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Abstract

Cyclic Queuing and Forwarding (CQF) is a mechanism defined by
IEEE TSN for providing low jitter in a deterministic network. CQF uses
a common time cycle and two buffers per node output port: during one
cycle incoming packets are stored in one buffer while packets in the other
buffer are being transmitted; at the end of a cycle, the roles of the two
buffers are exchanged. The cycle start times are determined by a time
offset that may be different for every output buffer. A guard band at both
cycle ends is devised in order to compensate for misalignment and timing
inaccuracies. The proper operation of CQF requires that the guard band
and the offsets are computed such that nodes are sufficiently time-aligned.
First, we give necessary and sufficient conditions for this to be guaran-
teed. The sufficient conditions lend themselves to tractable computations
and we show that they are close to optimal. Our conditions account for
nonideal clocks and non-zero propagation times; we show that account-
ing for these two elements does matter. Second, we give a method for
computing the minimal duration of the guard band, given prior choices
of time offsets. Third, a judicious choice of time offsets can considerably
decrease the required duration of the guard band: we give a practical al-
gorithm, based on a Mixed Integer Linear Program, for computing offsets
that minimize the guard band. We illustrate our results on several CQF
network topologies with or without cyclic dependencies.

Keywords— TSN; CQF; Peristaltic Shaper; Cyclic Queuing and Forwarding.

1 Introduction

In order to offer a standard real-time data network, the IEEE Time Sensitive Network-
ing working group has defined several extensions to Ethernet. Among others, Cyclic
Queuing and Forwarding (CQF), previously known as “peristaltic shaper”, has been
defined in order to offer guaranteed delay and limited jitter [1]. In short (see Section 2
for more details), CQF considers a common time cycle, T , and uses two queues per
node output port to alternatively store or forward frames. It guarantees that the delay
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experienced by a frame crossing h switches along its path is between (h − 1)T and
(h+ 1)T .

CQF has appealing characteristics: it is simple to implement, it offers a simple
expression of the latency bound, it provides a limited delay jitter (2T ) [2] and can also
easily handle cyclic dependencies (whereas other real-time mechanisms may require
some attention is such cases, [3–5])

Nevertheless, it requires some time synchronization and alignment of cycles be-
tween switches [2]. Moreover a fraction of the cycle time is used by a “guard band”,
S, (called “adjustment factor” in [1]), that absorbs the effects of imperfections in time
synchronization and alignment, and during which the output port can not be used by
CQF frames. To avoid this issue, several alternative strategies have been defined (cf.
Section 7), but they all require at least a third queue, or even a fourth one. Further-
more, the cycle start times are determined by a time offset that may be different for
every output buffer.

The use of CQF requires the choice of two network-wide parameters, the cycle time
T and the guard band S, and of the values of all time offsets at output buffers. The
cycle time is related to the flows characteristics, whereas the guard band and the time
offsets are related to synchronization between switches. In this paper, we address the
choice of time offsets and guard band.

We consider the clock error model from [6], which captures the effects of clock
nonidealities in the context of deterministic networks (cf. Section 3). Then we provide:

• a formal characterization of CQF cycle alignment and guard band (Sections 3
and 4.1), where, unlike other studies, we do not assume that all cycle offsets are
equal;

• two sufficient conditions to check if a guard band S is large enough (Section 4.1),
one being a simplification of the other;

• a necessary condition (Section 4.2), which is used to show the quality of the
sufficient conditions (Section 4.3);

• a method to compute the minimum value of the guard band, given some pre-
specified values of time offsets (Theorem 2);

• three strategies to compute a common guard band and local time offsets (two
analytic ones, and a third using a Mixed Integer Linear Program – MILP – in
Section 5);

• an evaluation of the strategies on some synthetic benchmarks, in Section 6.

The experiments of Section 6 show that:

• clock nonideality cannot be neglected;

• the choice of the offsets may have a dramatic effect on the minimum guard band
value.

2 Presentation of CQF

2.1 Alternating Cycles

Consider a node offering a CQF policy to a set of flows (a CQF class) on a given
output port. Two queues, called “even” and “odd”’ are dedicated to this CQF class,
as depicted in Figure 1. The CQF node has a periodic behaviour, with period T (called
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Figure 1: Queues of a bridge using CQF policy.

“cycle time”), which has the same value for all CQF nodes in the network. Let c(t)
denote the value displayed at the clock of the node when the true time is t and let
o be the time offset at this server. A time instant t is said to be in an “even” [resp.

“odd”] cycle if
⌊
c(t)−o
T

⌋
is even [resp. odd]1. During an even cycle, the even queue

is served and all received frames are stored in the odd queue. The frames stored in
the odd queue will be forwarded in the next odd interval. The same holds, mutatis
mutandi, with odd cycles.

The operation of CQF on an illustrative topology is shown in Figure 2. Under
correct operation, CQF provides two guarantees: if a frame follows a path made of
h hops, the end-to-end delay is in the range [(h − 1)T, (h + 1)T ] and the delay-jitter
is upper bounded by 2T (for example, any frame of stream s1 experiments a delay
in T and 3T ). For correct operation, two conditions must be satisfied [7]. First, at
every node, it must be possible to transmit in one cycle all frames received in the
previous cycle. This requires that there is enough link capacity to support the rates of
all sources and that the cycle duration is large enough to absorb the burstiness of all
incoming flows in one cycle. This condition and the resulting minimum cycle length is
studied in companion work and is outside the scope of this paper. Second, the cycles
of consecutive nodes must be aligned such that all frames sent by a node when a buffer
is open for transmission can be stored by the receiving node in a buffer that is open
for reception. This condition is discussed in the next subsection.

