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Configuration of Guard Band and Offsets in
Cyclic Queuing and Forwarding

Damien Guidolin--Pina, Marc Boyer, and Jean-Yves Le Boudec

F

Abstract—Cyclic Queuing and Forwarding (CQF) is a mechanism de-
fined by IEEE TSN for providing low jitter in a deterministic network. CQF
uses a common time cycle and two buffers per node output port: during
one cycle incoming packets are stored in one buffer while packets in the
other buffer are being transmitted; at the end of a cycle, the roles of the
two buffers are exchanged. The cycle start times are determined by a
time offset that may be different for every output buffer. A guard band
at both cycle ends is devised in order to compensate for misalignment
and timing inaccuracies. The proper operation of CQF requires that the
guard band and the offsets are computed such that nodes are suffi-
ciently time-aligned. First, we give necessary and sufficient conditions
for this to be guaranteed. The sufficient conditions lend themselves to
tractable computations and we show that they are close to optimal.
Our conditions account for nonideal clocks and non-zero propagation
times; we show that accounting for these two elements does matter.
Second, we give a method for computing the minimal duration of the
guard band, given prior choices of time offsets. Third, a judicious choice
of time offsets can considerably decrease the required duration of the
guard band: we give a practical algorithm, based on a Mixed Integer
Linear Program, for computing offsets that minimize the guard band. We
illustrate our results on several CQF network topologies with or without
cyclic dependencies.

Index Terms—TSN; CQF; Peristaltic Shaper; Cyclic Queuing and For-
warding.

1 INTRODUCTION

In order to offer a standard real-time data network, the IEEE
Time Sensitive Networking working group has defined sev-
eral extensions to Ethernet. Among others, Cyclic Queuing
and Forwarding (CQF), previously known as “peristaltic
shaper”, has been defined in order to offer guaranteed
delay and limited jitter [1]. In short (see Section 2 for more
details), CQF considers a common time cycle, T , and uses
two queues per node output port to alternatively store or
forward frames. It guarantees that the delay experienced
by a frame crossing h switches along its path is between
(h− 1)T and (h+ 1)T .

CQF has appealing characteristics: it is simple to imple-
ment, it offers a simple expression of the latency bound,
it provides a limited delay jitter (2T ) [2] and can also
easily handle cyclic dependencies (whereas other real-time
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mechanisms may require some attention is such cases, [3]–
[5])

Nevertheless, it requires some time synchronization and
alignment of cycles between switches [2]. Moreover a frac-
tion of the cycle time is used by a “guard band”, S, (called
“adjustment factor” in [1]), that absorbs the effects of imper-
fections in time synchronization and alignment, and during
which the output port can not be used by CQF frames.
To avoid this issue, several alternative strategies have been
defined (cf. Section 7), but they all require at least a third
queue, or even a fourth one. Furthermore, the cycle start
times are determined by a time offset that may be different
for every output buffer.

The use of CQF requires the choice of two network-wide
parameters, the cycle time T and the guard band S, and of
the values of all time offsets at output buffers. The cycle time
is related to the flows characteristics, whereas the guard
band and the time offsets are related to synchronization
between switches. In this paper, we address the choice of
time offsets and guard band.

We consider the clock error model from [6], which
captures the effects of clock nonidealities in the context of
deterministic networks (cf. Section 3). Then we provide:
• a formal characterization of CQF cycle alignment and

guard band (Sections 3 and 4.1), where, unlike other
studies, we do not assume that all cycle offsets are
equal;

• two sufficient conditions to check if a guard band S is
large enough (Section 4.1), one being a simplification of
the other;

• a necessary condition (Section 4.2), which is used to
show the quality of the sufficient conditions (Sec-
tion 4.3);

• a method to compute the minimum value of the guard
band, given some pre-specified values of time offsets
(Theorem 2);

• three strategies to compute a common guard band and
local time offsets (two analytic ones, and a third using
a Mixed Integer Linear Program – MILP – in Section 5);

• an evaluation of the strategies on some synthetic bench-
marks, in Section 6.

The experiments of Section 6 show that:
• clock nonideality cannot be neglected;
• the choice of the offsets may have a dramatic effect on

the minimum guard band value.
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Fig. 1: Queues of a bridge using CQF policy.

2 PRESENTATION OF CQF
2.1 Alternating Cycles
Consider a node offering a CQF policy to a set of flows
(a CQF class) on a given output port. Two queues, called
“even” and “odd” are dedicated to this CQF class, as de-
picted in Figure 1. The CQF node has a periodic behaviour,
with period T (called “cycle time”), which has the same
value for all CQF nodes in the network. Let c(t) denote the
value displayed at the clock of the node when the true time
is t and let o be the time offset at this server. A time instant
t is said to be in an “even” [resp. “odd”] cycle if

⌊
c(t)−o
T

⌋
is

even [resp. odd]1. During an even cycle, the even queue is
served and all received frames are stored in the odd queue.
The frames stored in the odd queue will be forwarded in the
next odd interval. The same holds, mutatis mutandi, with
odd cycles.

The operation of CQF on an illustrative topology is
shown in Figure 2. Under correct operation, CQF provides
two guarantees: if a frame follows a path made of h hops,
the end-to-end delay is in the range [(h − 1)T, (h + 1)T ]
and the delay-jitter is upper bounded by 2T (for example,
any frame of stream s1 experiments a delay in T and 3T ).
For correct operation, two conditions must be satisfied [7].
First, at every node, it must be possible to transmit in one
cycle all frames received in the previous cycle. This requires
that there is enough link capacity to support the rates of
all sources and that the cycle duration is large enough to
absorb the burstiness of all incoming flows in one cycle. This
condition and the resulting minimum cycle length is studied
in companion work and is outside the scope of this paper.
Second, the cycles of consecutive nodes must be aligned
such that all frames sent by a node when a buffer is open for
transmission can be stored by the receiving node in a buffer
that is open for reception. This condition is discussed in the
next subsection.

2.2 Time-Aligned Nodes and Guard Band
In a CQF network, nodes are assumed to be time-
synchronized. However, propagation times and switchover
time (from switch input to switch output) are non zero and
time synchronization is never perfect. To compensate for
these effects, the standard introduced a guard band S at
the beginning and at the end of each cycle as illustrated in
Figure 3. The value of S is the same for all CQF nodes in the
network.

The figure shows two frames, F and F ′, sent by Ni to Nj
with their emission time (E and E′) and their propagation

1. An expression such as bxc denotes the floor of x.
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Fig. 2: Operation of CQF on an illustrative topology.
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Fig. 3: Illustration of the guard time S.

times (P and P ′). Here both cycles are not aligned. This can
be by design (e.g. to compensate for propagation time) but
can also occur due to clock imperfections.

The standard states that “S should be set to the sum of
the errors or jitter values from all sources given in [a] list”
and gives a list of sources of errors [1, §T.5.3]. In Section 4,
we formally define what “Time-Aligned Nodes” means and
give practical conditions to ensure that the time alignment
holds. The conditions bear on the values of the guard band
and the offsets. The guard band may result in a waste of
capacity, hence it should be minimized. In Section 5 we give
methods to compute offsets and guard band that minimize
the guard band.

2.3 Other Aspects of CQF
The implementation of CQF relies on two mechanisms, the
Per-Stream Filtering and Policing at input port (PSFP, [8])
and the Gate Control List at output port (GCL) defined in
the ”Enhancements for Scheduled Traffic” extension of the
IEEE 802.1Q bridging standard [9]. PSPF has a time-driven
table (also called GCL) which forwards the CQF frames from
the input to the even or odd buffer on the output port.
During an open interval, a queue has to compete with the
other queues, using the static priority policy.

Then, the cycle time must account for higher priority
flows and some limited interaction with lower priority flows
to ensure that the frames received in the previous cycle can
be forwarded in the current cycle. The conditions on the
cycle time are out of the scope of this paper.

