(n • f (n))-bit if the maximum degree of the graph is linear. The following theorem ensures that in degenerate graph classes there is a more e cient transformation that permits to drastically reduce the size of the certi cate.

Theorem 8 ([21]

). Consider an edge certi cation of a graph class C where the edges are labeled [START_REF] Alexandr | The minimum hadwiger number for graphs with a given mean degree of vertices[END_REF][START_REF] Thomason | An extremal function for contractions of graphs[END_REF].

with f (n)-bit certi cates. If C is d-degenerate, then there exists a (node) certi cation with d • f (n)-bit certi cates.

Note that H-minor free graphs have degeneracy O(h

√ log h) where h = |V (H)|
Therefore, we can freely put labels on edges when certifying classes de ned by forbidden minors.

Certification with one empty label

In this part, our goal is to erase the certi cate of a node. To this end, we rst consider certi cation of spanning trees and strengthen both Lemma 4 and the discussion that followed in Subsection 2.3.

We then extend this intermediate step to every graph class in Lemma 10.

Lemma 9. Let T be a spanning tree of G. There exists a certi cation of T that does not assign a label to the root, and uses the same certi cate as the classic tree certi cation (cf. Subsection 2.3) on the other nodes.

Proof. On yes-instances, the prover assigns the labels as in the classic scheme, and removes the label of the root. Then the veri cation proceeds like in the classic scheme except for a node that has no label or a node that has a neighbor with no label. If two adjacent nodes have been given an empty label, then they reject. If a node with no label sees that two of its neighbors have been given

di erent root-ID, then it rejects. Otherwise, every node simulates the computation where the node with empty label has been given distance 0, and the same root-ID as its neighbors. Because of the previous checks, the labels used in the simulation are consistent, and on correct instance are the same as the one used in the classic certi cation. Thus, the correctness follows from the correctness of the classic scheme.

A pointed graph is a graph with one selected node. Given a class, one can build its pointed version by taking for each graph all the pointed versions of it.

Lemma 10. Consider a class C that can be certi ed with certi cates of size f (n). One can certify the pointed class of C with O(f (n) + log n) bits, without having to put certi cates on the selected node.

Proof. First, to certify that exactly one node is pointed, we can simply nd a spanning tree rooted on the pointed vertex and assign to each node the spanning tree certi cation of Lemma 9 which uses O(log n) bits. For the rest of the certi cation, on a yes-instance, the prover rst assigns the certi cates following the original certi cation. Then it removes the certi cate of the selected node and appends copies of it to the certi cates of its neighbors.

Every node v runs the following veri cation. If v is not the selected node, nor one of its neighbors, then it does the same veri cation as before. If v is the selected node, it checks that its neighbors have been given the same label as "label of the selected node", and then takes this label as its own, and runs the previous veri cation algorithm. If v is a neighbor of the selected node, it runs the same veri cation algorithm as before, but simulating that the selected node has been given the certi cate that was appended to its own certi cate.

All nodes are simulating the computation in the graph where the selected node would have been given its certi cates, thus the correctness of this new certi cation follows from the correctness of the original certi cation.

Observe that the previous results can be easily iterated: one can always remove the labels of k nodes (as long as they are pairwise non-adjacent) to the cost of a factor k in the size of the certi cates. Therefore, the result extends to the case of k-independent pointed classes (i.e. where an independent set of size at most k is selected instead of only one vertex).

Corollary 11. Consider a class that can be certi ed with certi cates of size f (n). One can certify the k-independent pointed class with O(kf (n) + k log n) bits, without having to put certi cates on the selected nodes.

Moreover, with more constraints on the structure of the set of pointed vertices (for instance if they are all at distance at least 3), one could even obtain certi cate of size O(f (n) + k log n) (since every node receives the certi cate of at most one selected node).

Compositions of certifications

In this section, we show how to combine certi cation algorithms for several classes to certify larger ones, and we illustrate this idea on two constructions. The rst one considers classes de ned by the existence of some subgraph: we settle the intuition stating that it is often easier to test the existence of a structure rather than its absence, since we can pinpoint which nodes/edges lie in the structure.

The second construction mimics a natural operation on graphs, consisting in replacing some vertex/edge by another graph. This operation occurs quite often in the literature: many classes, especially the ones de ned by forbidden minors, get a characterization using this operation. Some results of this section will not be used to certify minor-free classes later in the paper. They are proved here for completeness.

Subgraphs

Proposition 12. Let C be a graph class that can be certi ed with f (n)-bit labels. Let C be the class of the graphs that contain a graph of C as subgraph. Then C can be certi ed with certi cates of size O(f (n) + log n) on the nodes and O(1) on the edges.

Proof. On a yes-instance G, the prover assigns the certi cates on nodes and edges in the following way. First, it chooses a subgraph H that belongs to C and assigns the certi cates that certify that H is in C, as if the rest of the graph did not exist. This takes at most f (n) bits. Second to every node and edge that belongs to H, the prover assigns a special label. Third, the prover describes and certi es a spanning tree pointing to a node that has the special label.

The veri cation algorithm is the following. The nodes that have the special label, run the veri cation algorithm for C, taking into account only the nodes and edges that have the special label. The nodes also check the spanning tree structure, and the root of the tree checks that it does have the special label.

Because of the spanning tree, there must exist a node with the special label, thus there are nodes that run the veri cation algorithm for C, and if they succeed it means that a graph of C appears as a subgraph in the graph G. Before giving deeper applications of these results in future sections, let us prove that the existence of a minor in the graph is easy to certify. This was already mentioned in previous papers without formal proofs [START_REF] Feuilloley | Local certi cation of graphs with bounded genus[END_REF][START_REF] Feuilloley | Compact distributed certi cation of planar graphs[END_REF]. We prove it here to show a simple application of our techniques, and we think it is a meaningful illustration of the fact that certifying that a structure is present or absent are two very di erent tasks in our model.

Corollary 18. Given a graph H, one can certify that a graph has H as a minor in O(log n) bits.

Proof. As we already observed, a graph G has H as minor if and only if V (G) can be partitioned into |H| connected sets such that there is an edge between V i and V j when the corresponding vertices in H are connected. Free to delete edges, we can assume that each V i is actually a spanning tree and there is a unique edge from We nally get a node certi cation with certi cates of size O(log n) using Corollary 13.

V i to V j if

Connectivity and connectivity decompositions

In this section, we explain how to certify connectivity properties and connectivity decompositions, in particular the block-cut tree mentioned in the introduction.

An ear decomposition is a way to build a graph by iteratively adding paths, the so-called ears.

Ear decompositions are central tools for decades in structural graph theory and are used in many decomposition or algorithmic results. There exists various variants of this process, that characterize di erent classes and properties. For certi cation, these decompositions happen to be easier to manipulate than some other types of characterizations since they are based on iterative construction of the graph, and use paths, which are easy to certify. These paths are convenient since we can "propagate" some quantity of information on them as long as every vertex belongs to a bounded number of paths. In this section, we remind several such decompositions, and use them to certify various connectivity properties and decompositions.

Connectivity properties

Let us start with 2-connectivity. A graph G has an open ear decomposition if G can be built, by starting from a single edge, and iteratively applying the following process: take two di erent nodes of the current graph and link them by a path whose internal nodes are new nodes of the graph (such a path is called an ear). Note that this path can be a single edge, and then there is no new node. Let an inner node of an ear be a vertex that is created with this ear, and let a long ear be an ear with at least one inner node. The certi cation works as follows. First the prover gives to every node the identi ers of the very rst edge, and describes and certi es a spanning tree pointing to one of the endpoints of this edge.

The nodes of this edge are given an index 0. Second, the prover gives to every node the information related to the step when it has been added, and only about this step. That is, the prover gives the index of the addition (that is the number of the ear in which the vertex is created), along with two oriented paths spanning the path and pointing to the two extremities of the ear. By Corollary 11, these paths can be certi ed without certi cates on the extremities of the paths.