2.2 Time-Aligned Nodes and Guard Band

In a CQF network, nodes are assumed to be time-synchronized. However, propagation
times and switchover time (from switch input to switch output) are non zero and
time synchronization is never perfect. To compensate for these effects, the standard
introduced a guard band S at the beginning and at the end of each cycle as illustrated
in Figure 3. The value of S is the same for all CQF nodes in the network.

The figure shows two frames, F and F ′, sent by Ni to Nj with their emission time
(E and E′) and their propagation times (P and P ′). Here both cycles are not aligned.
This can be by design (e.g. to compensate for propagation time) but can also occur
due to clock imperfections.

The standard states that “S should be set to the sum of the errors or jitter values
from all sources given in [a] list” and gives a list of sources of errors [1, §T.5.3]. In

1An expression such as bxc denotes the floor of x.
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Section 4, we formally define what “Time-Aligned Nodes” means and give practical
conditions to ensure that the time alignment holds. The conditions bear on the values
of the guard band and the offsets. The guard band may result in a waste of capacity,
hence it should be minimized. In Section 5 we give methods to compute offsets and
guard band that minimize the guard band.

2.3 Other Aspects of CQF

The implementation of CQF relies on two mechanisms, the Per-Stream Filtering and
Policing at input port (PSPF, [8]) and the Gate Control List at output port (GCL)
defined in the ”Enhancements for Scheduled Traffic” extension of the IEEE 802.1Q
bridging standard [9]. PSPF has a time-driven table (also called GCL) which forwards
the CQF frames from the input to the even or odd buffer on the output port. During
an open interval, a queue has to compete with the other queues, using the static
priority policy.

Then, the cycle time must account for higher priority flows and some limited
interaction with lower priority flows to ensure that the frames received in the previous
cycle can be forwarded in the current cycle. The conditions on the cycle time is out
of the scope of this paper.

During the guard band, some higher or lower priority frames can be transmitted.
Higher priority frames can be transmitted at any time, in or outside the guard band.
Lower priority frame can start either during the guard band, or outside the guard
band, once the current CQF queue is empty. When no preemption is implemented,

the blocking factor is
lmax
lp

C
where lmax

lp is the maximal size of a lower priority packet
and C the link bandwidth. If the preemption is implemented, and if the CQF queue is
marked as “express” and the lower priority flow is “preemptable”, the blocking factor
can be reduced to 143∗8

C
[10].

The standard also considers the case with several CQF classes having different
cycle time and illustrates an example of interleaving in [1, Fig. T-5], presented also
in [11]. Moreover, in wide area networks, some papers have proposed to extend CQF
to more than 2 buffers. Such extensions are out of the scope of this paper.

3 System Model and Notation

We consider a network with a single CQF class with two buffers and n nodes N1...Nn.
The CQF cycle time is T ; there is a guard band of duration S at the beginning of
every cycle, and one of same duration at the end. The nominal values of T and S are
identical at all nodes. In contrast, the links may have different bit rates Ri,j . Table 1
gathers the notation used throughout the paper.

Obviously, there must be enough time in one cycle to transmit the largest possible
frame, i.e. we assume that

T − 2S ≥ max
i,j

Ei,j . (1)

where Ei,j is the transmission time of a frame of maximum size on the link from Ni
to Nj . The same way, Ei,j is the transmission time of a frame of minimum size on the
link from Ni to Nj .

Every node has a local clock and all clocks are synchronized, using for example
[12]. However, at the microsecond time scale, synchronization is not perfect and clock
non idealities have to be taken into account. We use the following model, taken
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from [6]. Let ci(t) be the local time displayed by the clock of node Ni when the
true time (international atomic time, TAI) is t. The nonideality of clock ci can be
characterized by the clock stability bound ρi ≥ 1, the timing jitter bound ηi ≥ 0 and
the synchronization error bound ∆i, such that displayed times satisfy:

∀t, d ≥ 0 :
d− ηi
ρi

≤ ci(t+ d)− ci(t) ≤ dρi + ηi, (2)

∀t ≥ 0 : |ci(t)− t| ≤ ∆i. (3)

The former equation captures the effect of clock drift, jitter and wander on measure-
ments of time intervals performed with the local clock. The latter equation captures
the effect of the time synchronization protocol. In a TSN network synchronized with
gPTP (generic PTP), the values are ρi = 1.0001 [12, Annex B.1.1], ηi = 2ns [12, Annex
B.1.3.1] and ∆i = 1µs [12, Section B.3]. The two equations above can be combined,
which leads to the following bound on the measurements of time intervals (proof in
Appendix B):

max

{
d− 2∆i

d−ηi
ρi

≤ ci(t+ d)− ci(t) ≤ min

{
d+ 2∆i

dρi + ηi
(4)

Also note that we can always assume that 2∆ ≥ η since otherwise we can replace η by
2∆ (Property 1 in Appendix C).