During the guard band, some higher or lower priority
frames can be transmitted. Higher priority frames can be
transmitted at any time, in or outside the guard band.
Lower priority frame can start either during the guard band,
or outside the guard band, once the current CQF queue
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is empty. When no preemption is implemented [10], the
blocking factor is

lmax
lp

C where lmax
lp is the maximal size of a

lower priority packet and C the link bandwidth. If the pre-
emption is implemented, and if the CQF queue is marked
as “express” and the lower priority flow is “preemptable”,
the blocking factor can be reduced to 143∗8

C [11].
The standard also considers the case with several CQF

classes having different cycle time and illustrates an exam-
ple of interleaving in [1, Fig. T-5], presented also in [12].
Moreover, in wide area networks, some papers have pro-
posed to extend CQF to more than 2 buffers. Such extensions
are out of the scope of this paper.

3 SYSTEM MODEL AND NOTATION

We consider a network with a single CQF class with two
buffers and n nodes N1...Nn. The CQF cycle time is T ; there
is a guard band of duration S at the beginning of every
cycle, and one of same duration at the end. The nominal
values of T and S are identical at all nodes. In contrast, the
links may have different bit rates Ri,j . Table 1 gathers the
notation used throughout the paper.

Obviously, there must be enough time in one cycle to
transmit the largest possible frame, i.e. we assume that

T − 2S ≥ max
i,j

Ei,j . (1)

where Ei,j is the transmission time of a frame of maximum
size on the link from Ni to Nj . The same way, Ei,j is the
transmission time of a frame of minimum size on the link
from Ni to Nj .

Every node has a local clock and all clocks are syn-
chronized, using for example the protocol specified in [13].
However, at the microsecond time scale, synchronization is
not perfect and clock non idealities have to be taken into
account. We use the following model, taken from [6]. Let
ci(t) be the local time displayed by the clock of node Ni
when the true time (international atomic time, TAI) is t. The
nonideality of clock ci can be characterized by the clock
stability bound ρi ≥ 1, the timing jitter bound ηi ≥ 0 and
the synchronization error bound ∆i, such that displayed
times satisfy:

∀t, d ≥ 0 :
d− ηi
ρi

≤ ci(t+ d)− ci(t) ≤ dρi + ηi, (2)

∀t ≥ 0 : |ci(t)− t| ≤ ∆i. (3)

The former equation captures the effect of clock drift, jitter
and wander on measurements of time intervals performed
with the local clock. The latter equation captures the effect
of the time synchronization protocol. In a TSN network syn-
chronized with gPTP (generic PTP), the maximal admissible
values are ρi = 1.0001 [13, Annex B.1.1], ηi = 2ns [13,
Annex B.1.3.1] and ∆i = 1µs [13, Section B.3]. The charac-
teristics of network components can be found in component
data-sheets, freely available (e.g. [14], [15]) or reserved to
customers. The two equations above can be combined,
which leads to the following bound on the measurements
of time intervals (proof in Appendix B):

max

{
d− 2∆i
d−ηi
ρi

≤ ci(t+d)−ci(t) ≤ min

{
d+ 2∆i

dρi + ηi
(4)

TABLE 1: Notation

Ei,j =
Li,j

Ri,j
Max transmission time of CQF frame from Ni to Nj

Ei,j =
Li,j

Ri,j
Min transmission time of CQF frame from Ni to Nj

k ∈ N Index of a cycle

Li,j , Li,j Min, max size of CQF frames from Ni to Nj

LNPr
i,j Maximum size of high priority frame from Ni to Nj

Ni Node i

oi Time offset at node i

P i,j , P i,j Lower and upper bounds on propagation time

P Mean propagation time P = 1
2

(
P i,j + P i,j

)
p Propagation jitter parameter, p = 1

2

(
P i,j − P i,j

)
Ri,j Bit rate of link from Ni to Nj

S Duration of guard band at begin and end of cycle

T Duration of cycle

zj , zj Lower and upper bounds on switching time

ci(t) time displayed by clock of Ni when true time is t

∆i clock synchronization error bound (e.g. ∆i = 1µs)

ρi ≥ 1 clock stability bound (e.g. ρi = 1.0001)

ηi ≤ 2∆ clock timing jitter bound (e.g. ηi = 2ns)

bxc floor of the real number x

m%2 residual modulo 2 of the integer m

ε a tolerance on the accuracy of floating-points

S a network-wide upper bound on S, (15)

S a lower bound on Soi,ojthm1 , (16)

S
∗oi,oj
thm1 , S∗

thm1 minimum value of S (at precision ε) that satisfies

the sufficient condition in Theorem 1

S
∗oi,oj
cor1 , S∗

cor1 minimum value of S (at precision ε) that satisfies

the simpler sufficient condition in Corollary 1

S
oi,oj
cor1 infimum of all values of S that satisfy Corollary 1;

may or may not be feasible and 0 ≤ S∗oi,oj
cor1 − Soi,oj

cor1 ≤ ε
S
∗oi,oj
thm3 , S∗

thm3 minimum value of S (at precision ε) that satisfies

the necessary condition in Theorem 3

I number of nodes

L set of links

Also note that we can always assume that 2∆ ≥ η since oth-
erwise we can replace η by 2∆ (Property 1 in Appendix C).

Node Ni uses a time offset oi, at which the initial cycle
begins. Consequently, the kth cycle starts at this node at true
time tik such that cj(tik)−oj = kT . Thus, at true time t, node
Ni is in the kth cycle with k =

⌊
cj(t)−oj

T

⌋
.

For a CQF frame F that travels from Ni to Nj , let tFem
denote the instant at which node Ni finishes transmitting
the last bit of F . Unless otherwise specified, all time instants
are in true time. Then, node Nj receives the frame F
and a classifier chooses in which queue the frame will be
forwarded. Let tFcl denote the instant at which the frame
F is forwarded to the queue Qj,b of the node Nj with
b =

⌊
cj(tFcl)−oj

T

⌋
%2 (where %2 denotes the remainder mod-

ulo 2). Note that the choice is done when the frame is totally
received in the nodeNj . The difference PFi,j = tFcl−tFem is the
sum of the propagation time from Ni to Nj plus the time for
ingress processing and is simply called “propagation” in the
rest of the paper. Then, the frame is transmitted through the
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switch fabric and is written in the queueQj,b. Let tFwr denote
the instant when the last bit of the frame F is written in the
queueQj,b of nodeNj . Note that the frame is written during
the cycle

⌊
cj(tFwr)−oj

T

⌋
. The difference zFj = tFwr−tFcl is called

the switching time. Figure 4 illustrates these definitions.
Following [1], we assume that the propagation time is

not constant but has some bounded variability; this may
correspond to variable decoding and processing times. Let
P i,j , P i,j be lower and upper bounds on the propagation
time from Ni to Nj . The difference P i,j − P i,j is a bound
on the “propagation jitter”. Similarly, we assume that the
switching time has some bounded variability and let zj , zj
denote lower and upper bounds on the switching time at
Nj .

In [16, § 4.11.3], it is specified that the “technological
latency of the switch should be less than 100 µs.” At the
time of writing, a value of 15µs seems acceptable.

Ni Nj

tFem tFcl tFwr

PFi,j zFj

Fig. 4: Significant times between 2 nodes Ni and Nj .

4 CONDITIONS FOR TIME ALIGNMENT

In this section we solve the issue of time alignment of nodes.
This involves the offsets and the guard band. The main
results of this section are Theorem 1 and Corollary 1, which
give sufficient conditions for nodes to be time aligned; the
latter is more tractable than the former and gives the basis
of methods to compute offsets and minimal guard band that
minimize the duration of the guard band in Section 5. We
also show in Theorem 2 that the minimum value of the
guard band for given offsets can be obtained by binary
search. Ideally, we would like to have a necessary and
sufficient condition, but this appears to be out of reach as
it is difficult to quantify all possible behaviours; instead, we
give a necessary condition and show that the difference with
the sufficient condition is small. In the idealized case where
clocks are perfect and switching latency is negligible, the
conditions are identical.

4.1 Sufficient Conditions
We start by a formal definition of time alignment.

Definition 1 (Time aligned nodes). Consider a node Ni that
has a link to a nodeNj . We say that Ni and Nj are time-aligned if
and only if, for any cycle index k at Ni, there exists a cycle index
k′ at Nj such that all frames sent by Ni in cycle k are forwarded
by node Nj in cycle k′ out of a single CQF buffer.