Every node checks the correctness of the spanning tree pointing to the rst edge, and the fact that only these nodes have index 0. Then, every node also checks that the spanning paths it has been given are correct, that is: (1) the distances and root-ID are consistent (2) all nodes have the same index, and that (3) the declared endpoints are di erent. Also, the two nodes that are adjacent to the endpoints of the paths check that the endpoints have a smaller index than their own.

Let us now prove the correctness of the certi cation. Because of the spanning tree, the original edge exists, is unique, and is the only set of nodes with index 0. Because of the certi ed paths spanning the ears, one can also recover the path structure and the fact that a path is added after its endpoints. Note that in an instance where all nodes accept, there might be two di erent paths with the same index i, but this is not a problem: the only important feature is the precedence order.

With similar construction we can certify the edge connectivity instead of the vertex connectivity.

Corollary 21. 2-edge-connected graphs can be certi ed with O(log n) bits.

Proof. Robbins proved in [START_REF] Robbins | A theorem on graphs, with an application to a problem of tra c control[END_REF] that a graph G is 2-edge connected if and only if G has an ear decomposition. An ear decomposition is the same as an open ear decomposition, except that it starts from a cycle and that the two endpoints of an ear do not need to be di erent. The proof above can thus be adapted to this class.

The only di erence is that vertices with index 0 form a cycle (which can be certi ed). Then during the veri cation procedure we simply do not have to check that the extremities of the path of the ear decomposition are distinct, in other words we do not have to check [START_REF] Di | Incremental planarity testing (extended abstract)[END_REF].

A more re ned type of ear decomposition characterizes the 3-vertex-connected graphs.

Definition 22 ([8, 35, 40]). Let ru and rt be two edges of a graph G. A Mondshein sequence through rt, avoiding u is an open ear decomposition of G such that:

1. rt is in the rst ear.

2. the ear that creates node u is the last long ear, u is its only inner vertex, and it does not contain ru.

3. the ear decomposition is non-separating, that is, for every long ear except the last one, every inner node has a neighbor that is created in a later ear.

Theorem 23 ([8, 40]). Let ru and rt be two edges of a graph G. The graph G is 3-vertex-connected if and only if it has a Mondshein sequence through rt avoiding u, and there are three internally vertex-disjoint path between t and u.

Corollary 24. 3-connected graphs can be certi ed with O(log n) bits on vertices and O(1) bits on edges.

Proof. On yes-instances the prover chooses an arbitrary edge ru and certi es the ear decomposition as in Lemma 20. The prover also adds a spanning tree pointing to the edges ru and rt, and gives to every vertex the index of the last long ear created. These new pieces of information allow the nodes to check that the ear decomposition is a Mondshein sequence. The prover also encode the three vertex disjoint paths, by pointer on the nodes of these paths, and number them 1, 2 and 3, to allow the nodes to check disjointness.

Block-cut tree

Now that we can certify connectivity properties, we introduce a way to certify decomposition of graphs into parts of higher connectivity. Let us start with a few de nitions.

A 2-connected component of a graph G is a connected subgraph H maximal by inclusion such that the removal of one node does not disconnect H. Observe that a 2-connected component can consists of just one edge in the case of a bridge, i.e. an edge whose removal disconnects the graph.

Local certification of graph decompositions and applications to minor-free classes

The intersection of any pair C, C of 2-connected components has size at most one. Indeed, if it had size at least two, then we could merge these into a larger 2-connected component, which would contradict the maximality. So we can de ne an auxiliary graph from G where every node corresponds to a 2-connected component and there is an edge between two components if and only if they intersect on exactly one node. This graph is a tree, because a cycle would again create a larger 2-connected component, contradicting maximality. This tree is called the block-cut tree.

Let T be a block-cut tree of G, and D a maximal 2-connected component chosen to be the root of this tree. (Note that if G is 2-connected then the graph is reduced to this component). Let C be a component that is not the root of the tree. The connecting node of a component C is the node lying both in C and in its parent component. The interior of C is the set of nodes of C minus the connecting node of C. Note that the interior of a component is always non-empty.

This section is devoted to proving the following result and apply it for certi cation:

Theorem 3. For any 2-connected graph H, if the 2-connected H-minor-free graphs can be certi ed with f (n) bits, then the H-minor-free graphs can be certi ed with O(f (n) + log n) bits.

Proof of Theorem 3. Since H is 2-connected, a graph G is H-minor-free if and only if each of its 2-connected components is. (This is basically the observation we made at the beginning of Subesction 1.2.) This is the property we certify. On a yes-instance, the prover will assign the certi cates the following way. It rst computes the block-cut tree and root it on some node C. It then does the following:

1. For each 2-connected component, the prover chooses a node from the interior of the component to be the leader of this component. Every node of the interior of a component C is given the identi er of the leader of C as well as a spanning tree of C pointing towards it. Since the component is 2-connected, the component minus the leader of the component is connected and such a tree exists.

2.

Every node is given a label stating whether it is a connecting node or not.

3.

Every node is given the identi er of the connecting node of its component closest from the root in the block-cut tree (called the component of the node), as well as a spanning tree pointing to it, using the certi cation of Lemma 9 that uses an empty certi cate on the root.

4.

In order to check acyclicity of the block-cut tree, every node is given the distance of its component to the root-component (in terms of number of components).

5.

The prover certi es the 2-connectivity of each component using the certi cation of Lemma 20

and the fact that it is H-minor free using the certi cation with f (n) bits of the theorem. By Lemma 10 this can be done by only assigning labels to the interior nodes of the component.

Before we move on to the veri cation and the correctness of the scheme, note that every node is given a certi cate of size O(f (n) + log n). Indeed, each piece of information we have given to the node is of size O(log n) or f (n), and we have given a constant number of those to every node. In particular, a connecting node in the interior of a component C, received only labels that are related C, and not labels related to other components it belongs to (since we consider pointed components). Now, every node does the following veri cation. Every node checks that the spanning tree pointing to the leader is correct. If this step succeeds, we have a partition of the nodes in components.

Every node also checks the correctness of the spanning tree pointing to the connecting node.

Every node v checks that, if it has an edge to a connecting node w with a di erent leader, then w is the connecting node of its own component. Every connecting node v checks that it is connected to a single node in its parent component and that it is the claimed neighbor in that component. If this step succeeds, we have a decomposition into components linked by connecting nodes. The consistency of the component distances are also checked by the nodes: this distance should be decremented at each connecting node, and only there. This ensures the acyclicity of the component structure. Finally, every node checks that the 2-connectivity and the H-minor-freeness of its component. Globally this veri cation ensures that the graph is H-minor-free.

6 Application to C 4 , Diamond, K 4 and K 2,3 minor-free graphs

This section is devoted to the certi cation of C 4 -minor-free, diamond-minor-free graphs, K 4 -minorfree graphs and K 2,3 -minor-free graphs. All the proofs will follow the same structure: prove that the 2-connected components, which are more structured, can be certi ed with small labels, and then use Theorem 3 to conclude for the general case.

Before going to this proof let us describe how to certify series-parallel graphs, which in addition to be interesting network topologies [START_REF] Flocchini | Routing in series parallel networks[END_REF], are closely related to K 4 -minor-free graphs. A nested ear decomposition is an open ear decomposition that starts from a path, with two properties: (1) both ends of an ear have to be connected to the same ear, and (2) for every ear, the ears that are plugged onto it are nested. Eppstein proved the following in [START_REF] Eppstein | Parallel recognition of series-parallel graphs[END_REF] about series-parallel graphs.

Theorem 26 ([14]

). A 2-connected graph is series-parallel if and only if it has a nested ear decomposition.

We will use this decomposition theorem for our certi cation.

Theorem 27. 2-connected series-parallel graphs can be certi ed with O(log n)-bit labels.

Proof. The prover certi es the decomposition of Theorem 26. We have already described how to certify an open ear decomposition in the proof of Lemma 20. We can easily adapt it so that it starts from a path instead of an edge: there is a spanning tree pointing to one of the endpoints of the paths, and the path itself is certi ed with distances, the usual way.