Node Ni uses a time offset oi, at which the initial cycle begins. Consequently, the
kth cycle starts at this node at true time tik such that cj(t

i
k)− oj = kT . Thus, at true

time t, node Ni is in the kth cycle with k =
⌊
cj(t)−oj

T

⌋
.

For a CQF frame F that travels from Ni to Nj , let tFem denote the instant at which
node Ni finishes transmitting the last bit of F . Unless otherwise specified, all time
instants are in true time. Then, node Nj receives the frame F and a classifier chooses
in which queue the frame will be forwarded. Let tFcl denote the instant at which the

frame F is forwarded to the queue Qj,b of the node Nj with b =
⌊
cj(tFcl)−oj

T

⌋
%2 (where

%2 denotes the remainder modulo 2). Note that the choice is done when the frame
is totally received in the node Nj . The difference PFi,j = tFcl − tFem is the sum of the
propagation time from Ni to Nj plus the time for ingress processing and is simply
called “propagation” in the rest of the paper. Then, the frame is transmitted through
the switch fabric and is written in the queue Qj,b. Let tFwr denote the instant when
the last bit of the frame F is written in the queue Qj,b of node Nj . Note that the

frame is written during the cycle
⌊
cj(tFwr)−oj

T

⌋
. The difference zFj = tFwr − tFcl is called

the switching time. Figure 4 illustrates these definitions.
Following [1], we assume that the propagation time is not constant but has some

bounded variability; this may correspond to variable decoding and processing times.
Let P i,j , P i,j be lower and upper bounds on the propagation time from Ni to Nj . The

difference P i,j − P i,j is a bound on the “propagation jitter”. Similarly, we assume
that the switching time has some bounded variability and let zj , zj denote lower and
upper bounds on the switching time at Nj .

In [13, § 4.11.3], it is specified that the “technological latency of the switch should
be less than 100 µs.” At the time of writing, a value of 15µs seems acceptable.

6



Table 1: Notation

Ei,j =
Li,j

Ri,j
Max transmission time of CQF frame from Ni to Nj

Ei,j =
Li,j

Ri,j
Min transmission time of CQF frame from Ni to Nj

k ∈ N Index of a cycle

Li,j , Li,j Min, max size of CQF frames from Ni to Nj

LNPr
i,j Maximum size of high priority frame from Ni to Nj

Ni Node i

oi Time offset at node i

P i,j , P i,j Lower and upper bounds on propagation time

P Mean propagation time P = 1
2

(
P i,j + P i,j

)
p Propagation jitter parameter, p = 1

2

(
P i,j − P i,j

)
Ri,j Bit rate of link from Ni to Nj

S Duration of guard band at begin and end of cycle

T Duration of cycle

zj , zj Lower and upper bounds on switching time

ci(t) time displayed by clock of Ni when true time is t

∆i clock synchronization error bound (e.g. ∆i = 1µs)

ρi ≥ 1 clock stability bound (e.g. ρi = 1.0001)

ηi ≤ 2∆ clock timing jitter bound (e.g. ηi = 2ns)

bxc floor of the real number x

m%2 residual modulo 2 of the integer m

ε a tolerance on the accuracy of floating-points

S a network-wide upper bound on S, (15)

S a lower bound on Soi,ojthm1, (16)

S
∗oi,oj
thm1 , S

∗
thm1 minimum value of S (at precision ε) that satisfies

the sufficient condition in Theorem 1

S
∗oi,oj
cor1 , S∗

cor1 minimum value of S (at precision ε) that satisfies

the simpler sufficient condition in Corollary 1

S
oi,oj
cor1 infimum of all values of S that satisfy Corollary 1;

may or may not be feasible and 0 ≤ S∗oi,oj
cor1 − Soi,oj

cor1 ≤ ε
S
∗oi,oj
thm3 , S

∗
thm3 minimum value of S (at precision ε) that satisfies

the necessary condition in Theorem 3

I number of nodes

L set of links 7
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Figure 4: Significant times between 2 nodes Ni and Nj .

4 Conditions for Time Alignment

In this section we solve the issue of time alignment of nodes. This involves the offsets
and the guard band. The main results of this section are Theorem 1 and Corollary 1,
which give sufficient conditions for nodes to be time aligned; the latter is more tractable
than the former and gives the basis of methods to compute offsets and minimal guard
band that minimize the duration of the guard band in Section 5. We also show in
Theorem 2 that the minimum value of the guard band for given offsets can be obtained
by binary search. Ideally, we would like to have a necessary and sufficient condition,
but this appears to be out of reach as it is difficult to quantify all possible behaviours;
instead, we give a necessary condition and show that the difference with the sufficient
condition is small. In the idealized case where clocks are perfect and switching latency
is negligible, the conditions are identical.

4.1 Sufficient Conditions

We start by a formal definition of time alignment.

Definition 1 (Time aligned nodes). Consider a node Ni that has a link to a node
Nj. We say that Ni and Nj are time-aligned if and only if, for any cycle index k at
Ni, there exists a cycle index k′ at Nj such that all frames sent by Ni in cycle k are
forwarded by node Nj in cycle k′ out of a single CQF buffer.

