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Meta-Schrödinger transformations

Stoimen Stoimenov and Malte Henkel

Abstract Meta-Schrödinger transformations are the dynamical symmetries of equa-
tions of combined ballistic and diffusive transport. Their Lie algebra is derived in
1+ 1 space dimensions and the infinite-dimensional generalisation is constructed.
Representations without time-translation-invariance are given and the co-variant
two-point functions are computed.

1 Introduction

While 2D conformal invariance [4] is an essential ingredient in string theory [35]
or equilibrium critical phenomena [19, 23], non-equilibrium statistical mechanics
furnishes different examples where a naturally realised dilatation-symmetry can be
extended to larger (eventually infinite-dimensional) symmetry algebra. Besides the
conformal algebra vir⊕ vir itself, see e.g. [5, 8, 9, 13] and also the example of
generalised hydrodynamics after quantum quenches [6, 11, 14, 34, 36], the most
simple example are systems described by an underlying simple diffusion equa-
tion whose dynamical symmetry was recognised by Jacobi [29] and Lie [30] and
is called today Schrödinger algebra sch(d) [33]. Its infinite-dimensional exten-
sion is the Schrödinger-Virasoro algebra sv(d) [22]. Contra a wide-held belief, the
Schrödinger algebra is not the non-relativistic limit obtained from the conformal
algebra by a Lie algebra contraction. Rather this procedure leads to the conformal
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Galilean algebra, e.g. [21, 24, 16, 17, 32, 1] (including its infinite-dimensional ex-
tension), which also arises independently in gravitational physics [7, 2, 3]. On the
other hand, the dynamical symmetries of simple ballistic transport equations has
recently been identified as the new meta-conformal algebra meta(1,d) [28], whose
infinite-dimensional extensions are isomorphic to the direct sum of two Virasoro al-
gebras in d = 1 spatial dimensions and of three Virasoro algebras for d = 2. Again,
the non-relativistic limit of these are the conformal Galilean algebras.

The physical context of these application is physical ageing: a many-body system
is prepared in a disordered state and then quenched to either a critical point or else
into the ordered phase where several equivalent equilibrium states coexist. After the
quench, such systems (i) relax slowly, (ii) break time-translation-invariance and (iii)
obey dynamical scaling, which are the three defining properties of physical ageing
[26]. Schrödinger-invariance is realised in quenches to the ordered phase, see [26]
for a detailed review. Meta-conformal invariance may be realised if the underlying
microscopic dynamics has a directional bias [20, 28].

Here, we shall describe the new ‘meta-Schrödinger algebra’ metasch(1,1) [38].
It arises for combined ballistic and diffusive transport in different spatial direc-
tions, see eq. (2) below. Such equations also arise in the study of driven diffusive
systems, see [37] for a classic review. Section 2 outlines the construction, includ-
ing of the infinite-dimensional extension, called meta-Schrödinger-Virasoro algebra
msv(1,1). We prove the semi-direct sum [38]

msv(1,1)∼=
(
vir⊕vir

)
⋉gal(1)∼= vir⋉ sv(1) (1)

(where gal(1) is the infinite-dimensional algebra of generalised Galilei transforma-
tions in the y-direction). Section 3 considers the necessary generalisations for phys-
ical ageing, when the time-translation generator −∂t must be modified. Section 4
lists the co-variant two-point functions of quasi-primary scaling operators.

2 Construction of the meta-Schrödinger algebra

Definition: The meta-Schrödinger algebra metasch(1,1) acts as dynamical symme-
try algebra of the following biased evolution equation

S Φ(t,x,y) :=
(

∂t −S1∂x −S2∂ 2
y

)
Φ(t,x,y) = 0. (2)

Following [33], infinitesimal symmetries of (2) are written in the form

X =−A(t,x,y)∂t −B(t,x,y)∂x −C(t,x,y)∂y −D(t,x,y), (3)

where the functions A,B,C,D depend all on t,x,y and must satisfy

[S ,X ]Φ(t,x,y) = λ (t,x,y)S Φ(t,x,y) (4)
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for an arbitrary field Φ = Φ(t,x,y). The functions A,B,C,D must obey the system1

S2Ayy +S1Ax − Ȧ−λ = 0 , S2Byy +S1Bx − Ḃ+λS1 = 0
2S2Cy +λS2 = 0 , S2Cyy +S1Cx −Ċ+2S2Dy = 0 (5)

S2Dyy +S1Dx − Ḋ = 0 , 2S2Ay = 0 , 2S2By = 0

The solution of (5) is aided by considering two sub-algebras.