Using the notation in Section 3, we have that a frame
sent at time t to the node j is classified at time tcl in the
queue Qj,b with b =

⌊
cj(tcl)−oj

T

⌋
%2 and received at time

twr in this queue during the cycle k =
⌊
cj(twr)−oj

T

⌋
.

Consequently, Definition 1 is equivalent to saying that,
for any two frames F, F ′ sent by Ni to Nj during one same
cycle, they are classified in the same queue Qj,b, with

b =

⌊
cj(t

F
cl)− oj
T

⌋
%2 =

⌊
cj(t

F ′
cl )− oj
T

⌋
%2 (5)

and they are received in the same cycle k with

k =

⌊
cj(t

F
wr)− oj
T

⌋
=

⌊
cj(t

F ′
wr)− oj
T

⌋
(6)

Using Equations (5) and (6), we obtain the following
sufficient condition:

Theorem 1 (Sufficient condition for node alignment). Con-
sider two nodes Ni, Nj such that Ni has a link to Nj . The param-
eters ηi, ηj , ρi, ρj ,∆i,∆j , Ei,j , oi, oj , S and T are as defined in
section 3. Define Ui,j(S) and Li,j(S) by

Li,j(S) = S+Ei,j +P i,j +oi−oj−(∆i+∆j)− l̂i,j(S) (7)

with

l̂i,j(S) = min



(Ei,j + S) · (1− 1
ρi

) + ηi
ρi

+ 2∆j ,

2∆i + 2∆j ,

(Ei,j + S) · (1− 1
ρi·ρj )

+P i,j · (1− 1
ρj

) + ηi
ρi·ρj +

ηj
ρj
,

(Ei,j + S + P i,j) · (1− 1
ρj

) +
ηj
ρj

+ 2∆i · 1
ρj
(8)

and

Ui,j(S) = T−S+P i,j+zj+oi−oj+∆i+∆j+ ûi,j(S) (9)

with

ûi,j(S) = min



(T − S) · (ρi − 1) + ηi + 2∆j

2∆i + 2∆j

(T − S) · (ρi · ρj − 1) + ηi · ρj
+(P i,j + zj) · (ρj − 1) + ηj

(T − S + P i,j + zj) · (ρj − 1) + ηj + 2∆i.ρj
(10)

If the parameters satisfy the condition⌊
Ui,j(S)

T

⌋
=

⌊
Li,j(S)

T

⌋
(11)

then, the two nodes Ni, Nj are time aligned and the difference
between the emission and the reception cycles is constant, equal to

δi,j =

⌊
Ui,j(S)

T

⌋
=

⌊
Li,j(S)

T

⌋
(12)

If all clocks are perfect, the values of L and U become

Li,j(S) =S + Ei,j + P i,j + oi − oj , (13)

Ui,j(S) =T − S + P i,j + zj + oi − oj . (14)

The condition (11) then expresses that the guard band S
and the offsets oi, oj have to compensate the transmission,
propagation and switching delays. With nonideal clocks,
there are additional terms in L and U : the former term,
∆i+∆j , captures the synchronization accuracy whereas the
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latter term, namely l̂ or û, captures the effect of supplemen-
tary nonidealities. The values in the theorem then add some
margin in order to account for clock nonidealities.

The term δi,j represents the difference in cycle number.
At first glance, one may expect, up to some normalisation,
to always have δi,j = 0, i.e. a frame sent a cycle k is received
at cycle k. But as will be shown in the experiments (Section
6, Figure 20), one may introduce some phase between the
offsets to absorb the propagation time and reduce the guard
band. When this strategy is used on a non feed-forward
network (a network with cycles) with large propagation
time (i.e. when the sum of the propagation times is more
than half of the cycle time T ), some non null δi,j will appear.

Sketch of proof. The proof consists in bounding the reception
time of frames sent by the node Ni to the node Nj in one
cycle. To this end, we consider two frames, the former being
sent as early as possible and the latter as late as possible.
Let t, t′ be the respective reception instants. Since both
have to be received in the same cycle, it is implied that⌊
cj(t)−oj

T

⌋
=
⌊
cj(t′)−oj

T

⌋
(where cj is the clock of Nj). Then,

we use the conditions on clocks to compute a lower bound
on the former expression and an upper bound on the latter.

The full proof is given in Appendix D.

The values of Li,j(S) and Ui,j(S) depend on S in a non-
linear way. In Section 5 we are interested in computing off-
sets that minimize S; this non-linearity leads to MILPs with
many binary variables, which quickly become intractable.
This motivates us to derive from Theorem 1 the simpler
sufficient condition in Corollary 1, which, as we show in
Section 4.3, remains very close. To this end, first observe
that, by (1), we must have

S ≤ S :=
T −maxi,j Ei,j

2
(15)

Second, we use the following lower bound:

Property 1. Let

S := max
i,j

(
P i,j + zj − P i,j − E

2
+ ∆i + ∆j

)
(16)

If S satisfies the sufficient condition (11) in Theorem 1 for every
pair i, j, then S > S.

Proof. The proof is given in Appendix E.

This leads to the following, simpler, sufficient condition:

Corollary 1 (Simpler Sufficient Condition for Node Align-
ment). Theorem 1 continues to hold if we replace l̂i,j(S) and
ûi,j(S) by l̂i,j(S) and ûi,j(S), i.e. if we replace Li,j(S), Ui,j(S)
by

L′i,j(S) = S + Ei,j + P i,j + oi − oj − (∆i + ∆j)− l̂i,j(S)
(17)

U ′i,j(S) = T − S + P i,j + zj + oi − oj + ∆i + ∆j + ûi,j(S)
(18)

Proof. The proof is given in Appendix F.

Next, we study the set of values of the guard time S that,
for given values of the offsets oi, oj , satisfy the sufficient
condition in Theorem 1 or in Corollary 1. Specifically, we

are interested in minimizing the value of S for given values
of the offsets, which is given by the next theorem.

Theorem 2. For given values of the offsets oi, oj , let Soi,ojthm1 be
the set of values of S ∈ [0;S] that satisfy the sufficient condition
(11) in Theorem 1.
• Soi,ojthm1 is not empty if and only if S satisfies (11);
• If Soi,ojthm1 is not empty then there exists some Soi,ojthm1 > 0 such

that
Soi,ojthm1 =

(
S
oi,oj
thm1;S

]
or Soi,ojthm1 =

[
S
oi,oj
thm1;S

]
.

• If Soi,ojthm1 is not empty, let S∗oi,ojthm1 be the smallest value of S ∈
Soi,ojthm1 obtained with binary search in the interval [0;S] with
precision ε (this requires

⌈
log2

S
ε

⌉
steps). Then S

∗oi,oj
thm1 is

an ε-over-approximation of Soi,ojthm1. i.e. [S
∗oi,oj
thm1 ;S] ⊂ Soi,ojthm1

and S∗oi,ojthm1 − S
oi,oj
thm1 ≤ ε.

The same holds mutatis mutandi with Corollary 1.

The proof is in Appendix G. The above theorem estab-
lishes that the set of feasible guard band durations is an
interval; however, it may be closed or semi-closed, i.e. it is
not certain that the infimum is feasible. This is because of
the floor in (11), which leads to a discontinuous condition
(see Lemma 8 in Appendix K for details). This means that,
strictly speaking, there might not be a minimum value. In
practice, however, we are interested in values expressed
with some accuracy, say ε, and the theorem means that,
modulo a precision of ε, there is a minimum value S∗oi,ojthm1 ,
and any value above it and below S is feasible. The same
holds for the condition in Corollary 1, and since any S that
satisfies Corollary 1 also satisfies Theorem 1, we always
have S∗oi,ojthm1 ≤ S

∗oi,oj
cor1 . Furthermore, we show numerically

in Section 4.3 that the difference is small.
Last, the following property (proof in Appendix H)

shows that the sufficient condition models the expected
notion of slack: improving a clock can only reduce the value
of the required guard band.