Using the notation in Section 3, we have that a frame sent at time t to the node

j is classified at time tcl in the queue Qj,b with b =
⌊
cj(tcl)−oj

T

⌋
%2 and received at

time twr in this queue during the cycle k =
⌊
cj(twr)−oj

T

⌋
.

Consequently, Definition 1 is equivalent to saying that, for any two frames F, F ′

sent by Ni to Nj during one same cycle, they are classified in the same queue Qj,b,
with

b =

⌊
cj(t

F
cl)− oj
T

⌋
%2 =

⌊
cj(t

F ′
cl )− oj
T

⌋
%2 (5)

and they are received in the same cycle k with

k =

⌊
cj(t

F
wr)− oj
T

⌋
=

⌊
cj(t

F ′
wr)− oj
T

⌋
(6)

Using Equations (5) and (6), we obtain the following sufficient condition:
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Theorem 1 (Sufficient condition for node alignment). Consider two nodes Ni, Nj
such that Ni has a link to Nj. The parameters ηi, ηj , ρi, ρj ,∆i,∆j , Ei,j , oi, oj , S and
T are as defined in section 3. Define Ui,j(S) and Li,j(S) by

Li,j(S) = S + Ei,j + P i,j + oi − oj − (∆i + ∆j)− l̂i,j(S) (7)

with

l̂i,j(S) = min



(Ei,j + S) · (1− 1
ρi

) + ηi
ρi

+ 2∆j ,

2∆i + 2∆j ,

(Ei,j + S) · (1− 1
ρi·ρj

)

+P i,j · (1− 1
ρj

) + ηi
ρi·ρj

+
ηj
ρj
,

(Ei,j + S + P i,j) · (1− 1
ρj

) +
ηj
ρj

+ 2∆i · 1
ρj

(8)

and
Ui,j(S) = T − S + P i,j + zj + oi − oj + ∆i + ∆j + ûi,j(S) (9)

with

ûi,j(S) = min



(T − S) · (ρi − 1) + ηi + 2∆j

2∆i + 2∆j

(T − S) · (ρi · ρj − 1) + ηi · ρj
+(P i,j + zj) · (ρj − 1) + ηj

(T − S + P i,j + zj) · (ρj − 1) + ηj + 2∆i.ρj

(10)

If the parameters satisfy the condition⌊
Ui,j(S)

T

⌋
=

⌊
Li,j(S)

T

⌋
(11)

then, the two nodes Ni, Nj are time aligned and the difference between the emission
and the reception cycles is constant, equal to

δi,j =

⌊
Ui,j(S)

T

⌋
=

⌊
Li,j(S)

T

⌋
(12)

If all clocks are perfect, the values of L and U become

Li,j(S) =S + Ei,j + P i,j + oi − oj , (13)

Ui,j(S) =T − S + P i,j + zj + oi − oj . (14)

The condition (11) then expresses that the guard band S and the offsets oi, oj have
to compensate the transmission, propagation and switching delays. With nonideal
clocks, there are additional terms in L and U : the former term, ∆i + ∆j , captures the

synchronization accuracy whereas the latter term, namely l̂ or û, captures the effect
of supplementary nonidealities. The values in the theorem then add some margin in
order to account for clock nonidealities.

The term δi,j represents the difference in cycle number. At first glance, one may
expect, up to some normalisation, to always have δi,j = 0 i.e. a frame sent a cycle k
is received at cycle k. But as will be shown in the experiments (Section 6, Figure 20),
one may introduce some phase between the offsets to absorb the propagation time and
reduce the guard band. When this strategy is used on a non feed-forward network (a
network with cycles) with large propagation time (i.e. when the sum of the propagation
times is more than half of the cycle time T ), some non null δi,j will appear.
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Sketch of proof. The proof consists in bounding the reception time of frames sent by
the node Ni to the node Nj in one cycle. To this end, we consider two frames, the
former being sent as early as possible and the latter as late as possible. Let t, t′ be
the respective reception instants. Since both have to be received in the same cycle,

it implies
⌊
cj(t)−oj

T

⌋
=
⌊
cj(t′)−oj

T

⌋
(where cj is the clock of Nj). Then, we use the

conditions on clocks to compute a lower bound on the former expression and an upper
bound on the latter.

The full proof is given in Appendix D.

The values of Li,j(S) and Ui,j(S) depend on S in a non linear way. In Section 5 we
are interested in computing offsets that minimize S; this non-linearity leads to MILPs
with many binary variables, which quickly become intractable. This motivates us to
derive from Theorem 1 the simpler sufficient condition in Corollary 1, which, as we
show in Section 4.3, remains very close. To this end, first observe that, by (1), we
must have

S ≤ S :=
T −maxi,j Ei,j

2
(15)

Second, we use the following lower bound:

Property 1. Let

S := max
i,j

(
P i,j + zj − P i,j − E

2
+ ∆i + ∆j

)
(16)

If S satisfies the sufficient condition (11) in Theorem 1 for every pair i, j, then S > S.

Proof. The proof is given in Appendix E.