It is also easy to certify that each ear e has both of its endpoints on the same older ear e : just give to each vertex of e the identi ers of the endpoints of e and e . The endpoints of an ear can check the consistency of these announced identi ers with the identi ers of their paths. A more tricky part is to certify that the ears are nested. Remember that Lemma 6 states that a path with nested edges (a path-outerplanar graph) can be certi ed with O(log n)-bit labels. This is exactly what we need except that we would like to have nested paths instead of nested edges. But then we can transfer the information from one endpoint of the paths to the other endpoint.

Lemma 28. 2-connected C 5 -minor free graphs are either graphs of size at most 4 or K 2,p or K 2,p which is the complete bipartite graph K 2,p plus an edge between the two vertices on the set of size 2.

Proof. Since G is 2-connected, by Menger's theorem, for every pair x, y of vertices, there exist at least two vertex disjoint xy-paths. Since G is C 5 -minor free, these paths have size at most 2, in particular x, y are at distance at most 2.

Let u, v be two non-adjacent vertices. Then the removal of N (u) ∩ N (v) disconnects u from v since otherwise we can nd two vertex disjoint uv-paths, one being of size at least 3, which provides a C 5 . In particular, it implies that

|N (u) ∩ N (v)| ≥ 2 since G is 2-connected.
Let x ∈ N (u) \ (N (v) ∪ {v}). Since x, v are non-adjacent, there must be an edge between x and N (v). But this creates a C 5 since |N (u) ∩ N (v)| 2. Therefore non-adjacent vertices are twins.

Let I be a maximum independent set in G. Note that all the vertices of I are twins. Therefore, by maximality, if u / ∈ I then u is complete to I. Now either vertices of I have degree at least 3, and G contains K 3,3 hence a C 5 -minor, or vertices of I have degree 2 and G is K 2,p or K 2,p .

We can now prove easily the claimed certi cations.

Corollary 29. The following classes of graphs can be certi ed with O(log n) bit certi cates:

C 4 -minor-free graphs,C 5 -minor free graphs, diamond-minor-free graphs, house-minor free graphs 1 , outerplanar graphs (that is (K 2,3 , K 4 )-minor-free graphs), K 2,3 -minor-free and K 4 -minor-free graphs.

Proof. By Theorem 3, if we can certify the 2-connected graphs of these classes we obtain the conclusion. So we simply have to prove that for each class we can certify the 2-connected graph of the class.

2-connected C 4 -minor-free graphs are K 2 and K 3 [START_REF] Chimani | Cut polytopes of minor-free graphs[END_REF], which can be certi ed with O(1) bits.

2-connected C 5 -minor-free graphs are either graphs of size at most 4 or a complete bipartite graph K 2,p (with a potential edge between the two vertices in the set of size 2 by Lemma 28.

Since such graphs can be certi ed with O(log n) bits, the conclusion follows.

2-connected diamond-minor-free graphs are induced cycles. Cycles can be certi ed with O( 1) bits (see the discussion after Lemma 4).

2-connected house-minor-free graphs are either induced cycles or graphs of size at least four.

Indeed, assume that there is a cycle of length at least 5. Then it should be induced, since otherwise it contains a house as a minor. Moreover, it should contain all the vertices of the graph otherwise there is an ear starting from this cycle and the cycle plus the ear provides a house. Since induced cycles can be easily certi ed with O(log n) bits, the conclusion follows.

2-connected outerplanar graphs are exactly path-outerplanar graphs with an edge between the rst and the last node. Indeed, by 2-connectivity, the outer face must be a cycle, and removing any edge from it yields a path-outerplanar graph. One can then certify the existence and uniqueness of this edge using a spanning tree, and then certify that the rest of the graph is path-outerplanar. This yields a O(log n)-bit certi cation by Theorem 6.

Let G be a 2-connected K 2,3 -minor-free graph. If G does not contain K 4 , then it is a 2-connected outerplanar graph and the result follows from the previous item. Otherwise, if G is not restricted to K 4 , then it contains a fth vertex u. Since G is connected, there is a shortest path from u to the K 4 ending at v. Since v is not a cut-vertex, there should be another path between u and the K 4 avoiding v, but this creates a K 2,3 minor. Therefore, G is K 4 , which can be certi ed easily.

The 2-connected K 4 -minor-free graphs are exactly the 2-connected series-parallel graphs. Then the results follow directly from Theorem 27.

7 Application to K 2,4 -minor free graphs

When the size of the minors are increasing (and for most of the decomposition theorems known in structural graph theory), 2-connectivity is not enough. In this example we will illustrate how to use the certi cate of 3-connectivity to conclude.

Let us illustrate it for this section on the characterization of K 2,4 -minor-free graphs from [START_REF] Mark | A characterization of K 2, 4 -minor-free graphs[END_REF].

It is more involved than the other characterizations we have seen so far. We will follow the structure of [START_REF] Mark | A characterization of K 2, 4 -minor-free graphs[END_REF], restricting rst to 3-connected graphs, then to 2-connected graphs, and nally all K 2,4 -minor-free graphs. 1 The house being a C4 plus a vertex connected to two consecutive vertices of the C4.

3-connected case

Let us start with the de nition of a graph class. We use notations similar to [START_REF] Mark | A characterization of K 2, 4 -minor-free graphs[END_REF] (Section 2.1). See Figure 6.

Definition 30. Let n, r, s be three integers, and p a Boolean. The graph G n,r,s,p consists of a path v 1 , ..., v n , the edges v 1 v n-i for 1 ≤ i ≤ r, the edges v n v 1+j for 1 ≤ j ≤ s, and the edge v 1 v n if p = 1. For a function f (n, r, s, p) that associate a Boolean with each combination of parameters, let G[f ] be the set of graphs G n,r,s,p such that f (n, r, s, p) = 1.

Figure 6 Example for De nition 30. This graph is G8,3,2,0: it has 8 nodes, edges v1vn-i for i ∈ {1, 2, 3}, edges vnv1+j for j ∈ {1, 2}, and it does not have the edge v1vn.

Theorem 31 (Theorem 2.12 in [START_REF] Mark | A characterization of K 2, 4 -minor-free graphs[END_REF] (adapted)). There exists an f such that the set of 3-connected K 2,4 -minor-free graphs is G[f ], plus nine graphs on at most 8 vertices.

In [START_REF] Mark | A characterization of K 2, 4 -minor-free graphs[END_REF], the authors give an explicit description of f but we can avoid going into details here because of the following general lemma. Lemma 32. For all f , G[f ] can be certi ed with O(log n)-bit labels.

Proof. On a yes-instance, the prover certi es the spanning paths with root v 1 , with last node v n , and writes in each certi cate the values n, r, s and p. The nodes check the structure of the path and the fact that n, r, s and p are the same on all nodes. Second v 1 checks the structure of its neighborhood, and in particular the values r and p. Similarly, v n checks the structure of its neighborhood, and in particular the values s, and the fact that its distance to the root is indeed n.

Finally, all nodes check that f (n, r, s, p) = 1. The correctness of the scheme is straightforward. This directly yields the following lemma. For the 2-connected case, one of the types of graphs that we want to certify is of the following form: a 3-connected graph, where a set of edges with a special property is expanded with another graph class. To be able to certify this, we will need the nodes to check that the set of edges that has been expanded has the special property. To capture the notion of special property, without going into the intricate details of what this property is exactly, let us de ne an edge-set decider. A function h is an edge-set decider if it takes as input a 3-connected K 2,4 -minor-free graph whose edges are either unlabeled, or labeled with a special label, and outputs a Boolean. Lemma 34. Let h be an edge-set decider, such that for every graph G, there is at most O(n) di erent sets of edges S such that h(G, S) = 1. The set of 3-connected K 2,4 -free graphs G with labelled edges, where h(G) is true, can be certi ed with O(log n) bits.

Proof. First, for every graph G, we x an indexing of edge sets S such that h(G, S) = 1. The prover rst uses the same certi cates as in Lemma 33 for the certi cation of unlabeled 3-connected K 2,4 -minor-free graphs. Then it gives to all nodes the index of the set of labeled edges. Following the certi cation of the proof of Theorem 31, every node knows in which graph it lives and what is its position in that graph. Then, every node just checks that the labeled edges in its neighborhood correspond to the index announced by the prover. The labels have size O(log n) because of Lemma 33 and because there are at most O(n) di erent sets of edges S such that h(G, S) = 1.