Property 2. Let S be a solution of Theorem 1 with two clock
quality parameters (ρi, ηi,∆i) (ρj , ηj ,∆j) for some values of the
offsets oi, oj . Then, S is also a solution with better clock quality
parameters (ρ′i, η

′
i,∆

′
i) (ρ′j , η

′
j ,∆

′
j) for the same values of the

offsets oi, oj . Here better means ρ′i ≤ ρi, η′i ≤ ηi, ∆′i ≤ ∆′i,
ρ′j ≤ ρj , η′j ≤ ηj , ∆′j ≤ ∆′j . The same holds mutatis mutandi
with Corollary 1.

4.2 Necessary Condition

We now complement the sufficient condition in the previous
section with a necessary condition. For readability, in this
subsection we drop the dependency on i, j in U and L
variables.

Theorem 3 (Necessary condition for time align-
ment). Let Ni, Nj be two nodes with parameters
ηi, ηj , ρi, ρj ,∆i,∆j , Ei,j , oi, oj , S as defined in Section 3.
Define X, s, L̃%, L̃%s, Ũ%, Ũ%s, L̃, L̃s, Ũ and Ũs as follow:

X = P i,j −∆i + oi − oj + E + S (19)

L̃% = X −∆j (20)
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L̃ = X −∆j + min

{
zj + 2∆j ,

ρj · zj + ηj
(21)

Ũ% =X+ (22)

min


T − E − 2S + P i,j − P i,j + ∆j + 2∆i

(T − E − 2S) · ρi + P i,j − P i,j + ∆j

(T − E − 2S + P i,j − P i,j + 2∆i) · ρj + ηj −∆j

((T − E − 2S) · ρi + P i,j − P i,j) · ρj + ηj −∆j

Ũ =X+ (23)

min



T − E − 2S + P i,j − P i,j + zj + ∆j + 2∆i

(T − E − 2S) · ρi + P i,j − P i,j + zj + ∆j

(T − E − 2S + P i,j − P i,j + zj + 2∆i) · ρj
+ηj −∆j

((T − E − 2S) · ρi + P i,j − P i,j + zj) · ρj + ηj −∆j

s ∈{−1 ; 1} (24)

L̃%s =E + S + P + oi − oj − s · (∆i + ∆j) (25)

L̃s =L̃%1 + z (26)

Ũ%s =T − S + P + oi − oj − s · (∆i + ∆j) (27)

Ũs =Ũ%1 + z (28)

If the two nodes Ni, Nj are time aligned for any valid clock
trajectory and η ≤ Ei,j , then :⌊

Ũ

T

⌋
=

⌊
L̃

T

⌋
and

⌊
Ũ%

T

⌋
%2 =

⌊
L̃%

T

⌋
%2 (29)

and

⌊
Ũs
T

⌋
=

⌊
L̃s
T

⌋
and

⌊
Ũ%s

T

⌋
%2 =

⌊
L̃%s

T

⌋
%2 (30)

and the difference between the emission and the reception cycle is
constant, equal to δi,j with

δi,j =

⌊
Ũ

T

⌋
=

⌊
L̃

T

⌋
(31)

An illustration of Theorem 3 is provided in Figure 5.
When clocks are perfect, the values become

L̃% = L̃%s = S + Ei,j + P i,j + oi − oj = L (32)

Ũ% = Ũ%s = T − S + P i,j + oi − oj = U − zj (33)

L̃ = L̃s = S + Ei,j + P i,j + zj + oi − oj = L+ zj (34)

Ũ = Ũs = T − S + P i,j + zj + oi − oj = U. (35)

Clock on Node j

Real time

Real time

Clock on Node i

tk tk+1tF
′

emtFem

ci(tk) ci(t
F
em) ci(t

′F
em) ci(tk+1)

T

S SE

tFrec tF
′

rec

P i,j P i,j

cj(t
F
rec) cj(t

F ′
rec)

Fig. 5: Illustration of Theorem 3.

TABLE 2: Random Parameters (µs) for Figure 6. Nodes i, j
are fixed, oi = 0, P i,j = P − p and P i,j = P + p.

Random values (in µs, except for ρ, unitless)
P p zj zj

[0; 200] [0.01; 0.1] ∗ P [0; 15] [0; z]

oj ∆ ρ η

[0; 1000] [0; 1] 1 + [0; .0002] [0; .002]

Sketch of proof: . The proof uses adversarial frame emission
patterns as well as clock behaviours. It consists in sending
a first frame F in the first cycle of Ni as soon as possible,
just after the opening guard band, and a second frame F ′

as late as possible, just before the closing guard band. In the
proof, t0 denotes the instant when the first cycle starts (i.e.
ci(t0) − oi = 0), and t1 is the instant when the last bit of F
is sent (i.e. ci(t1) = ci(t0) + S +E), and t2 the instant when
the last bit of F ′ is sent (i.e. ci(t2) = ci(t0) +T −S). Let tFrec,
tF

′
rec denote the reception instants of F and F ′. In order to

maximize the difference between cj(tFrec) and cj(tF
′

rec), while
satisfying the set of constraints, we consider that the clock ci
runs as fast as possible on [t0; t1] and as slowly as possible
on [t1; t0 +T ] while the clock cj runs as fast as possible from
tFrec, as illustrated in Figure 5.

The full proof is given in Appendix I.

For given values of the offsets oi, oj , let Soi,oj be the set
of values of S that satisfy the exact but intractable conditions
in (5), (6) and let Soi,ojthm3 be the set of values of S that satisfy
the necessary condition of Theorem 3. It follows that

Soi,ojthm3 ⊂ S
oi,oj ⊂ Soi,ojthm1 ⊂ S

oi,oj
cor1 (36)

In the next section we will compare these sets. Note
that, while Soi,ojthm1 and Soi,ojcor1 are intervals, it is not clear
whether the same holds for Soi,ojthm3 and Soi,oj . However, let
S
oi,oj
thm3 = inf Soi,ojthm3, which we numerically compute by brute

force, thus obtaining an ε-lower approximation S
∗oi,oj
thm3 . It

follows that the length of Soi,oj \ Soi,ojthm1 is upper bounded
by S

∗oi,oj
thm1 − S

∗oi,oj
thm3 , which thus bounds the pessimism of

the sufficient condition in Theorem 1 (and similarly with
Corollary 1).

4.3 Comparing the Three Conditions
We have obtained two sufficient conditions (Theorem 1
and Corollary 1) and one necessary condition (Theorem 3).
To evaluate the tightness of the sufficient conditions, we
compute the values of S∗oi,ojthm1 −S

∗oi,oj
thm3 and S∗oi,ojcor1 −S∗oi,ojthm1

for different values of the offsets and other parameters
taken randomly with a uniform distribution in the intervals
shown in Table 2.

We take 100000 configurations using these parameters
and we compute S∗oi,ojthm1 and S

∗oi,oj
cor1 by binary search (with

ε = S · 10−10) and S
∗oi,oj
thm3 by scanning all values between

0 and S∗thm1 with a step of 10 ns for each configuration.
Note that for 3978 configurations there is no solution, i.e. the
parameters don’t allow to find any valid guard band value.
We trace the histogram shown on Figure 6 of the difference
between the values (see x label).

As we can see, the two sufficient conditions are close:
The maximum difference between them is around 0.2 µs and
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Fig. 6: Histogram of the difference between the conditions.

the average difference is around 0.05 µs. Thus, the condition
in Corollary 1 is satisfactory because it is easier to compute
and quite close to Theorem 1.

Moreover, we see that the difference between the suf-
ficient and the necessary condition is around 0.1 µs and
the maximum difference is around 4.5 µs. However, on this
set of configurations, only 26 values are greater than 0.5 µs
(0.03 % of the configurations, visible on the zoom of the
left graph). Thus, we can consider that we are close enough
to the true (intractable) solution by using the sufficient
condition.