1. For fields Φ = Φ(t,x), eq. (2) becomes the ballistic transport equation in the spa-
tial x-direction. Its dynamical symmetry is the meta-conformal algebra meta(1,1).

2. For fields Φ = Φ(t,y), eq. (2) becomes the diffusion equation in the spatial y-
direction. Its dynamical symmetry is the Schrödinger algebra sch(1).

Both should be sub-algebras of the sought Lie algebra metasch(1,1). A natural start-
ing point for the construction of metasch(1,1) will be representations of the meta-
conformal algebra which obey the condition (4) with the Schrödinger operator (2).
Recall the algebraic structure of the meta-conformal and Schrödinger algebras

meta(1,1)∼= sl(2,R)⊕ sl(2,R), sch(1)∼= sl(2,R)⋉hei(1) (6)

(the Heisenberg algebra hei(1) includes the central extension). We start from
Ansatz: Representations of metasch(1,1) are given by semi-direct sums of repre-
sentations of the meta-conformal algebra meta(1,1), with known action in the spa-
tial direction x and the Heisenberg algebra hei(1), with known action in the spatial
direction y.
We write X−1 =−∂t ,Y x

−1 =−∂x, Y y
− 1

2
=−∂y, M0 =−M and

X0 = −t∂t − x∂x −
1
2

y∂y −δ

X1 = −(t2 +αx2)∂t − (2tx+βx2)∂x −CX1(t,x,y)∂y −DX1(t,x,y)−2δ t −2γx

Y x
0 = −αx∂t − (t +βx)∂x −CY0(t,x,y)∂y −DY0(t,x,y)− γ (7)

Y x
1 = −α(2tx+βx2)∂t − ((t +βx)2 +αx2)∂x −CY1(t,x,y)∂y −DY1(t,x,y)

−2γt −2(αδ +βγ)x

Y y
1
2
= −A

Y1
2 (t,x)∂t −B

Y1
2 (t,x)∂x −C

Y1
2 (t,x,y)∂y −D

Y1
2 (t,x,y)−M y

where α,β are constants. To find A,B,C,D of each generator, use the sub-algebras:

• the meta-conformal algebra meta(1,1) =
⟨
Xn,Y x

n
⟩

n∈Z, with the commutators

[Xn,Xm] = (n−m)Xn+m, [Xn,Y x
m] = (n−m)Y x

n+m

[Y x
n ,Y

x
m] = (n−m)

(
αXn+m +βY x

n+m
)

(8)

• the Schrödinger sub-algebra sch(1) =
⟨
X0,±1,Y

y
± 1

2
,M0

⟩
and

1 We use the notations Ȧ = ∂t A(t,x,y), Axy = ∂x∂yA(t,x,y) etc.
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[Xn,Xm] = (n−m)Xn+m, [Xn,Y y
p ] =

(n
2
− p

)
Y y

n+p,

[Y y
p ,Y

y
q ] = (p−q)Mp+q, [Xn,Mm]−mMn+m (9)

For n ∈ Z and p ∈ Z+ 1
2 , one has the infinite-dimensional algebras metav(1,1) =⟨

Xn,Y x
n
⟩

and sv(1) =
⟨
Xn,Y x

n ,Y
y
p ,Mn

⟩
.

We should find sl(2,R) =
⟨
X0,±1

⟩
as sub-algebra acting on both x and y, but

such that the commutator [Y x
n ,Y

y
p ] closes into the algebra. All unknown functions

in the generators (7) are found from the above commutator relations (8, 9) and the
equations (5). The first equation of the system (5) gives λ X1 =−2t +2αS1x. Upon
substitution into the second equation (5), this leads to a quadratic equation for S1

αS2
1 +βS1 −1 = 0. (10)

Set c :=−αS1, then α = c(c−β ) ̸= 0. It is enough to construct X1 explicitly.