2-connected case

We now state the characterization theorem of the 2-connected case.

Theorem 35 (Theorem 3.5 in [START_REF] Mark | A characterization of K 2, 4 -minor-free graphs[END_REF]). There exists a function h as in Lemma 34 such that the following holds. A graph G is 2-connected K 2,4 -minor-free graph if and only if one of the following holds:

1. G is outerplanar.
2. G is the union of three path-outerplanar graphs H 1 , H 2 , H 3 with the same path endpoints x and y, and possibly the edge (x, y), where

|V (H i )| ≥ 3, for each i and V (H i ) ∩ V (H j ) = x, y for i = j.
3. G is obtained from a 3-connected K 2,4 -minor-free graph G 0 by choosing a subset S such that h(G 0 , S) = 1, and replacing each edges (x i , y i ) of S by a path-outerplanar graphs

H i with endpoints (x i , y i ) , where V (H i ) ∩ V (G 0 ) = x i , y i for each i, and V (H i ) ∩ V (H j ) ⊂ V (G 0 ) for i = j.
In [START_REF] Mark | A characterization of K 2, 4 -minor-free graphs[END_REF], h is called the set of subdividable edges, and is fully characterized. Our proof works for any h, as long as it satis es the properties of Lemma 33, and it is the case for the h of [START_REF] Mark | A characterization of K 2, 4 -minor-free graphs[END_REF].

Lemma 36. 2-connected K 2,4 -minor-free graphs can be certi ed with O(log n)-bit labels.

Proof. We show that each of the three cases can be certi ed with O(log n) bits.

Outerplanar graphs can be certi ed with O(log n) bits (Corollary 29).

2. This case basically consists in an edge expansion of a multigraph with three edges between two nodes by path outerplanar graphs. Note that the proof of Proposition 17 works here even if the original graph is a multigraph. Proposition 17 gives us an O(log n) edge certi cation because path-outerplanar graphs can be certi ed with O(log n) certi cates, and the condition on the number of nodes can also be certi ed with O(log n) bits with a spanning tree counting the number of nodes (see e.g. in [START_REF] Feuilloley | Introduction to local certi cation[END_REF]). This edge certi cation can be transferred to a node certi cation with the same certi cate size asymptotically because of Theorem 8, and because H-minor-free graphs have bounded degeneracy.

3. Again, this item basically corresponds to an edge-expansion: the edge expansion of a 3-connected K 2,4 -minor-free graph by path-outerplanar graphs. We know by Lemma 33 and Lemma 6 that both these classes can be certi ed on O(log n) bits, so the vanilla edge-expansion can also be certi ed with O(log n) bits (using the degeneracy like in the previous item). The only issue left is the fact that the only edges of G 0 that are allowed to be expanded by something di erent from an edge need to belong to an S such that h(G 0 , S) = 1. But this is easy with Lemma 34: the edges that have a path-outerplanar expansion are the one that are considered to have a special label.

Certifying H-free graphs with |H| ≤ 4

In previous sections, we have proven that certifying H-minor free graphs can be done with O(log n) bits for some graphs H. The graphs we have treated in previous sections are somehow amongst the hardest graphs of small size. When the connectivity of the graph H increases, the class of H-minor free graph contains more and more graphs, and then is (morally speaking) harder to certify. Let us prove that the other graphs on 4 vertices (which have fewer edges, and then are less connected) can also be certi ed, with arguments either simpler than or similar to what has been done in previous sections, to establish the following theorem.

Theorem 2. H-minor-free classes can be certi ed in O(log n) bits when H has at most 4 vertices.

We consider two cases depending on whether H contains a cycle. Lemma 37. If |H| ≤ 4, and H contains a cycle, then H-free graphs can be certi ed with O(log n) bits.

Proof. Since H contains a cycle, either it is C 4 , and the result follows from Corollary 29, or it contains a triangle. Let us distinguish the cases depending on how the fourth vertex is connected to the triangle. If it is connected to two or three vertices, then H is either K 4 , or a diamond, and then H-minor-free graphs can be certi ed with O(log n) bits by Corollary 29.

So we can assume that H is a triangle plus one vertex attached to at most one vertex of the triangle. If G contains a cycle, let C be a shortest cycle in G, that is a cycle that contains the minimum number of vertices. Then C must contain all the vertices of the graph. Indeed, otherwise, since G is connected, there exists a node v attached to C, and v ∪C contains H as a minor. Therefore, G is either a cycle or a tree, which can be both certi ed in O(log n) bits, see Subsection 2.3. Lemma 38. If |H| ≤ 4 and H is acyclic, then we can certify H-free graphs with O(log n) bits.

Proof. If H has an isolated node then any graph G contain H has a minor as long as G contains a (non necessarily induced) path on three nodes and an isolated vertex. Since this property holds for every connected graph on 4 vertices, the conclusion follows.

So we can assume that H is connected. There are only two acyclic connected graphs on 4 vertices: the star S 1,3 with 3 leaves, and the path P 4 on four vertices. If G does not contain a star with 3 leaves as a minor, it means that G is either a path or a cycle which can be easily certi ed. If G does not contain a path on four nodes as a minor, it means that G is a star which, can be certi ed the following way. Give the identi er of the center to all nodes, and let the nodes check that they have been given the same ID, and that the non-center nodes have exactly one neighbor, and that this neighbor has this ID. This completes the picture for graphs H on at most 4 vertices.

Graphs on at most 5 vertices

Let us now focus on graphs H with at most 5 vertices. We were not able to deal with all of them, the most problematic one being K 5 , as we will discuss later on. However, we proved that H-minor freeness can be certi ed for some dense graphs like K 2,3 . The goal of this section is to provide evidence that again, the hardest case will be the case where H is dense. Before entering into the details of the proof, let us study some necessary conditions on the graph to be minimally not H-minor-free.

Local certification of graph decompositions and applications to minor-free classes

H-minimal graphs

A graph G is H-minimal if G admits a H-minor but, for any vertex v, G \ v does not admit any H-minor. Consider such a model V 1 , . . . , V |H| of H in a H-minimal graph G.
Intuitively, for all i, the important part of the subgraph induced by V i is a spanning tree that makes it connected, and connected to the neighboring V j 's. For example, if a V i contains a node that is only connected to other nodes of V i , and whose removal does not disconnect the subgraph of V i , then this node is unessential. In other words, such a node would not appear in a H-minimal graph, because we could remove it, and still have a model of H. Nevertheless, it is not true that the subgraph induced by every V i is a tree (see Figure 7). We now describe what the V i 's subgraphs precisely look like in a H-minimal graph. Let T be a graph, and S 1 , . . . , S r be some prescribed subsets of vertices of T . A Steiner tree of T with respect to the S i 's is a tree in T containing at least one element of each S i . We say that T is an almost tree for the S i 's if any Steiner tree with respect to the S i 's contains all the vertices of T . Now, given a model V 1 , . . . , V |H| of H, and v i ∈ H, the prescribed sets we are going to consider for V i are the subsets S j ⊆ V i containing all the vertices connected to V j , for every j such that v i v j is an edge of H. A Steiner tree of V i for the model V 1 , . . . , V |H| of H is a Steiner tree containing at least one vertex of each prescribed set. When the model is clear from context, we simply say a Steiner tree of V i .

With these notions, let us describe some properties of H-minimal graphs: Lemma 39. Let H be a graph and let G a H-minimal graph. For every H-model of G, each V i is an almost tree.

Proof. The proof is straightforward. If some V i is not an almost tree, then we can select a subset V i of V i which is an almost tree. When we consider the subsets where all the V j 's are the same but V i which is replaced V i , we still have a model of H, and it does not contain all the vertices, a contradiction with the fact that G is H-minimal.

It follows that we can characterize the form of the V i 's such that h i has small degree in H.

Corollary 40.

Let H be a graph, and G be a H-minimal graph. There exists a H-model of G such that:

1. If the degree of h i in H is one, then V i is reduced to a single vertex.

2. If the degree of h i in H is two, then V i is reduced to a single path P and, if h j , h k are the two neighbors of h i then exactly one endpoint of P is connected to V j , the other is connected to V k , and all the other vertices of P are neither connected to V j nor V k .