4.4 Effect of Clock Nonidealities

The incorporation of clock nonidealities brings some com-
plexity to the analysis. In this section we test whether such a
modelling accuracy is really necessary. We consider a repre-
sentative configuration as in Table 3 and consider the effect
of the following three factors in the analysis: (1) propagation
jitter 2p and switching time z; (2) clock synchronization
error ∆; (3) clock jitter and drift parameters ρ, η. This leads
to the following four scenarios:
• ’Perfect’: propagation jitter and switching times are null

and clocks are perfect. This is the assumption done in
most of the literature.

• ’Perfect clock, default other’: propagation jitter and
switching times are considered but clocks are perfect.

• ’Default’: considers all elements described in this paper.
• ’Default, synchronization only’: result of a simplified

analysis that captures clock synchronization accuracy
but ignores bounds on clock jitter and drift.

The resulting S∗ are computed as in the previous section,
and the results are shown in Table 3. We observe that, with
the perfect configuration, all the resulting S∗ are approx-
imately equal to 0 (not exactly, due to the tolerance ε).
However, with the other scenarios, the resulting S∗ are all
non negligible and cause a loss of about 3-4 percent of the
cycle time for this single configuration. Most of it comes
from system delays (3%), and clock errors add another
.5%. Last, ignoring clock drift and jitter bounds induces
an increase in the guard band by .5% for the sufficient
conditions and increases the gap between the necessary and
the sufficient condition. Thus, the model including the clock
drift and jitter bounds is significantly better than the one
only considering the clock synchronization.

TABLE 3: Effect of clock nonidealities. Nodes i, j are fixed,
P i,j = P − p and P i,j = P + p.

Values for all scenarios.
T P zj oi oj

1ms 100µs 0 0 100µs
Eij Eij

0.672µs 12.384µs

Perfect Perfect clock,
default other

Default Default,
synchronization
only

p 0 0.5 µs 0.5 µs 0.5 µs
zj 0 15 µs 15 µs 15 µs
∆ 0 0 1 µs 1 µs
ρ 1 1 1.0001 +∞
η 0 0 2 ns +∞

S∗
cor1 2.9e-8 µs 15.5 µs 17.7 µs 21.5 µs

S∗
thm1 2.9e-8 µs 15.5 µs 17.7 µs 21.5 µs
S∗
thm3 2.9e-8 µs 15.5 µs 17.5 µs 17.5 µs

This suggests that we can’t ignore the nonidealities; this
is confirmed by the thorough experiments in Section 6.

5 COMPUTING THE GUARD BAND AND THE OFF-
SETS

In the previous section we have shown that Corollary 1
obtains a quasi-optimal condition to decide whether some
guard band value S is admissible and gives a method to
test whether some feasible guard band exists at all. Fur-
thermore, we have shown that there is an infimal value
S
oi,oj
cor1 , for given values of time offsets oi, oj , which may

or may not be admissible, but such that any value in the
range (S

oi,oj
cor1 ;S] is admissible with respect to the constraints

on link (i, j). We have also given a method to compute
an ε over-approximation, S∗oi,ojcor1 , of Soi,ojcor1 , which can be
interpreted as a minimal guard band value, given offsets.

If the values of the offsets are imposed or given by
some oracle, the infimal guard band is then equal to
max(i,j)∈L S

oi,oj
cor1 , since it must satisfy the constraints on

every link. However, as we show below, the values of
the time offsets largely influence the infimal guard band.
Therefore, we are interested in solving

Problem (P ):

minimize max
(i,j)∈L

S
oi,oj
cor1

over(oi)i=1:I ∈ [0;T ]I

where, by convention, Soi,ojcor1 = +∞ if Corollary 1 gives
no admissible guard band for these values of oi, oj . In the
above, L is the set of links and I is the number of nodes. If
Problem (P ) has a solution, say S, then any S that satisfies
S < S ≤ S is a valid guard band.

We first give two simple heuristics that correspond to
common practices; then we derive a MILP formulation of
Problem (P ).
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5.1 Heuristics

Recall that the condition in Corollary 1 is:⌊
U ′i,j(S)

T

⌋
=

⌊
L′i,j(S)

T

⌋
(37)

where L′i,j , U
′
i,j are defined in (17) and (18).

5.1.1 Null offset

This solution consists in aligning all offsets, which, without
loss of generality, can be written as oi = oj = 0. The
condition in (37) becomes:⌊

S + Ei,j + P i,j − (∆i + ∆j)− l̂i,j(S)

T

⌋

=

⌊
T − S + P i,j + zi,j + ∆i + ∆j + ûi,j(S)

T

⌋ (38)

The general case is complicated (see Appendix J), but
can be considerably simplified when the cycle time is large
compared to propagation and transmission. Specifically,
consider the following condition, stating that the clock error
term l̂i,j is small with regards to emission, propagation and
switching times, which also are smaller than the cycle time:

0 ≤ Ei,j + P i,j + P i,j + zi,j + ûi,j(S)− l̂i,j(S) < T. (39)

If this condition holds for every i, j, then the floor functions
in (38) are null (see Appendix J, (242)), implying

0 ≤ S + Ei,j + P i,j − (∆i + ∆j)− l̂i,j(S) < T (40)

0 ≤ T − S + P i,j + zi,j + ∆i + ∆j + ûi,j(S) < T. (41)

Consequently,

S ≥ (∆i + ∆j) + l̂i,j(S)− Ei,j − P i,j (42)

S > P i,j + zi,j + ∆i + ∆j + ûi,j(S) (43)

However, since (39) holds, then

P i,j + zi,j + ûi,j(S) ≥ l̂i,j(S)− Ei,j − P i,j (44)

It follows that the infimum of S is

Snull = max
i,j

{
P i,j + zi,j + ∆i + ∆j + ûi,j(S)

}
, (45)

i.e. if (39) holds for every i, j and Snull < S, then any S in
(Snull;S] is an admissible value for the guard band.

As expected, the guard band needs to absorb terms
related to the clock imperfections (∆i, ∆j , ûi,j(S)) but it
also has to absorb the maximal propagation and maximal
switching times (P i,j , zi,j).

In the general case (when (39) does not hold for some
i, j) the expression of Snull is more complicated and is given
in Appendix J.

5.1.2 Absorbing the propagation with offsets
The standard suggests to set the guard band such that it
compensates the “jitter in the propagation time”, whereas
the expression in eq. (45) involves the propagation itself, not
its jitter. This suggests another strategy, where the offsets are
set to compensate the average propagation time.

Let P be the mid propagation time between the node i
and the node j, and pi,j the semi-variation, i.e.:

Pi,j =
P i,j + P i,j

2
, pi,j = Pi,j − P i,j = P i,j − Pi,j . (46)

Assume that we can choose oi and oj such that

oj = oi + Pi,j (47)

then the condition 37 becomes:⌊
S + Ei,j − pi,j − (∆i + ∆j)− l̂i,j(S)

T

⌋

=

⌊
T − S + pi,j + zi,j + ∆i + ∆j + ûi,j(S)

T

⌋ (48)

As Equation (1) is respected, we know that

S + Ei,j − pi,j−(∆i + ∆j)− l̂i,j(S) (49)

≤ Ei,j + S (50)

≤ T − S < T because S > 0. (51)

So, it comes
⌊
S+Ei,j−pi,j−(∆i+∆j)−l̂i,j(S)

T

⌋
= 0. Conse-

quently,
⌊
T−S+pi,j+zi,j+∆i+∆j+ûi,j(S)

T

⌋
= 0, thus

T − S + pi,j + zi,j + ∆i + ∆j + ûi,j(S) < T (52)

S > pi,j + zi,j + ∆i + ∆j + ûi,j(S). (53)

It follows that the infimum of S is

Sprop = max
i,j

{
P i,j − P i,j

2
+ zi,j + ∆i + ∆j + ûi,j(S)

}
.

(54)
In other words, if for every link (i, j) : oj = oi +

P i,j+P i,j

2 , and Sprop < S, then any S in (Sprop;S] is an
admissible value for the guard band.

As expected, the guard band needs to absorb terms
related to the clock imperfections (∆i, ∆j , û(S)) but it also
has to absorb the jitter of the propagation time and the
maximal switching time.