2.1 The general case: α ̸= 0

The algebra metasch(1,1) is spanned by the generators [38]:

X−1 = −∂t , X0 =−t∂t − x∂x −
y
2

∂y −δ

X1 = −(t2 +αx2)∂t − (2tx+βx2)∂x − (t + cx)y∂y −2tδ −2γx− M

2
y2

Y x
−1 = −∂x, Y x

0 =−αx∂t − (t +βx)∂x −
c
2

y∂y − γ

Y x
1 = −α(2tx+βx2)∂t − (t2 +2β tx+(α +β 2)x2)∂x − (ct +(α +βc)x)y∂y

−2γt −2(αδ +βγ)x− cM
2

y2

Y y
1
2
= −∂y, Y y

1
2
=−(t + cx)∂y −M y, M0 =−M , (11)

with the non-vanishing commutation relations, with n,m =±1,0 and p =± 1
2

[Xn,Xm] = (n−m)Xn+m, [Xn,Y x
m] = (n−m)Y x

n+m

[Xn,Y y
p ] =

(n
2
− p

)
Y y

n+p, [Y x
n ,Y

x
m] = (n−m)

(
αXn+m +βY x

n+m
)

[Y x
n ,Y

y
p ] = c

(n
2
− p

)
Y y

n+p, [Y y
1/2,Y

y
−1/2] = M0. (12)

Next, if we let

S1 =− c
α

=− 1
c−β

, S2 =
1

2M

2c−β
c−β

, and γ =
2c−β

4
+(β − c)δ (13)
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then the Schrödinger operator (2) becomes S = ∂t +
1

c−β ∂x− 1
2M

2c−β
c−β ∂ 2

y . It is read-
ily checked that all symmetry conditions (4) are obeyed [38]. Notice that the repre-
sentation (11) and all consequences are valid only for c ̸= β and c ̸= β/2.

2.2 Infinite-dimensional extension

The infinite-dimensional extension of the representation (11) is constructed as fol-
lows [38]. First, in terms of the of the variable ρ = t + cx, the infinite-dimensional
extension of the Heisenberg algebra is

Y y
p =−ρ p+1/2∂y − (p+1/2)M ρ p−1/2y , Mn =−M ρn (14)

such that for p,q ∈ Z+ 1
2 we have the commutator [Y y

p ,Y
y
q ] = (p− q)Mp+q. Next,

following [28], define a new family of generators Yn := N
(
aXn +Y x

n
)

whose nor-
malisation N will be fixed shortly. The new generators satisfy

[Yn,Ym] = (n−m)(2a+β )N Yn+m (15)

provided that a satisfies a2 + βa − c(c − β ) = 0. The two solutions a1,2 of this
quadratic equation, namely a1 = −c and a2 = c− β , produce two distinct forms,
denoted Y

(1,2)
n , of the generators. We then obtain

Y
(1)

n = N (1)(−cXn +Y x
n
)

, Y
(2)

n = N (2)((c−β )Xn +Y x
n
)

(16)

which both satisfy the commutator (15). We now fix the normalisations from the
requirements (β −2c)N (1) !

= 1 !
= (2c−β )N (2).

Analogously, we construct

An := Xn +bYn ; with [An,Am] = (n−m)An+m. (17)

Since a has the admissible values a1,2, it follows that either b = 0 or b = −1 [38].
Then three distinct forms of the An are possible, namely

A
(0)

n = Xn with
[
A

(0)
n ,Y

(1,2)
m

]
= (n−m)Y

(1,2)
n+m if b = 0

(18)

A
(1)

n = (c−β )Xn+Y x
n

2c−β = Y
(2)

n

A
(2)

n =−−cXn+Y x
n

2c−β = Y
(1)

n

}
with

[
A

(0)
n ,Y

(1,2)
m

]
= 0 if b =−1

This construction is valid2 if β ̸= 2c and β ̸= c. Then the maximal finite-dimensional
sub-algebra (11) is the dynamical symmetry of the equation (2).

2 In the limit β − 2c → 0, a Lie algebra contraction should lead to representations related to the
conformal Galilean algebra.
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We write down the generators explicitly3 for b = −1. Because of (18), we have
A

(1)
n = Y

(2)
n , and A

(2)
n = Y

(1)
n . Hence, these possibilities are not independent. Let

An = A
(1)

n and Yn = Y
(1)

n . They are readily obtained from the explicit expressions
for Xn,Y x

n in (11), but working with light-cone-like variables σ = t +(β − c)x and
ρ = (t + cx) leads to the more elegant form

Yn =−σn+1∂σ +(n+1)
cδ − γ
2c−β

σn (19a)

An =−ρn+1∂ρ − (n+1)
(
(c−β )δ + γ

2c−β
+

y
2

∂y

)
ρn − n(n+1)