3. If the degree of h i in H is three, then the subgraph induced by V i is of one of the three following types:

Type A: the subgraph is a triangle with a path attached to each of the three corners (which might be reduced to a single vertex) where the other endpoint of the path is attached to a V j , and no other vertex is attached to V j . Type B: the subgraph is an induced subdivided star where only the last vertex of each branch is connected to a set V j , and in that case it is connected to exactly one V j .

Type C. the subgraph is a path, and there exists j, k such that the only connections with V j and V k are on the endpoints of the path. Any connection is possible for the vertices of the path with the last set V . Proof. 1. If the degree of h i is one, then a Steiner tree only needs the node that is connected to the rest of the model, so V i has only one node.

V i V j V k V Degree 3, Type C.
2. If the degree is two, then any Steiner tree contains a path between a node in V j and a node in V k , and the shortest such paths is an induced path, thus the subgraph induced by V i must be an induced path, with only the endpoints connected to the rest of the graph.

3. For degree 3, there are several cases.

If V i contains a cycle, then by minimality the removal of any vertex on this cycle disconnects V i from another branch. It follows that V i has type A.

If V i does not have a cycle, it has at most three leaves. If it has exactly three leaves then it has type B.

Otherwise, V i is a path, and by the degree-2 case, only the endpoints can connect to some sets V j and V k , but the connections to the third set V are not controlled. This is type C.

H with an isolated vertex and extension

Theorem 41. Let H be a graph on 5 vertices containing an isolated vertex. We can certify H-free graphs with certi cates of size O(log n).

The rest of this section is devoted to the proof of Theorem 41.

Let H be the graph H where an isolated vertex has been removed. A H-free graph is either a H -free graph, or it is a graph G such that all the models of H contain all the vertices of G. Since H -minor free graphs can be certi ed within O(log n) bits by Theorem 2, we can assume that G is

H -minimal.
The core of the proof consists in proving the following lemma.

Lemma 42. For every graph H on four vertices, any H -minimal graph is in one of the following categories:

1. subdivided copies of H , Proof. Let v 1 , . . . , v 4 be the vertices of H and V 1 , . . . , V 4 be a model of H . Let us now distinguish the cases depending on the maximum degree in H . For each case, we characterize the form of G.

Case 1: H is acyclic. We claim that if H is acyclic, then G has to be a copy of H (which is Item 1 in the lemma). If H has a node of degree 3, then G should have a node of degree 3, and by minimality G is exactly one node with degree 3 and its three neighbors, that is, exactly the same as H . If H has no node of degree 3, then in the model of H every V i contains exactly one node by minimality (using Corollary 40), and again G has to be a copy of H . If H is a triangle plus a node, then we claim that G is an induced cycle plus a unique vertex (Item 4 in the lemma). Indeed, since H has at most one degree 3 node, the vertex not in the triangle has degree at most one. Thus, for any cycle C of G, the cycle plus any node incident to C is a H -minor. Since G is H -minimal, the graph G is an induced cycle plus a node.

Case 3: H has two degree 3 vertices. In this case, H is a triangle plus a vertex of degree two (that is, a diamond) or three (that is, a K 4 ). Let V 1 , V 2 , V 3 , V 4 be a model of H where (at least) V 3 and V 4 are associated to degree 3 vertices of H . Assume that both V 3 and V 4 have type A or B. In this case, there is a unique vertex x ∈ V 3 incident to a vertex y in V 4 . If we add y to V 3 , and remove it from V 4 , then the size of V 4 is decreasing, and the V i 's still form a model of H . We can repeat this operation until V 4 does not have type A or B. Therefore, we can assume that V 3 or V 4 has type C. Case 3.a. Assume rst that H is a diamond. Then v 1 and v 2 have degree 2, and by Corollary 40, the subsets V 1 and V 2 are paths. Moreover, if there is an edge between them, and one V i has two vertices, we could remove one of these vertices, and still have a model of H . Therefore, each V i is reduced to a single vertex (otherwise G is not H -minimal) hence G is K 4 (Item 2 in the lemma).

Otherwise, if one of V 3 , V 4 has type A, then G \ V 1 contains a diamond as a minor, a contradiction since G is H -minimal. Moreover, as we already observed, at least one of V 3 , V 4 , say V 3 , has type C.

Assume that V 4 has type B, and let u ∈ V 4 be the vertex of V 4 adjacent to V 3 . If u sees two vertices of V 3 , then replacing (V 3 , V 4 ) by (V 3 ∪ {u}, V 4 \ u) gives a model where V 3 ∪ {u} has type A, a contradiction. Therefore, u sees a unique vertex of V 3 and G is a subdivided diamond (Item 1 in the lemma).

Otherwise, V 4 has type C, hence V 3 and V 4 induce two paths (with maybe edges between them).

There cannot be two edges between V 3 and V 4 , otherwise, G \ V 1 contains a diamond-minor, a contradiction. Therefore, there is only one edge between V 3 and V 4 and G is again a subdivision of a diamond (Item 1 in the lemma). And this nishes the analysis for the case where H is a diamond. Assume rst that C 2 is not a triangle. Then we can remove a vertex of G \ C 1 in such a way it remains connected and still contains the b i 's. This gives a K 4 -model, a contradiction. Hence, we assume that C 2 is a triangle.

We say that u ∈ C 2 has a private path to one of the a i 's if it has such a path that avoids C 2 \ {u}.

If some vertex u ∈ C 2 has no such path, then (G \ C 1 ) \ {u} is connected, hence G \ u contains a K 4 minor, a contradiction. Moreover, if two vertices u, v ∈ C 2 have a private path to the same a i , then we get a K 4 minor avoiding some other a j . Therefore, each vertex of C 2 is associated with a unique a i by considering private paths. Observe that there is exactly one path for each of the three choice of endpoints (since if there were two paths, one could remove a vertex which lies in one path but not in the other and get a K 4 minor).

It remains to show that C 1 is a triangle. To this end, observe that the structure we found on G \ C 2 ensures that the hypotheses of the statement are still met when exchanging C 1 with C 2 , and the rst argument of the proof shows that C 1 is a triangle. If w sees only one v i , then the graph is a subdivided K 4 , which is Item 1. Otherwise, there are at least 4 paths starting from w to C and one of them is subdivided. The removal of a vertex in a subdivided path still leaves a graph with a K 4 minor, a contradiction. It completes the proof.

We can now derive the theorem from the lemma. All the classes of Lemma 42 can be certi ed with certi cates of size O(log n), and in these classes it is easy to certify H -minimality. This is because in all these classes there is a constant number of special vertices: the nodes before the subdivision for Item 1, the additional node for Item 4, the corners of the triangles for Item 5, the nodes of degree larger than 2 in Item 6, and none for Items 2 and 3. The vertices that are not special have degree 2. Certifying these classes boils down to having spanning trees pointing to the special vertices, and having a certi cation of every path of non-special nodes, to transfer the knowledge of the endpoints from one side of the paths to the other. Then basic consistency checks verify the certi cation. Because the structure is so constrained, it is easy also to check whether the graph is

H -minimal.
Let us nish this section with an observation. Since the graph G is connected, the same proof holds for a graph H plus a single vertex of degree one as long as all the vertices of H are equivalent.

A graph is vertex transitive if for every pair of vertices (u, v), there exists an automorphism of H mapping u to v.

Lemma 44. Let H be a graph on 5 vertices obtained by adding a pending edge to a vertex transitive graph. Then H-minor free graph can be certi ed with O(log n) bits.

Lower bounds

In this section, we show logarithmic lower bounds for H-minor-freeness for every 2-connected graph H. These results generalize the lower bounds of [START_REF] Feuilloley | Compact distributed certi cation of planar graphs[END_REF] for K k and K p,q . Our technique is a simple reduction from the certi cation of paths, via a local simulation. In contrast, the proofs of [START_REF] Feuilloley | Local certi cation of graphs with bounded genus[END_REF] were ad-hoc adaptations of the constructions of [START_REF] Göös | Locally checkable proofs in distributed computing[END_REF] and [START_REF] Feuilloley | Local veri cation of global proofs[END_REF], with explicit counting arguments. Moreover, our lower bounds apply in the stronger model of locally checkable proofs, where the veri er can look at a constant distance.