This leads to the following, simpler, sufficient condition:

Corollary 1 (Simpler Sufficient Condition for Node Alignment). Theorem 1 continues

to hold if we replace l̂i,j(S) and ûi,j(S) by l̂i,j(S) and ûi,j(S), i.e. if we replace
Li,j(S), Ui,j(S) by

L′i,j(S) = S + Ei,j + P i,j + oi − oj − (∆i + ∆j)− l̂i,j(S) (17)

U ′i,j(S) = T − S + P i,j + zj + oi − oj + ∆i + ∆j + ûi,j(S) (18)

Proof. The proof is given in Appendix F.

Next, we study the set of values of the guard time S that, for given values of the
offsets oi, oj , satisfy the sufficient condition in Theorem 1 or in Corollary 1. Specifically,
we are interested in minimizing the value of S for given values of the offsets, which is
given by the next theorem.

Theorem 2. For given values of the offsets oi, oj, let Soi,ojthm1 be the set of values of
S ∈ [0;S] that satisfy the sufficient condition (11) in Theorem 1.

• Soi,ojthm1 is not empty if and only if S satisfies (11);

• If Soi,ojthm1 is not empty then there exists some S
oi,oj
thm1 > 0 such that

Soi,ojthm1 =
(
S
oi,oj
thm1;S

]
or Soi,ojthm1 =

[
S
oi,oj
thm1;S

]
.

10



• If Soi,ojthm1 is not empty, let S
∗oi,oj
thm1 be the smallest value of S ∈ Soi,ojthm1 obtained with

binary search in the interval [0;S] with precision ε (this requires
⌈
log2

S
ε

⌉
steps).

Then S
∗oi,oj
thm1 is an ε-over-approximation of S

oi,oj
thm1. i.e. [S

∗oi,oj
thm1 ;S] ⊂ Soi,ojthm1 and

S
∗oi,oj
thm1 − S

oi,oj
thm1 ≤ ε.

The same holds mutatis mutandi with Corollary 1.

The proof is in Appendix G. The above theorem establishes that the set of feasible
guard band durations is an interval, however, it may be closed or semi-closed, i.e., it is
not certain that the infimum is feasible. This is because of the floor in (11), which leads
to a discontinuous condition (see Lemma 8 in Appendix K for details). This means
that, strictly speaking, there might not be a minimum value. In practice, however, we
are interested in values expressed with some accuracy, say ε and the theorem means
that, modulo a precision of ε, there is a minimum value S

∗oi,oj
thm1 , and any value above it

and below S is feasible. The same holds for the condition in Corollary 1, and since any
S that satisfies Corollary 1 also satisfies Theorem 1, we always have S

∗oi,oj
thm1 ≤ S

∗oi,oj
cor1 .

Furthermore, we show numerically in Section 4.3 that the difference is small.
Last, the following property (proof in Appendix H) shows that the sufficient condi-

tion models the expected notion of slack: improving a clock can only reduce the value
of the required guard band.

Property 2. Let S be a solution of Theorem 1 with two clock quality parameters
(ρi, ηi,∆i) (ρj , ηj ,∆j) for some values of the offsets oi, oj. Then, S is also a solution
with better clock quality parameters (ρ′i, η

′
i,∆

′
i) (ρ′j , η

′
j ,∆

′
j) for the same values of the

offsets oi, oj. Here better means ρ′i ≤ ρi, η′i ≤ ηi, ∆′i ≤ ∆′i, ρ
′
j ≤ ρj, η′j ≤ ηj, ∆′j ≤ ∆′j.

The same holds mutatis mutandi with Corollary 1.

4.2 Necessary Condition

We now complement the sufficient condition in the previous section with a necessary
condition. For readability, in this subsection we drop the dependency on i, j in U and
L variables.

Theorem 3 (Necessary condition for time alignment). Let Ni, Nj be two nodes with
parameters ηi, ηj , ρi, ρj ,∆i,∆j , Ei,j , oi, oj , S as defined in section 3. Define X, s, L̃%,

L̃%s, Ũ%, Ũ%s, L̃, L̃s, Ũ and Ũs as follow:

X = P i,j −∆i + oi − oj + E + S (19)

L̃% = X −∆j (20)

L̃ = X −∆j + min

{
zj + 2∆j ,

ρj · zj + ηj
(21)

Ũ% =X+ (22)

min


T − E − 2S + P i,j − P i,j + ∆j + 2∆i

(T − E − 2S) · ρi + P i,j − P i,j + ∆j

(T − E − 2S + P i,j − P i,j + 2∆i) · ρj + ηj −∆j

((T − E − 2S) · ρi + P i,j − P i,j) · ρj + ηj −∆j

11



Ũ =X+ (23)

min



T − E − 2S + P i,j − P i,j + zj + ∆j + 2∆i

(T − E − 2S) · ρi + P i,j − P i,j + zj + ∆j

(T − E − 2S + P i,j − P i,j + zj + 2∆i) · ρj
+ηj −∆j

((T − E − 2S) · ρi + P i,j − P i,j + zj) · ρj + ηj −∆j

s ∈{−1 ; 1} (24)

L̃%s =E + S + P + oi − oj − s · (∆i + ∆j) (25)

L̃s =L̃%1 + z (26)

Ũ%s =T − S + P + oi − oj − s · (∆i + ∆j) (27)

Ũs =Ũ%1 + z (28)

If the two nodes Ni, Nj are time aligned for any valid clock trajectory and η ≤ Ei,j,
then : ⌊