However, having (47) simultaneously at all links i, j is
not always possible, for example when a switch has several
inputs or in case of cyclic dependency (in case of a ring).

5.1.3 Comparing the Two Heuristics
Observe that Sprop < Snull, i.e. setting the offsets to absorb
the propagation time, when it is possible, always gives a
smaller (i.e. better) guard band than when aligning all off-

sets. For a single pair of nodes, the difference is
P i,j+P i,j

2 , i.e.
the median propagation delay. Considering a propagation
speed being 60% of light speed, as in [17, N.6] (that is to
say, 0.18m/ns) it takes 0.11µs to cross a 20m cable, and in
a Metropolitan Area Network (MAN), a 20km cable will
have a transmission delay of 0.11ms. At 1Gb/s, 0.11ms is
the transmission time of 110Kb of data.
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The fact that Sprop can be significantly smaller than Snull
indicates that the time offsets do have an important effect on
the minimum guard band. However, the heuristic that leads
to Sprop imposes strict constraints on the network topology,
and is often not applicable. This motivates us to find a
solution to Problem (P ), i.e. to compute time offsets that
minimize the guard band.

5.2 Using a MILP Solver
In this section we derive a method to solve Problem (P ).
First notice that, from (37), Problem (P ) is equivalent to

Problem (P ′):
minimize

over S ∈ [0;S], (oi)i=1:I ∈ [0;T ]I ,

subject to

⌊
U ′i,j(S)

T

⌋
=

⌊
L′i,j(S)

T

⌋
,∀(i, j) ∈ L

(Note that, in the above, L′i,j , U
′
i,j depend on oi, oj .)

Because we always have L′i,j ≤ U ′i,j , the last condition is
equivalent to ⌊

L′i,j(S)

T

⌋
≥
⌊
U ′i,j(S)

T

⌋
, (55)

which, by Property 3 in Appendix E, is equivalent to

∃ki,j ∈ Z, ki,j ≤
L′i,j(S)

T
and

U ′i,j(S)

T
< ki,j + 1. (56)

Therefore, Problem (P ′) is equivalent to

Problem (P ′′):
minimize S (57)

over S ∈ [0;S], (oi)i=1:I ∈ [0;T ]I , (ki,j)(i,j)∈L ∈ ZL

subject to

ki,j ≤
L′i,j(S)

T
,
U ′i,j(S)

T
< ki,j + 1,∀(i, j) ∈ L

Because of the strict inequality in its last condition, Problem
(P ′′) is ill-posed (its infimum might not be attained) and
cannot be solved as is by MILP solvers. To circumvent this,
we replace it by the following MILP, in which the strict
inequality is modified to an inclusive inequality, using the
same tolerance ε as before:

Problem (P−MILP):
minimize S

over S ∈ [0;S], (oi)i=1:I ∈ [0;T ]I , (ki,j)(i,j)∈L ∈ ZL

subject to

ki,j ≤
L′i,j(S)

T
,
U ′i,j(S)

T
≤ ki,j + 1− ε

T
,∀(i, j) ∈ L

The following theorem establishes that Problem
(P−MILP) provides an ε-over-approximation of the infi-
mum of Problem (P ), as required.

Theorem 4. Let SMILP be the optimum value of S returned
by Problem (P−MILP). It is an ε-over-approximation of the
value S returned by Problem (P ), i.e. 0 ≤ SMILP − S ≤ ε.
Furthermore, the values of SMILP and of the offsets returned by
SMILP are valid.

SW1 SW5SW4SW3SW2

(a) Line topology
SW1

SW5

SW4SW3SW2

(b) 2Paths topology
SW1

SW5

SW4SW3SW2

(c) Ring topology

Fig. 7: Three simple graphs

TABLE 4: Parameters used with the three topologies in
Figure 7.

Constant values
T E ε

0.001s 6.72 ∗ 10−7s 10−10

Perfect values
P p z ∆ ρ η

0.05ms 0 0 0 1 0

Default values
P p z ∆ ρ η

0.05ms 0.5µs 15µs 1µs 1.0001 2 ns

The proof is in Appendix K.
It follows that we can use a MILP solver with Problem

(P−MILP) and obtain the minimal value of the guard band
S at precision ε, together with the values of the offsets.
Specifically, if Problem (P−MILP) is feasible, the returned
valued of SMILP and of the offsets are valid and SMILP is
optimal at precision ε. Note that for Problem (P ) it is not
certain that the optimal value S is valid because we don’t
know in general whether the infimum of Problem (P ) is
attained; the last statement in the theorem recalls that such
a complication may not happen with Problem (P−MILP).

6 EXPERIMENTS

In this section we apply the two heuristics and the MILP
formulation to the three network topologies in Figure 7
and compare the corresponding optimal values of guard
bands, namely, Snull, Sprop and Smilp. The goal of the simple
topologies is to illustrate the feasibility of our tools, to obtain
some feelings for the values of the guard band, and to
demonstrate the interplay between offsets and guard band.

The parameters are described in Table 4. We vary the
propagation time (P ), the jitter of the propagation (2p), the
upper bound of the switching time (z) and the parameters
of the clocks (∆, η, ρ). All nodes have the same parameters
(∀i, j, P i,j = P − p, P i,j = P + p,∆i = ∆, ηi = η, ρi = ρ).
The “perfect” values correspond to ideal clocks and negligi-
ble switching time. Except if mentioned otherwise, if a con-
figuration is said “perfect” [resp. “default”], all parameters
have the perfect [resp. default] values as in Table 4.

The time offsets are defined up to a common time shift,
and we set o1 = 0 in all experiments.
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Fig. 8: Exp L.1: Guard bands (upper panels) and optimal
offsets (bottom panel) versus mean propagation time P
(Line topology).
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Fig. 9: Exp L.2: Guard bands (upper panels) and optimal
offsets (bottom panel) versus propagation jitter parameter p
(Line topology).

6.1 Line
We start with the simple line illustrated in Figure 7a. Each
experiment considers a perfect and a default configuration
and varies one parameter. Figures 8 to 11 plot Snull (upper
line), Sprop and Smilp (medium line) as well as the opti-
mal offsets computed by the MILP (bottom line). The left
row presents the perfect configuration, and the right row
presents the default configuration.
• Experiment L.1, Figure 8: The propagation time P

varies from 0 to 0.1ms by steps of 10µs.
Observations: For the perfect configuration, the guard
band with all null offsets Snull grows up linearly with
the propagation time. In contrast, the guard bands
computed by absorbing the propagation time or using
the MILP are quasi null: the MILP computes null val-
ues, and the others return the tolerance ε. The MILP
computes the sames offsets as the heuristics based on
propagation absorption, setting oi+1 = oi + Pi+1,i.
The introduction of non null jitters and imperfect clocks
does not change the trends but increases the guard band
values: the MILP computes a guard band Smilp around
10µs whereas the propagation absorption heuristics
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Fig. 10: Exp L.3: Guard bands (upper panels) and optimal
offsets (bottom panel) versus upper bound on switching
delay z (Line topology).
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Fig. 11: Exp L.4: Guard bands (upper panels) and optimal
offsets (bottom panel) versus clock nonideality factor x,
where ∆ = xµs, η = 2xns, ρ = 1 + 10−4x (Line topology).

computes Sprop around 18µs. The offsets computed by
the MILP are also slightly increased.

• Experiment L.2, Figure 9: The propagation jitter param-
eter p varies from 0 to 1.5 times E by steps of 0.1.
Observations: In the perfect configuration, Snull and
Sprop increase linearly w.r.t. the semi-variation of the
propagation p. When p ≤ E

2 the MILP solver finds a
null guard band by setting oi+1 = oi + Pi+1,i + p. But
as shown by Prop. 1, if p > E

2 which is equivalent to
2p = P − P > E, S cannot be null. Then the MILP
solver finds S = p− E

2 and oi+1 = oi + P + E
2 .

For the default configuration, we also see a linear
increase, but starting at higher values, as in experiment
L.1.