Theorem 45. For every 2-connected graph H, certifying H-minor-freeness requires Ω(log n) bits.

Let us start by proving a couple of lemmas. Let H be a 2-connected graph, and let e = uv be an arbitrary edge of H. Let H -be the graph H \ e. Note that H -is connected. We are going to consider copies of H -, that we index as H - i 's, and where the copies of the nodes u and v will be called u i and v i . Let P be the class of all the graphs that can be made by taking some k copies of H -, and by identifying for every i ∈ [1, k -1], v i with u i+1 . In other words, P is the set of paths, where every edge is a copy of H -. The class C is the same as P except that we close the paths into cycles, that is, we identify v k with u 1 .

Lemma 46. The graphs of P are all H-minor-free, and the graphs of C all contain H as a minor.

Local certification of graph decompositions and applications to minor-free classes Proof of Theorem 45. Now Theorem 45 follows from the fact that paths cannot be certi ed with o(log n) bits [START_REF] Göös | Locally checkable proofs in distributed computing[END_REF][START_REF] Korman | Proof labeling schemes[END_REF]. Note that the proof applies in the locally checkable proof setting, as soon as the number of copies of H -is large enough, since the lower bound for paths also applies to locally checkable proofs.

Discussion

Milestones to go further

In this paper, we develop several tools and use them to show that some minor closed graph classes can be certi ed with O(log n) bits. One can probably use the tools we developed to certify new classes, we simply wanted to illustrate the interest of these tools. Let us now discuss the tools that are missing in order to tackle the general question on H-minor-freeness and which steps can be interesting to tackle it.

First, as we explained in Section 9, certi cation of H-minor free classes seems easier when H is sparse. One rst question that might be interested to look at is the following: estion 48. Let T be a tree. Can T -minor free graphs be certi ed with O(log n) bits?

The answer to this question for small graphs H (up to 5 vertices) is not very interesting, since the number of vertices of degree at least 3 is bounded (and then the whole structure of the graph is "simple"). Even if it remains simple for any H, there is no trivial argument allowing us to certify these nodes with O(log n) bits. In the light of the recent results that establish that O(log n) bits is doable for paths minors [START_REF] Feuilloley | What can be certi ed compactly? compact local certi cation of MSO properties in tree-like graphs[END_REF], and O(log 2 n) is doable for planar minors [START_REF] Fraigniaud | A meta-theorem for distributed certi cation[END_REF], Question 48 seems to be the simplest open question.

A natural approach to tackle Conjecture 1 would consist in an induction on the size of H. Indeed, knowing how to certify H \ x for any possible x may help to certify H. The basic idea would consist in separating two cases. 1) When H is not heavily connected where we can heavily use the fact that we can H \ x can be certi ed. And 2) when H is heavily connected, try to use a more general argument. A rst step toward step 1) would consist in proving that if H-minor-freeness can be certi ed then so is H + K 1 -minor-freeness2 . We proved it for ve vertices in Theorem 41, but the proof heavily uses the structure of the graphs on four vertices. One can then naturally ask the following general question: estion 49. Let H be a graph. Can (H + K 1 )-minor free graphs be certi ed with O(log n) bits when H can be certi ed with O(log n) bits?

As in the proof of Theorem 41, we know that we can assume that G is H-minimal. Even if most of the techniques for Lemma 41 are speci c, Corollary 40 gives some (basics) general properties of H-minimal graphs which might be useful to tackle this question.

In structural graph theory, a particular class of H-minimal graphs received a considerable attention which are minimally non-planar graphs, in order words, graphs G that are minimal and that contains either a K 5 or a K 3,3 as a minor. It might be interesting to determine if minimally non-planar graphs can be certi ed with O(log n) bits.

Note that if we can answer positively Question 49 positively, the second step would consist in proving the conjecture when we add to H a vertex attached to a single vertex of H. Proving this case would, in particular, imply a positive answer to Question 48.

If we want to consider dense graphs, the questions seem to become even harder. In particular, one of the rst main complicated H-minor class to deal with is probably the class of K 5 -minor-free graphs. There are several reasons for that. First, it is the smallest 4-connected graph and the hardness to certify seem to be highly related to the connectivity of the graph that is forbidden as a minor. The second reason is that it is the smallest graph for which H-minor free graphs is a super class of planar graphs. In other words, we cannot take advantage of the "planarity" of the graph (formally or informally) to certify the graph class. We then ask the following question: estion 50. Can K 5 -minor free graphs be certi ed with O(log n) bits?

Wagner proved in [START_REF] Wagner | Uber eine eigenschaft der ebenen komplex[END_REF] that a graph is K 5 -minor-free if and only if it can be built from planar graphs and from a special graph V 8 by repeated clique sums. A clique sum consists in taking two graphs of the class and gluing them on a clique and then (potentially) remove edges of that clique.

While it should have been easy to certify this sum if we keep the edges of the clique, the fact that they might disappear makes the work much more complicated for certi cation.

More generally, many decompositions are using the fact that we replace a subgraph by a smaller structure (a single vertex or an edge for instance) only connected to the initial neighbors of that structure in the graph. Certifying such structures is a challenging question whose positive answer can probably permit to break several of the current hardest cases.

Obstacles towards lower bounds

There are also several obstacles preventing us to prove extra-logarithmic lower bounds for the certi cate size of H-minor-free graphs. Basically, the only techniques we know consist in (explicit or implicit) reductions to communication complexity. In particular [START_REF] Göös | Locally checkable proofs in distributed computing[END_REF] and [START_REF] Censor-Hillel | Approximate proof-labeling schemes[END_REF] designed lower bounds for respectively non-3-colorable graphs and bounded diameter graphs as reductions from the disjointness problem in non-deterministic communication complexity.

Let us remind what these reductions look like. In such a reduction, one considers a family of graphs with two vertex sets A and B, with few edges in between. These graphs are de ned in such a way that the input of Alice for the disjointness problem can be encoded in the edges of A and the input of Bob in the edges of B. Then, given a certi cation scheme, Alice and Bob can basically simulate the veri cation algorithm, and deduce an answer for the disjointness problem. If a certi cation with small labels existed for the property at hand, then the communication protocol would contradict known lower bounds which proves a lower bound for certi cation.

The di culty of using this proof for H-minor free graphs comes from the fact that it is di cult to control where a minor can appear, that is, to control the models of H. For example, it is di cult to control that if H appears in the graph, then the nodes V i associated with some node i of H are on Alice's side. As a comparison, for proving properties on the diameter, [START_REF] Censor-Hillel | Approximate proof-labeling schemes[END_REF] used a construction where all the longest paths in the graph had to start from Alice side and nish in Bob side, but such a property seems di cult to obtain for minors.

Connectivity questions

A large part of the paper is devoted to certify connectivity and related notions that are of independent importance, for instance to certify the robustness of a network. For these, we do not have lower bounds, and leave the following question open.

estion 51. Does the certi cation of k-connectivity require Ω(log n) bits?

For this question it is tempting to try a construction close to the one we have used for H-minorfree graphs. For example, one could think that the nodes of the path/cycle could simulate the k-th power of the graph which is k-connected if and only if the graph is a cycle. But this does not work: we want the yes-instances for the property (e.g. the k-connected graphs) to be in mapped to yes-instances for acyclicity (e.g. paths), and not with the no-instances, which are the cycles.

An interesting open problem about k-connectivity also is on the positive side:

estion 52. Can k-connectivity be certi ed with O(log n) bits for any k ≥ 4?