Ũ

T

⌋
=

⌊
L̃

T

⌋
and

⌊
Ũ%

T

⌋
%2 =

⌊
L̃%

T

⌋
%2 (29)

and

⌊
Ũs
T

⌋
=

⌊
L̃s
T

⌋
and

⌊
Ũ%s

T

⌋
%2 =

⌊
L̃%s

T

⌋
%2 (30)

and the difference between the emission and the reception cycle is constant, equal to
δi,j with

δi,j =

⌊
Ũ

T

⌋
=

⌊
L̃

T

⌋
(31)

An illustration of Theorem 3 is provided in Figure 5. When clocks are perfect, the
values become

L̃% = L̃%s = S + Ei,j + P i,j + oi − oj = L (32)

Ũ% = Ũ%s = T − S + P i,j + oi − oj = U − zj (33)

L̃ = L̃s = S + Ei,j + P i,j + zj + oi − oj = L+ zj (34)

Ũ = Ũs = T − S + P i,j + zj + oi − oj = U. (35)

Sketch of proof: The proof uses adversarial frame emission patterns as well as clock
behaviours. It consists in sending a first frame F in the first cycle of Ni as soon as
possible, just after the opening guard band, and a second frame F ′ as late as possible,
just before the closing guard band. In the proof, t0 denotes the instant when the first
cycle starts (i.e. ci(t0) − oi = 0), and t1 is the instant when the last bit of F is sent
(i.e. ci(t1) = ci(t0) + S + E), and t2 the instant when the last bit of F ′ is sent (i.e.

ci(t2) = ci(t0) + T − S). Let tFrec, t
F ′
rec denote the reception instants of F and F ′. In

order to maximize the difference between cj(t
F
rec) and cj(t

F ′
rec), while satisfying the set

of constraints, we consider that the clock ci runs as fast as possible on [t0; t1] and as
slowly as possible on [t1; t0 + T ] while the clock cj runs as fast as possible from tFrec,
as illustrated in Figure 5.

The full proof is given in Appendix I.
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Figure 5: Illustration of Theorem 3.

For given values of the offsets oi, oj , let Soi,oj be the set of values of S that satisfy
the exact but intractable conditions in (5), (6) and let Soi,ojthm3 be the set of values of S
that satisfy the necessary condition of Theorem 3. It follows that

Soi,ojthm3 ⊂ S
oi,oj ⊂ Soi,ojthm1 ⊂ S

oi,oj
cor1 (36)

In the next section we will compare these sets. Note that, while Soi,ojthm1 and Soi,ojcor1

are intervals, it is not clear whether the same holds for Soi,ojthm3 and Soi,oj . However,
let S

oi,oj
thm3 = inf Soi,ojthm3 , which we numerically compute by brute force, thus obtaining

an ε-lower approximation S
∗oi,oj
thm3 . It follows that the length of Soi,oj \ Soi,ojthm1 is up-

per bounded by S
∗oi,oj
thm1 − S

∗oi,oj
thm3 , which thus bounds the pessimism of the sufficient

condition in Theorem 1 (and similarly with Corollary 1).

4.3 Comparing the Three Conditions

We have obtained two sufficient conditions (Theorem 1 and Corollary 1) and one
necessary condition (Theorem 3). To evaluate the tightness of the sufficient conditions,
we compute the values of S

∗oi,oj
thm1 − S

∗oi,oj
thm3 and S

∗oi,oj
cor1 − S∗oi,ojthm1 for different values of

the offsets and other parameters taken randomly with a uniform distribution in the
intervals shown in Table 2.

We take 100 000 configurations using these parameters and we compute S
∗oi,oj
thm1

and S
∗oi,oj
cor1 by binary search (with ε = S.10−10) and S

∗oi,oj
thm3 by scanning all values

between 0 and S∗thm1 with a step of 10 ns for each configuration. Note that for 3978
configurations there is no solution, i.e. the parameters don’t allow to find any valid
guard band value. We trace the histogram shown on Figure 6 of the difference between
the values (see x label).

As we can see, the two sufficient conditions are close: The maximum difference
between them is around 0.2µs and the average difference is around 0.05µs. Thus, the
condition in Corollary 1 is satisfactory because it is easier to compute and quite close
to Theorem 1.

Moreover, we see that the difference between the sufficient and the necessary con-
dition is around 0.1 µs and the maximum difference is around 4.5µs. However, on this
set of configurations, only 26 values are greater than 0.5 µs (0.03% of the configura-
tions, visible on the zoom of the left graph). Thus, we can consider that we are close
enough to the true (intractable) solution by using the sufficient condition.
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Table 2: Random Parameters (µs) for Figure 6. Nodes i, j are fixed, oi = 0,
P i,j = P − p and P i,j = P + p.

Random values (in µs, except for ρ, unitless)

P p zj zj

[0; 200] [0.01; 0.1] ∗ P [0; 15] [0; z]

oj ∆ ρ η

[0; 1000] [0; 1] 1 + [0; .0002] [0; .002]

4.4 Effect of Clock Nonidealities

The incorporation of clock nonidealities brings some complexity to the analysis. In
this section we test whether such a modelling accuracy is really necessary. We consider
a representative configuration as in Table 3 and consider the effect of the following
three factors in the analysis: (1) propagation jitter 2p and switching time z; (2) clock
synchronization error ∆; (3) clock jitter and drift parameters ρ, η. This leads to the
following four scenarios:

• ’Perfect’: propagation jitter and switching times are null and clocks are perfect.
This is the assumption done in most of the literature.