• Experiment L.3, Figure 10: The switching time upper-
bound z varies from 0 to 1.5 times E by steps of 0.1.
Observations: In the perfect configuration, Snull and
Sprop increase linearly w.r.t. the maximal switching time
z. In the perfect configuration, as long as z < E, the
MILP solver finds a null guard, by setting oi+1 =
oi + Pi,j + zj . But as shown by Prop. 1, if z > E,
S cannot be null. The choice of the offset still com-
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Fig. 12: Exp F.1: Guard bands (upper panels) and optimal
offsets (bottom panel) versus mean propagation time P
(Feed-forward topology).

pensates the propagation, minus a compensation term
oi+1 ≈ oi + Pi,j + E+z

2 .
In the default configuration, we also see a linear in-
crease, but starting at higher values, as in experiment
L.1. It appears that the slopes are not the same: the
MILP solver uses the offsets values to absorb a part
of the jitter.

• Experiment L.4, Figure 11: The clock quality depends
on a parameter x and ranges from perfect (x = 0) to
default (x = 1) by steps of 0.1 (∆ = xµs, η = 2xns,
ρ = 1 + 10−4x).
Observations: Here, too, the guard band value increases
linearly with same slope for all cases. The MILP solver
sets oi+1 − oi = P and uses the guard band value to
absorb the clock imprecision. Clock nonideality adds
several microseconds to the guard band but has little
effect on the optimal offsets.

6.2 Feed-forward with two paths

We consider next the topology on Figure 7b, which has
parallel paths. It follows that the propagation absorption
heuristics cannot be applied: it is no longer possible to set
the downstream offset as the sum of the upstream offset and
the propagation time since SW4 has two upstream offsets.
Therefore, in Figures 12 to 15 we compare only the values
of Snull and Smilp. We vary the same factors as with the line
topology.
• Experiment F.1, Figure 12: The propagation time P

varies from 0 to 0.1ms by steps of 10µs.
Observations: In the perfect configuration, as with the
line configuration, Snull increases as a linear function of
P , from 0 to 100µs. The optimal solution has oi+1 =
oi + P on the shortest path and distributes the offsets
along the longest path. The guard band Smilp increases
to absorb the difference, from 0 to 20µs, and is 5 times
less than with the null heuristic.
The default configuration has similar trends, but must
compensate the clock imperfections.

• Experiment F.2, Figure 13: The propagation jitter pa-
rameter p varies from 0 to 1.5 times E by steps of 0.1.
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Fig. 13: Exp F.2: Guard bands (upper panels) and optimal
offsets (bottom panel) versus propagation jitter parameter p
(Feed-forward topology).
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Fig. 14: Exp F.3: Guard bands (upper panels) and optimal
offsets (bottom panel) versus upper bound on switching
delay z (Feed-forward topology).
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Fig. 16: Exp R.1: Guard bands (upper panels) and optimal
offsets (bottom panel) versus mean propagation time P
(Ring topology).

Observations: As with previous cases, Snull increases as
a linear function of p. This is also the case for Smilp:
the optimal solution uses the same strategy as in F.1,
namely, the optimal offsets compensate the propagation
difference between the two paths, and S is increased to
absorb the propagation jitter.

• Experiment F.3, Figure 14: The switching time upper-
bound z varies from 0 to 1.5 times E by steps of 0.1.
Observations: The results are very similar, except that
the Smilp values are smaller (from 22.25µs to 23µs).

• Experiment F.4, Figure 15: The clock quality depends
on a parameter x and ranges from perfect (x = 0) to
default (x = 1) by steps of 0.1 (∆ = xµs, η = 2xns,
ρ = 1 + 10−4x).
Observations : The results are very similar to previous
experiments. In particular, clock nonideality adds sev-
eral microseconds to the guard band but has little effect
on the optimal offsets.

6.3 Ring

Last, we consider the ring topology in Figure 7c, which is
the simplest topology with cyclic dependencies. Here, too,
the propagation absorption heuristics cannot be applied as
it requires to set the downstream offset to the sum of the
upstream offsets, leading to a circular condition that has no
solution. Therefore, in Figures 16 to 19 we compare only the
values of Snull and Smilp. We vary the same factors as with
the line topology.
• Experiment R.1, Figure 16: The propagation time P

varies from 0 to 0.4ms by steps of 10µs. The range, here,
is increased to see the specific behaviour of SMILP.
Observations: As with the previous experiments, the
strategy based on null offsets creates a Snull that in-
creases linearly to compensate the propagation time.
When the propagation time is equal to 40% of the cycle
time, 80% of the bandwidth is lost.
In contrast, the optimal value found by the MILP uses
a different strategy. In the perfect configuration, when
P ∈ [0; 100µs], i.e. when 5P ∈ [0;T/2], the null offset
is optimal and Snull = Smilp. This goes until 5P = T/2,
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Fig. 17: Exp R.2: Guard bands (upper panels) and optimal
offsets (bottom panel) versus propagation jitter parameter p
(Ring topology).
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Fig. 18: Exp R.3: Guard bands (upper panels) and optimal
offsets (bottom panel) versus upper bound on switching
delay z (Ring topology).).
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Fig. 19: Exp R.4: Guard bands (upper panels) and optimal
offsets (bottom panel) versus clock nonideality factor x,
where ∆ = xµs, η = 2xns, ρ = 1 + 10−4x (Ring topology).
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Fig. 20: Ring topology: illustration of optimal offsets and
guard band when the mean propagation time is P = 150µs,
with otherwise default configuration. A frame sent by node
1 is received in the same cycle whereas a frame sent by node
5 is received in the next cycle.

where 20% of the bandwidth is lost due to the guard
band at the beginning and the end of each cycle. How-
ever, beyond this point, i.e. when 5P ∈ (T/2;T ], the
optimal solution sets oi+1 = oi + T/5, i.e. the cycle
time is uniformly distributed among the offsets and the
guard band value decreases, down to the optimal case,
when the total propagation time 5P is equal to the cycle
time T . Then when P increases beyond this value, the
minimal guard band increases again and the process
repeats. The loss of bandwidth oscillates between 0 and
20%, whereas with the null offset heuristic, it increases
linearly well beyond 20% (up to a point where the null
heuristic has no feasible guard band whereas the MILP
solver always finds a solution.)
With the (realistic) default configuration, we see the
same pattern but with some additional margin to ac-
count for the other non null parameters. It is enlight-
ening to analyze the spatial distribution of offsets, as
shown in Figure 20. Here the offsets are used to absorb
the cycle time, and there is an index jump from node 5
to node 1, namely, a frame sent in cycle k5 at node 5 is
received in cycle k1 = k5 + 1 at node 1. A cycle jump
does not occur when P ≤ 100µs but always occurs
beyond.

• Experiment R.2, Figure 17: The propagation jitter pa-
rameter p varies from 0 to 1.5 times E by steps of
0.1. Observations: Like in previous experiments, Snull
increases linearly to compensate the propagation jitter.
The optimal solution also selects null offsets, because
the sum of the propagation time is smaller than half
of the period (5P � T

2 ) and consequently Smilp also
compensates the propagation jitter.

• Experiment R.3, Figure 18: The switching time upper-
bound z varies from 0 to 1.5 times E by steps of 0.1.
and P = 50µs.
Observations: The results are very similar to the experi-
ment R.2, but the guard bands are smaller in the default
configuration.

• Experiment R.4, Figure 19: The clock quality depends
on a parameter x and ranges from perfect (x = 0) to
default (x = 1) by steps of 0.1 (∆ = xµs, η = 2xns,
ρ = 1 + 10−4x).
Observations: The results are very similar to experi-
ments R.2 and R.3. We also see that clock nonidealities
add up to 15 microseconds to the guard band.

6.4 Summary of Observations
A few lessons can be learnt from these experiments.

1) The choice of the offsets can dramatically reduce the
guard band.

2) The nonideality parameters of clock, switching delay
and propagation jitter affect the guard band; ignoring
them leads to too small guard band.

3) In contrast, the values of the offsets are mainly influ-
enced by topology and propagation latency, not signifi-
cantly by other parameters.