Beyond the question of certifying the connectivity itself, we would like to be able to decompose graphs based on k-connected components, like what we did with the block-cut tree for 2-connectivity. Such decomposition are more complicated and less studied than block-cut trees, but for 3-connectivity such a tool is SPQR trees [START_REF] Di | Incremental planarity testing (extended abstract)[END_REF]. Unfortunately, similarly to the clique sum operation we mentioned earlier, some steps of the SPQR tree construction are based on edges that can be removed in later steps, making it hard to certify this structure.
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 1 Figure 1 Our main results for the certi cation of minor-closed classes.
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 2 Figure 2 From left to right: the diamond, the clique on 4 vertices K4, and the complete bipartite graph K2,3.

Proposition 17 .

 17 Consider two graph classes C 1 and C 2 that can be certi ed with f (n)-bit and g(n)bit labels respectively. Then the edge-expansion of C 1 by C 2 can be certi ed with O(f (n)+g(n)+log n)bit certi cates on the edges.Proof. We use a similar reasoning as for the proof of Proposition 16, except that we rst transform the node certi cations of C 1 and C 2 into edge certi cations (by putting the label of a node on all the edges incident with it).Consider a graph G ∈ C 1 . We consider the edge expansion of G where every uv is replaced by H(u, v). Each edge e from H(u, v) receives the labels of u and v, the certi cate of uv in G for C 1 , and the certi cate of e in H(u, v) for C 2 . Therefore, the certi cates have size O(f (n)+g(n)+log n). Now each vertex can check that all the edges labeled in some H(u, v) share the same certi cate for uv. There are two kinds of nodes: some where all incident edges are labeled as in the same H(u, v), and the others (the original vertices of G). All of them run the veri cation algorithm for C 2 by considering each group of incident edges labeled as in the same H(u, v). The latter also recover the certi cates of their neighbors in G from the edge labeling, and run the veri cation algorithm for C 1 .

Theorem 19 (

 19 [START_REF] Whitney | Non-separable and planar graphs[END_REF] (reformulated)). A graph is 2-connected if and only if it has an open ear decomposition.We use this characterization to certify 2-connectivity. Lemma 20. 2-connected graphs can be certi ed with O(log n) bits. Proof. First observe that one can obtain a long-ear decomposition from an ear decomposition (and vice versa) by removing/adding short ears, i.e. edges. Therefore, having an open ear decomposition is equivalent to having a subgraph with an open long-ear decomposition. Note that if a graph G has an open long-ear decomposition, then it is 2-degenerate. Indeed, the vertices of the last added long-ear have degree two and their removal is still a graph with an open long-ear decomposition. So in order to get the conclusion, Corollary 13 ensures that we only have to certify open long-ear decomposition with O(log n) bits per vertex.

Lemma 33 .

 33 3-connected K 2,4 -minor-free graphs can be certi ed with O(log n)-bit labels.Proof. Consider a yes-instance. By Theorem 31, either it is one of the nine small graphs of Theorem 31, and then we can use a constant size certi cation, or it is a graph of G[f ] for the speci c f of Theorem 31, and then we can useLemma 32. 
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 7 Figure 7 The two pictures represent some set Vi in a H-model. The dashed edges represent connections to other nodes of the model. In the rst picture, the graph cannot be H-minimal, indeed we can remove the nodes 7 and 2, and still have a proper model. In the second picture, no node can be removed without disconnecting the subgraph induced by Vi.
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 8 Figure 8 The types of the Vi's in Corollary 40
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 43967 induced cycles, 4. induced cycle plus a node, 5. the graphs of the type of Figure graphs with at most ve vertices of degree larger than 2, the complete bipartite graph K 3,3 .

Figure 9

 9 Figure 9 This drawing represents a class of graphs built by taking two vertex-disjoint triangles, and linking pairs of corners of the triangles by vertex-disjoint paths.

Case 2 :

 2 H has at most one degree-3 vertex. By Case 1, H contains a C 3 or a C 4 . If H = C 4 , it means that G contains a cycle of size at least 4 and that every such cycle contains all the nodes of the G. In other words, either G has size exactly four, or G is an induced cycle (Items 2 and 3 in the lemma).

Case 3 .

 3 b. Assume that H = K 4 . Let us rst prove the following claim: Claim 43. If G is K 4 -minimal, and G contains two vertex-disjoint cycles C 1 , C 2 with three pairwise non-incident edges between C 1 and G \ C 1 , then G is the graph depicted on Figure 9. Proof. Let a 1 b 1 , a 2 b 2 , a 3 b 3 be the edges from the statement, with a i ∈ C 1 .

  induced cycle and there are three paths in G \ x from v 2 to C (to v 1 , b, d), a contradiction. If v 1 v 2 is subdivided then we get the conclusion with the same cycle but three paths are leaving from c (to a, b and d) So, we can now assume that V 1 has at most 3 neighbors in C. But now, let v 1 , . . . , v be the vertices of V 1 with neighbors in C. Since v 1 and v have private neighbors on C, all the other vertices are adjacent to the same vertex w of C. Let us denote by a and b respectively the private neighbors of v 1 and v . Note that v V 1 v 1 aP ab bv is an induced cycle C (where P ab is the subpath of C from a to b avoiding w). If the only vertex outside of C is w, then we are in Item 4 in Lemma 42.

  denotes the neighborhood of v that is the set of vertices adjacent to v. The graph G is d-degenerate if there exists an ordering v 1 , . . . , v n of the vertices such that, for every i, N (v i ) ∩ {v i+1 , . . . , v n } has size at most d. It re nes the notion of maximum degree since any graph of maximum degree ∆ are indeed ∆-degenerate (but the gap between ∆ and the degeneracy can be arbitrarily large)

  The edge certi cates in Proposition 12 can be inconvenient if we want a classic certi cation (without edge certi cates) and if the graph is not assumed to be degenerate, which prevents us from using Theorem 8. However, observe that we give non-empty certi cates only to the edges of the subgraph, hence we can obtain a vertex-certi cation when the class C is degenerate.Proof. Consider a graph G ∈ C 1 on nodes v 1 , . . . , v of maximum degree ∆, and let H 1 , . . . , H be graphs of C 2 . We consider the node expansion of G where every v i is replaced by H i .On a yes-instance, the prover assigns the certi cates the following way. First it assigns to every node the index i corresponding to the graph H i it belongs to and the certi cation of the fact that H i belongs to C 2 (without taking into accounts the other nodes and edges). This takes at most g(n) + log n bits per node. Second, the prover gives to each vertex of H i the original certi cate of v i that G belongs to C 1 as well as the original certi cate of all the vertices in N (v i ) in G together with their names, which takes O(∆f (n)) bits. Finally, for every v j ∈ N (v i ), the prover chooses a vertex w j in H i adjacent to a vertex in H j , and certi es a spanning tree of H i rooted at w j . This takes O(∆ log n) bits.The veri cation algorithm is the following. Every node (labeled as) in H i checks that the number of trees corresponds to the degree of v i in G. Every node checks the correctness of the di erent trees.Moreover, every root v of a spanning tree in H i checks that it has a neighbor in the corresponding H j . All the nodes of H i check that their neighbors are in H i or in some H j with v j incident to v

	labels respectively, then the expansion can be certi ed with O(f (n) + g(n))-bit labels. While
	the natural approach (almost) works for edge-expansion, it does not give such a result for node-
	expansion. However, we can actually make it work with a bound that takes into account the
	maximum degree of the expanded graph.

Corollary 13. Let C be a d-degenerate graph class that can be certi ed with f (n)-bit labels. Let C be the class of the graphs that contain a graph of C as subgraph. Then C can be certi ed with certi cates of size O(f (n) + d log n) on the nodes.

Observe also that when considering induced subgraphs, we only have to specify which vertices are special, hence we do not need edge certi cates either. Note that, since we do not need to label edges, we do not need the class C to be degenerate. Corollary 14. Let C be a graph class that can be certi ed with f (n)-bit labels. Let C be the class of the graphs that contain a graph of C as an induced subgraph. Then C can be certi ed with certi cates of size O(f (n) + log n) on the nodes.