• ’Perfect clock, default other’: propagation jitter and switching times are consid-
ered but clocks are perfect.

• ’Default’: considers all elements described in this paper.

• ’Default, synchronization only’: This captures the result of a simplified analysis
that captures clock synchronization accuracy but ignores bounds on clock jitter
and drift.

The resulting S∗ are computed as in the previous section, and the results are shown
in Table 3. We observe that, with the perfect configuration, all the resulting S∗ are
approximately equal to 0 (not exactly, due to the tolerance ε). However, with the
other scenarios, the resulting S∗ are all non negligible and cause a loss of about 3-4
percent of the cycle time for this single configuration. Most of it comes from system
delays (3%), and clock errors add another .5%. Last, ignoring clock drift and jitter
bounds induces an increase in the guard band by .5% for the sufficient conditions and
increases the gap between the necessary and the sufficient condition. Thus, the model
including the clock drift and jitter bounds is significantly better than the one only
considering the clock synchronization.

This suggests that we can’t ignore the nonidealities; this is confirmed by the thor-
ough experiments in Section 6.

5 Computing the guard band and the offsets

In the previous section we have shown that Corollary 1 obtains a quasi-optimal condi-
tion to decide whether some guard band value S is admissible and gives a method to
test whether some feasible guard band exists at all. Furthermore, we have shown that
there is an infimal value S

oi,oj
cor1 , for given values of time offsets oi, oj , which may or may

not be admissible, but such that any value in the range (S
oi,oj
cor1 ;S] is admissible with

14
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Figure 6: Histogram of the difference between the conditions.

respect to the constraints on link (i, j). We have also given a method to compute an
ε over-approximation, S

∗oi,oj
cor1 , of S

oi,oj
cor1 , which can be interpreted as a minimal guard

band value, given offsets.
If the values of the offsets are imposed or given by some oracle, the infimal guard

band is then equal to max(i,j)∈L S
oi,oj
cor1 , since it must satisfy the constraints on every

link. However, as we show below, the values of the time offsets largely influence the
infimal guard band. Therefore, we are interested in solving

Problem (P ):

minimize max
(i,j)∈L

S
oi,oj
cor1

over(oi)i=1:I ∈ [0;T ]I

where, by convention, S
oi,oj
cor1 = +∞ if Corollary 1 gives no admissible guard band for

these values of oi, oj . In the above, L is the set of links and I is the number of nodes.
If Problem (P ) has a solution, say S, then any S that satisfies S < S ≤ S is a valid
guard band.

We first give two simple heuristics that correspond to common practices; then we
derive a MILP formulation of Problem (P ).

5.1 Heuristics

Recall that the condition in Corollary 1 is:⌊
U ′i,j(S)

T

⌋
=

⌊
L′i,j(S)

T

⌋
(37)
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Table 3: Effect of clock nonidealities. Nodes i, j are fixed, P i,j = P − p and

P i,j = P + p.

Values for all scenarios.

T P zj oi oj

1ms 100µs 0 0 100µs

Eij Eij

0.672µs 12.384µs

Perfect Perfect clock,
default other

Default Default, synchro-
nization only

p 0 0.5µs 0.5µs 0.5µs

zj 0 15µs 15µs 15µs

∆ 0 0 1µs 1µs

ρ 1 1 1.0001 +∞
η 0 0 2ns +∞

S∗
cor1 2.9e-8µs 15.5µs 17.7µs 21.5µs

S∗
thm1 2.9e-8µs 15.5µs 17.7µs 21.5µs

S∗
thm3 2.9e-8µs 15.5µs 17.5µs 17.5µs

where L′i,j , U
′
i,j are defined in (17) and (18)

5.1.1 Null offset

This solution consists in aligning all offsets, which, without loss of generality, can be
written as oi = oj = 0. The condition in (37) becomes:⌊

S + Ei,j + P i,j − (∆i + ∆j)− l̂i,j(S)

T

⌋

=

⌊
T − S + P i,j + zi,j + ∆i + ∆j + ûi,j(S)

T

⌋ (38)

The general case is complicated (see Appendix J), but can be considerably simpli-
fied when the cycle time is large compared to propagation and transmission. Specif-
ically, consider the following condition, stating that the clock error term l̂i,j is small
with regards to emission, propagation and switching times, which also are smaller than
the cycle time:

0 ≤ Ei,j + P i,j + P i,j + zi,j + ûi,j(S)− l̂i,j(S) < T. (39)

If this condition holds for every i, j, then the floor functions in (38) are null (see
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Appendix J, (242)), implying

0 ≤ S + Ei,j + P i,j − (∆i + ∆j)− l̂i,j(S) < T (40)

0 ≤ T − S + P i,j + zi,j + ∆i + ∆j + ûi,j(S) < T. (41)

Consequently,

S ≥ (∆i + ∆j) + l̂i,j(S)− Ei,j − P i,j (42)

S > P i,j + zi,j + ∆i + ∆j + ûi,j(S) (43)

However, since (39) holds, then

P i,j + zi,j + ûi,j(S) ≥ l̂i,j(S)− Ei,j − P i,j (44)

It follows that the infimum of S is

Snull = max
i,j

{
P i,j + zi,j + ∆i + ∆j + ûi,j(S)

}
. (45)

i.e., if (39) holds for every i, j and Snull < S, then any S in (Snull;S] is an admissible
value for the guard band.