Some other trends can be derived directly from the
equations, without running experiments. In the experi-
ments, all nodes and all links have the same characteristics.
This should not be the case in reality. Since the guard
band value S should respect the condition for every pair
source/receiver, the one with the larger value will impose it
to all nodes (e.g. if a single node is badly synchronised, all
nodes in the network must take it into account in their own
guard band).

The propagation time deserves a specific discussion. If
the propagation times are different (because of different
cable length for example), the null offset heuristic will lead
to take into account the maximal propagation time in all
nodes, whereas the heuristic absorbing propagation with
offset can compensate the propagation time per link (but
this heuristic can not be used for any topology). The MILP
will also try to allocate offsets on each node in order to
compensate the propagation delay of each link.

6.5 Computing the Guard Band in Practice
We have presented 3 methods to compute the guard band:
• either setting null offsets in all nodes, and use the guard

band value Snull, defined in eq. (45),
• or setting offsets in order to absorb the propagation

time, and use the guard band value Sprop, defined in
eq. (54),

• or use a MILP solver, presented in Problem (P-MILP).

The use of null offsets is the simplest, and can be used
as long as the propagation time is small w.r.t. the cycle time
(cf. (39)), but it will not give the best value since the guard
band must absorb this propagation time (cf. Exp L.1, Exp F.1
and Exp R.1 presented respectively in Fig. 8, 12 and 16).

Setting offsets in order to absorb the propagation time
allows to compensate this effect, but this is not possible for
any topology (it is not possible if there exist two paths with
different cumulated propagation times or if there are cyclic
dependencies).

The last solution consist in using the MILP. One common
drawback of MILP is the computation time. But thanks to
its simplicity, the one presented in Problem (P-MILP) can be
solved in a very short time. Each configuration presented in
the experiment section is solved in less than 10ms (using
lp_solve on a i5 /2.70GHz CPU, the time command
returns 0.00). To challenge the computation time, we have
enlarged the ring topology to consider rings from 5 to 50
nodes with step 5. Each MILP was solved in less than 80ms.

The three methods have been evaluated on simple
topologies to show the applicability of the approach and
they have permitted to illustrate some trends. Now that
these tools have been provided, it would be of interest,
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in future studies, to evaluate the performance of CQF on
real topologies. In these simple cases, the guard band may
represent 20% of the bandwidth (2 · 100µs over 1ms), but
it is unclear if it can occur in real configurations. It also
gives an opportunity to compare CQF and other proposals,
presented in Section 7.

Last, there exists a minimal granularity associated
with the GCL: TickGranularity [9, §8.6.9.4.16] and
the method may compute a guard band S that is
not a multiple of TickGranularity. But thanks to
Thm. 2, if S is a solution of Thm. 1, then ST =

TickGranularity
⌈

S
TickGranularity

⌉
also is, as long as

ST ≤ S.

7 RELATED WORK

Several extensions of CQF have been proposed, like CQF
3-queues [18], Paternoster [19], Large-Scale Deterministic
Network (LDN, [20], [21]), Cycle Specified Queuing and
Forwarding (CSQF, [22]) and Tagged Cyclic Queuing and
Forwarding (TCQF, [23]). A global survey, up to 2019, can
be found in [2].

All these extensions have been designed to overcome
some limitations of CQF, but it seems that all authors
consider that all CQF nodes have to align their cycle time,
i.e. have to share the same offset (cf. Section 5.1.1), whereas
the standard does not explicitly state so.

Also note that all these extensions (except TCQF) use
3 or even 4 queues, whereas Ethernet/TSN offers only 8
queues (or even less, depending on the implementation).
Since a real-time network may have many types of traffic,
each with specific requirements, the mapping from traffic
types to only 8 TSN classes may become an issue [24]. TCQF
relies on MPLS tagging.

While CQF offers bounded jitters (2T ), some flows re-
quires very small jitters. For such flow, TSN allows to
configure the GCLs to provide a Time-Triggered forwarding,
commonly called Time Aware Shaping (TAS) [25], [26]. The
Time-Aware Cyclic-Queuing (TACQ) proposes to integrate
both a TAS-like mechanism and CQF on an output port
by closing both CQF queues at start of cycle to allow low
jitter flows to be forwarded [27]. To optimise the bandwidth
usage, it would be natural to overlap this closing time and
the guard band.

A comparison between CQF and CBS on an automotive
use case is done by simulation in [28], but without any
consideration on the guard band.

The computed bounds assume that each CQF buffer does
not receive in one cycle more than what can be sent in the
next cycle. The Injection Time Planning (ITP) mechanism
computes the global cycle time and per-flow offsets for pe-
riodic flows in order to maximise the admissible load while
satisfying this constraint [29]. The approach is generalised in
[30] by adding in each End-System an “adapter” in charge
of implementing the injection using a list of queues, and also
by providing an online algorithm. It assumes that all offsets
are equal, and the guard band only has to absorb the clock
synchronization precision.

8 CONCLUSION

The expected behaviour of CQF requires some time align-
ments between cycles, using appropriate values of the guard
band and the nodal offsets. We provided a mathematically
proven method to effectively compute such values, while
accounting for clock nonidealities and jitters. Illustrative
case studies indicate that clock nonidealities have a non-
negligible influence and should not be ignored.

9 PROOFS

All the proofs are in the supplementary material. They can
also be found in the appendix of [31].
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Recherches Aérospatiales (ONERA), Toulouse.
His research interests focuses on embedded

networks (AFDX, TSN) and the performances of these networks, mainly
using the network calculus theory.

Jean-Yves LE BOUDEC is professor at EPFL
and fellow of the IEEE. He graduated from
Ecole Normale Supérieure de Saint-Cloud,
Paris, where he obtained the Agrégation in
Mathematics with rank 4 in 1980, and received
his doctorate in 1984 from the University of
Rennes, France. From 1984 to 1987 he was
with INSA/IRISA, Rennes. In 1987 he joined Bell
Northern Research, Ottawa, Canada, as a mem-
ber of scientific staff in the Network and Product
Traffic Design Department. In 1988, he joined

the IBM Zurich Research Laboratory where he was manager of the
Customer Premises Network Department. In 1994 he became associate
professor at EPFL. His interests are in the performance and architecture
of communication systems and smart grids. He co-authored a book
on network calculus, which serves as a foundation for deterministic
networking, an introductory textbook on Information Sciences, and is
the author of the book ”Performance Evaluation”. He received numerous
awards, among which the IEEE millenium medal, the Infocom Best
Paper award, the ACM Sigmetrics Best Paper award, the ACM Conext
Best Paper Award, the IEEE Communication Society William R. Bennett
Prize, the IEEE Security and Privacy Test-of-Time award and the EPFL
I&C Best Teacher Award.

https://www.intel.com/content/www/us/en/content-details/333016/intel-ethernet-controller-i210-datasheet.html
https://www.intel.com/content/www/us/en/content-details/333016/intel-ethernet-controller-i210-datasheet.html
https://grouper.ieee.org/groups/802/1/files/public/docs2019/cr-seaman-paternoster-policing-scheduling-0519-v04.pdf
https://grouper.ieee.org/groups/802/1/files/public/docs2019/cr-seaman-paternoster-policing-scheduling-0519-v04.pdf
https://datatracker.ietf.org/doc/html/draft-qiang-detnet-large-scale-detnet-05
https://datatracker.ietf.org/doc/html/draft-qiang-detnet-large-scale-detnet-05
https://datatracker.ietf.org/doc/html/draft-chen-detnet-sr-based-bounded-latency-01
https://datatracker.ietf.org/doc/html/draft-chen-detnet-sr-based-bounded-latency-01
https://datatracker.ietf.org/doc/draft-eckert-detnet-tcqf/01/
https://datatracker.ietf.org/doc/draft-eckert-detnet-tcqf/01/
https://doi.org/10.1145/2997465.2997470
https://doi.org/10.1145/2997465.2997470
https://rtns2022.inria.fr/files/2022/06/proceedings_jrwrtc2022_final.pdf
https://rtns2022.inria.fr/files/2022/06/proceedings_jrwrtc2022_final.pdf
https://hal.science/hal-03772877