4.2 Expansions

Two common operations in characterizations of graph classes are what we call node and edge expansions. Definition 15. Consider two graph classes C 1 and C 2 . The node expansion of C 1 by C 2 is the class of graphs obtained by the following operation. Take a graph G in C 1 and replace every node v by a graph H(v) in C 2 , in such a way that for every edge uv ∈ E(G), there is (at least) one edge between H(u) and H(v) in G (and no such edge if uv / ∈ E(G)). The edge expansion of C 1 by C 2 is the class of graphs obtained by the following operation. Take a graph G in C 1 and replace every edge uv by a graph H(u, v) from C 2 , in such a way that the nodes of the original graph that are contained in H(u, v) are exactly u and v. We would like to have results of the form: if C 1 and C 2 can be certi ed with f (n) and g(n)-bit Proposition 16. Consider two graph classes C 1 and C 2 that can be certi ed with f (n)-bit and g(n)bit labels respectively, where all the graphs of C 1 have maximum degree ∆. Then the node-expansion of C 1 by C 2 can be certi ed with O(∆ • f (n) + g(n) + ∆ log n)-bit certi cates. i in G. Every node of each H i runs the veri cation algorithm to check that H i does belong to C 2 .

Finally, every node of H i simulates the veri cation of the original node v i , which is possible since every vertex of H i receives the certi cate of v i and all its neighbors in G. And every vertex w i ∈ H i incident to w j ∈ H j checks that v j ∈ N G (v i ) and that the certi cate of w j indeed contains the certi cates of v i and v j given for G.

  Local certification of graph decompositions and applications to minor-free classesLet us start from a certi cation of H and build a certi cation of G. The structure of H can be certi ed in a brute-force way, by providing to every node the complete map of the graph which takes constant space (since H is xed). Then, since trees can be certi ed in O(log n) bits, thanks to Proposition 16, any node-expansion of H by trees can be certi ed with O(log n) certi cates.

and only if the corresponding vertices are connected in H. In other words, G has a subgraph that is a node expansion of H by trees. Moreover, we can choose such a subgraph with degree at most |H| -1 = O(1) since H is xed.

  Definition 25. A (2-terminal) series-parallel graph is a graph with two labeled vertices called the source and the sink that can be built recursively as follows. A single edge is a series-parallel graph where one endpoint is the source and the other is the sink. Let G 1 , G 2 be two series-parallel graphs. The series of G 1 and G 2 which consists in merging the sink of G 1 and the source of G 2 is a series-parallel graph. The parallel of G 1 and G 2 , which consists in merging the sources of G 1 and G 2 together and merging the sinks of G 1 and G 2 together, is a series-parallel graph.

  Let G be a graph of P. Note that every vertex v i (identi ed with u i+1 ) for i ∈ {1, ..., k -1}, is a cut vertex of G. Therefore, since H is 2-connected, a model of H can only appear between two such nodes. By construction this cannot happen, as the graphs between the cut vertices are all H -. Now let G be a graph of C. We claim that G contains H as a minor. Consider the following model of H. Any H - i is a model of H except for the edge uv. Since we have made a cycle ofH - i 's,there is a path between v i and u i outside H - i , and this path nishes the model of H.Proof. Suppose there exists a certi cation with O(f (n)) bits for H-minor-free graphs. The certication of paths boils down to di erentiate between paths and cycles, since the nodes can locally check that they have degree 2. Consider the following certi cation of paths. The idea is that the nodes of the path (or cycle) will simulate the computation they would do if instead of being linked by edges, they were linked by copies of H -. The prover will give to every node the certi cates of H-minor-freeness for these simulated graphs, that is, for every node the certi cates of the two copies of H -adjacent to it in the simulated graph. Every node will check with its neighbor in the real graph that they have been given the same certi cates for these virtual H -. Then every node will run the veri cation algorithm for H-freeness in the simulated graph.

	Thus G is H-minor-free.
	Lemma 47. Let H be a 2-connected graph. If there is a certi cation with O(f (n)) bits for H-
	minor-free graphs, then there is a O(f (n)) certi cation for paths.

Proof.

By construction, the simulated graph is either in P or in C. Thus, if the veri cation algorithm accepts, that is, if the simulated graph is H-minor-free, then the graph is in P, and then the real graph is a path. If the veri cation algorithm rejects, that is if the simulated graph is not H-minor-free then the graph is in C, and then the real graph is a cycle. In other words we have designed a local certi cation for paths, with certi cates of size O(f (n)).

H + K1 is the graph H plus an isolated vertex.
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Local certification of graph decompositions and applications to minor-free classes

The remarks at the beginning of Case 3 ensure that all but at most one set V i (say V 4 ) are of type C. We now do a case analysis of the type of V 4 .

Assume that V 4 has type A. Then V 4 contains a triangle C. Moreover, G \ C contains a cycle since it contains V 1 , V 2 , V 3 which are pairwise connected. So by Claim 43, the graph is of the form of Figure 9 (Item 5 in the lemma).

Assume now that V 4 has type B. That is, V 4 is a subdivided star with three branches. Let x be the vertex of V 4 of degree three and a 1 , a 2 , a 3 be the endpoints of the subdivided star rooted in x (note that the a i 's are indeed distinct from x). Without loss of generality, each a i is connected to V i (and not to some other V j since otherwise G \ a j contains a K 4 -minor). If some a i is connected to at least two vertices of V i , then G \ ({a i } ∪ V i ) contains a cycle as well as V i ∪ {a i } with the conditions of Claim 43. So the graph is the graph of Figure 9 (Item 5 in the lemma). Therefore, each a i is connected to exactly one vertex of V i and G is a subdivided K 4 (Item 1 in the lemma).

Assume now that V 4 has type C. That is, the four sets are of type C. We focus on V 1 . We extend V 1 greedily, that is, if we can add a vertex v of some V j to V 1 , in such a way can still nd a model of K 4 where one of the set is V 1 ∪ v, we do it. So from now on, we can assume that any addition of a neighbor of a vertex of V j to V 1 does not keep a model. We can assume that V 1 has still type C, otherwise we can apply the previous cases. Now we claim that

then can be added to V 1 (a contradiction) or it is not, and then G \ w has a model of K 4 and then H = K 4 + K 1 appears as a minor in G. Let C be the cycle containing all the

Assume that the cycle C is not induced. Any chord of the cycle separate the cycle into two sides. If there is a chord of C that leaves one side of the cycle with at least one element of each of X 1 , X 2 , X 3 , then we can remove a vertex on the opposite side of the cycle and still have a K 4 -minor, a contradiction with the H-minimality of G. So, without loss of generality, the chord separates X 1 on one side and at least one element from X 2 , X 3 on the other side. Let e be the chord and P, P be the two parts of C separated by e where P only contains X 1 . In this case, we can apply Claim 43 with the cycle e + P , and a cycle using V 1 , a part of P and edges between V 1 and X 2 , X 3 . Hence, this case again boils down to the graphs of Figure 9 (Item 5 in Lemma 42).

So we can assume that C is an induced cycle. If V 1 is reduced to a single vertex, then the graph G is a wheel (an induced cycle plus a vertex incident to at least 3 vertices of the cycle) and it is K 4 -minimal (Item 4 in Lemma 42). So we can assume that V 1 has at least two vertices. And it is a path since it has type C and both endpoints of the path have neighbors in C (otherwise the model is not minimal). Since we have a K 4 -model, we need the whole set V 1 to have at least three di erent neighbors on C.

First, note that every vertex of V 1 has at most 2 neighbors on C (otherwise, we have a K 4 + K 1 model since V 1 contains at least two vertices). More generally, if a subpath of V 1 has at least three neighbors on C, we have a contradiction. So we can assume that, both extremities of V 1 have a private neighbor in C and, in total V 1 is adjacent to at most 4 vertices in C. 

where a, b, c, d are pairwise distinct. If a, b, c, d appear in that order then we are in the case of Item 6 in Lemma 42. So we can assume up to symmetry that the vertices a, c, b, d appear in that order in C. If the cycle is has length 4 and v 1 v 2 is an edge, then the graph is K 3,3 (Item 7). Now if at least one of ac, cb, bd, da, v 1 v 2 is not an edge, we have a K 4 + K 1 . Assume that one of ac, cb, bd, da is subdivided, w.l.o.g. ac. Let x be a vertex between a and c in C, then C = v 1 bC bd C da av 1 is an