4
M y2ρn−1 (19b)

Hence the Lie algebra
⟨
An,Yn,Y

y
p ,Mn

⟩
has the non-vanishing commutators, for

n,m ∈ Z and p,q ∈ Z+ 1
2 , using (14)

[An,Am] = (n−m)An+m, [Yn,Ym] = (n−m)Yn+m (20)

[An,Y y
p ] =

(n
2
− p

)
Y y

n+p, [Y y
p ,Y

y
q ] = (p−q)Mp+q, [An,Mm] =−mMn+m

which are those of the meta-Schrödinger-Virasoro Lie algebra (1). The Schrödinger-
Virasoro algebra sv(1) =

⟨
A B

n ,Y y
p ,Mn

⟩
⊂msv(1,1) is an obvious sub-algebra.

Since in light-cone coordinates, S =
(

2c−β
c−β ∂ρ − 1

2M ∂ 2
y

)
, the dynamical sym-

metry follows from, if γ = 2c−β
4 +(β − c)δ ,

[
S ,An

]
=

2c−β
c−β

((n+1)ρnS

+n(n+1)ρn−1
(
(c−β )δ + γ

2c−β
− 1

4

)
+

n3 −n
4

ρn−2M y2
)

(21)

[
S ,Y y

p
]
=

2c−β
c−β

M (p− 1
2
)(p+

1
2
)ρ p−3/2y ; [S ,Yn] = [S ,M0] = 0

such that either the maximal finite-dimensional sub-algebra metasch(1,1) or else⟨
A±1,0,Yn,Y± 1

2
,M0

⟩
leave the solution space of (2) invariant.

2.3 The special case α = 0

If α = 0, one has λ X1 = −2t and from (10) S1 = 1/β . Since we had before
α = c(c − β ), the results for α = 0 can be obtained from those of the previous
sub-section by setting c = 0 (but not c = β !) in the generators (11) as well as in
commutation relations (12). This directly produces an infinite-dimensional repre-
sentation of msv(1,1) whose commutators follow from (12) with α = c = 0 In the

3 The case b = 0 gives the same algebra, up to a change of basis [38].
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light-cone variables τ = t,v = t +βx,y, an elegant form is

An := Xn −
1
β

Y x
n =−τn+1∂τ − (n+1)

(
1
2

τny∂y +
(
δ − γ

β
)
τn +

n
4
M τn−1y2

)
Y x

n = −βvn+1∂v − (n+1)γvn,

Y y
p = −τ p+ 1

2 ∂y − (p+
1
2
)M τ p− 1

2 y, Mn =−M τn, (22)

whose non-vanishing commutators (n,m ∈ Z and p,q ∈ Z+ 1
2 )

[An,Am] = (n−m)An+m, [An,Y y
p ] =

(n
2
− p

)
Y y

n+p,

[Y x
n ,Y

x
m] = (n−m)βY x

n+m [Y y
p ,Y

y
q ] = (p−q)Mp+q (23)

again reproduce (1). In light-cone variables the Schrödinger operator (2) simplifies
into S = ∂t − 1

β ∂x − 1
2M ∂ 2

y = ∂τ − 1
2M ∂ 2

y and if γ
β = δ − 1

4 , the dynamical symme-
tries are obvious, as before [38].

2.4 Representations without time-translation-invariance

A system undergoing physical ageing is brought out of equilibrium by a quench in
its thermodynamic parameters. It cannot be at equilibrium which suggests that the
generator X−1 = −∂t of time-translations should not be part of the symmetry alge-
bra [25]. However, for the meta-Schrödinger algebra, such a restrictive prescription
is not adequate, because eq. (12) shows that without the generator X−1 of time-
translations, the conformal algebra of the generators Y x

n does not close, especially

[Y x
0 ,Y

x
−1] = αX−1 +βY x

−1. (24)

For the Schrödinger-Virasoro algebra, it can be shown how to generalise [31] the
defining representation such that (a) time-translation-invariance is broken and (b)
the full Lie algebra sv(d) is kept [27]. This procedure can be applied to the meta-
Schrödinger-Virasoro algebra as well. In the special case α = 0, to which we restrict
here, we find for the generator An = Xn − 1

β Y x
n , in light cone variables [38]

An =−τn+1∂τ −
n+1

2
τny∂y − (n+1)

(
δ − γ

β
)
τn −nξ τn − n(n+1)

4
M τn−1y2

(25)
All other generators maintain their form stated in (23). The only new element is a
‘second scaling dimension’ ξ . Together with the ‘first scaling dimension’ δ and the
‘rapidity’ γ , it can be used to characterise scaling operators out of stationary states.

In light-cone variables, the invariant Schrödinger operator becomes S = ∂τ −
1

2M ∂ 2
y + ξ

τ For checking the symmetry, all commutators of the time-translation-
invariant case can be taken over. The only exception is
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[S ,A1] =−2tS +
(
2M S2 −1

)
y∂y −2

(
δ +ξ − γ

β
− 1

4
)

(26)

Hence the conditions for a symmetry are now S2 =
1

2M and γ
β = δ +ξ − 1

4 .

3 Covariant two-point functions

As an application, we consider the form of the co-variant two point-function

F(t1, t2,x1,x2,y1,y1) :=
⟨
Φ1(t1,x1,y1)Φ2(t2,x2,y2)

⟩
(27)

where Φ1,Φ2 are quasi-primary scaling operators of metasch(1,1). From the rep-
resentations constructed before, the scaling operators are characterised by the sev-
eral parameters introduced. Physically, we distinguish between the stationary case,
which is time-translation-invariant and the ageing case, which is not [38].

3.1 Stationary case

In the time-translation-invariant case we consider scaling operators Φi (i = 1,2),
characterised by the parameters (δi,

γi
βi
,Mi,βi), transforming covariantly under the

representation with α = 0 (called case A). Lifting the single-body representation of
section 2 to a two-body representation, this produces a set of Ward identities which
fix the form of F(t,x,y) = G(A)(t, t +βx,y). Because of the translation-invariance,
F will only depend on the differences t := t1 − t2, x := x1 − x2 and y := y1 − y2 and
it can also be shown that β1 = β2 = β . Letting v = t +βx, the final result is

G(A)(t,v,y) = G0 δM1+M2,0 δδ1,δ2δγ1,γ2 t−2δ1+2γ1/β v−2γ1/β exp
(
−M1

2
y2

t

)
. (28)

and the normalisation constant G0. This form combines aspects of Schrödinger-
invariance in the transverse coordinate y and of meta-conformal invariance in the
parallel coordinate x.

Similarly, if α ̸= 0 (called case B) one works with the coordinates ρ = t + cx
and σ = t +(β − c)x. Again, β := β1 = β2 and c := c1 = c2. Using the definitions
Γ := cδ−γ

2c−β and ∆ := δ and writing F(t,x,y) = G(B)(ρ,σ ,y), we find

G(B)(ρ,σ ,y) = G0 δM1+M2,0 δ∆1,∆2δΓ1,Γ2 ρ−2∆1+2Γ1 σ−2Γ1 exp
(
−M1

2
y2

ρ

)
(29)

and where we also have ρ = ρ1 −ρ2, σ = σ1 −σ2 and y = y1 − y2.
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3.2 Ageing case

For non-equilibrium dynamics, as it occurs in ageing systems, time-translation-
invariance does not hold and the scaling operators Φ1,2 are quasi-primary with
respect to the representations derived in section 3. The time variables are now
t = t1 − t2 and u = t1/t2. We confine ourselves to the case α = 0 (case A) and find,
with F(t,u,x,y) = G(A)(t,u,v,y) and v = t +βx

G(A)(t,u,v,y) = G0δM1+M2,0 δγ1,γ2δδ1+ξ1,δ2+ξ2
(30)

×t−δ1−δ2+2γ1/β uξ1(u−1)−ξ1−ξ2v−2γ1/β exp
(
−M1

2
y2

t

)
Acknowledgements: MH and SS thank the PHC Rila (KP-06-RILA/7) for financial
support. SS is also supported by Bulgarian National Science Fund Grant KP-06-
N28/6.

References

1. N. Aizawa, Z. Kuznetsova, F. Toppan, Invariant partial differential equations with two-
dimensional exotic centrally extended conformal Galilei symmetry, J. Math. Phys. 57,
041701 (2016), [arXiv:1512.02290].

2. G. Barnich and G. Compère, Classical central extension for asymptotic symmetries at null
infinity in three spacetime dimensions, Class. Quant. Grav. 24 F15 (2007); corrigendum 24,
3139 (2007) [gr-qc/0610130].
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