As expected, the guard band needs to absorb terms related to the clock imperfec-
tions (∆i, ∆j , ûi,j(S)) but it also has to absorb the maximal propagation and maximal

switching times (P i,j , zi,j).

In the general case (when (39) does not hold for some i, j) the expression of Snull

is more complicated and is given in Appendix J.

5.1.2 Absorbing the propagation with offsets

The standard suggests to set the guard band such that it compensates the “jitter in the
propagation time”, whereas the expression in eq. (45) involves the propagation itself,
not its jitter. This suggests another strategy, where the offsets are set to compensate
the average propagation time.

Let P be the mid propagation time between the node i and the node j, and pi,j
the semi-variation, i.e.:

Pi,j =
P i,j + P i,j

2
, pi,j = Pi,j − P i,j = P i,j − Pi,j . (46)

Assume that we can choose oi and oj such that

oj = oi + Pi,j (47)

then the condition 37 becomes:⌊
S + Ei,j − pi,j − (∆i + ∆j)− l̂i,j(S)

T

⌋

=

⌊
T − S + pi,j + zi,j + ∆i + ∆j + ûi,j(S)

T

⌋ (48)
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As Equation (1) is respected, we know that

S + Ei,j − pi,j−(∆i + ∆j)− l̂i,j(S) (49)

≤ Ei,j + S (50)

≤ T − S < T because S > 0. (51)

So, it comes

⌊
S+Ei,j−pi,j−(∆i+∆j)−l̂i,j(S)

T

⌋
= 0. Consequently,⌊

T−S+pi,j+zi,j+∆i+∆j+ûi,j(S)

T

⌋
= 0, thus

T − S + pi,j + zi,j + ∆i + ∆j + ûi,j(S) < T (52)

S > pi,j + zi,j + ∆i + ∆j + ûi,j(S). (53)

It follows that the infimum of S is

Sprop = max
i,j

{
P i,j − P i,j

2
+ zi,j + ∆i + ∆j + ûi,j(S)

}
. (54)

In other words, if for every link (i, j) : oj = oi +
P i,j+P i,j

2
, and Sprop < S, then

any S in (Sprop;S] is an admissible value for the guard band.
As expected, the guard band needs to absorb terms related to the clock imperfec-

tions (∆i, ∆j , û(S)) but it also has to absorb the jitter of the propagation time and
the maximal switching time.

However, having (47) simultaneously at all links i, j is not always possible, for
example when a switch has several inputs or in case of cyclic dependency (in case of
a ring).

5.1.3 Comparing the Two Heuristics

Observe that Sprop < Snull, i.e. setting the offsets to absorb the propagation time,
when it is possible, always gives a smaller (i.e. better) guard band than when aligning

all offsets. For a single pair of nodes, the difference is
P i,j+P i,j

2
i.e. the median

propagation delay. Considering a propagation speed being 60% of light speed, as
in [14, N.6] (that is to say, 0.18m/ns) it takes 0.11µs to cross a 20m cable, and in a
Metropolitan Area Network (MAN), a 20km cable will have a transmission delay of
0.11ms. At 1Gb/s, 0.11ms is the transmission time of 110Kb of data.

The fact that Sprop can be significantly smaller than Snull indicates that the time
offsets do have an important effect on the minimum guard band. However, the heuristic
that leads to Sprop imposes strict constraints on the network topology, and is often
not applicable. This motivates us to find a solution to Problem (P ), i.e. to compute
time offsets that minimize the guard band.
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5.2 Using a MILP Solver

In this section we derive a method to solve Problem (P ). First notice that, from (37),
Problem (P ) is equivalent to

Problem (P ′):

minimize

over S ∈ [0;S], (oi)i=1:I ∈ [0;T ]I ,

subject to

⌊
U ′i,j(S)

T

⌋
=

⌊
L′i,j(S)

T

⌋
,∀(i, j) ∈ L

(Note that, in the above, L′i,j , U
′
i,j depend on oi, oj .)

Because we always have L′i,j ≤ U ′i,j , the last condition is equivalent to⌊
L′i,j(S)

T

⌋
≥
⌊
U ′i,j(S)

T

⌋
, (55)

which, by Property 3 in Appendix E, is equivalent to

∃ki,j ∈ Z, ki,j ≤
L′i,j(S)

T
and

U ′i,j(S)

T
< ki,j + 1. (56)

Therefore, Problem (P ′) is equivalent to

Problem (P ′′):

minimize S (57)

over S ∈ [0;S], (oi)i=1:I ∈ [0;T ]I , (ki,j)(i,j)∈L ∈ ZL

subject to

ki,j ≤
L′i,j(S)

T
,
U ′i,j(S)

T
< ki,j + 1, ∀(i, j) ∈ L

Because of the strict inequality in its last condition, Problem (P ′′) is ill-posed (its
infimum might not be attained) and cannot be solved as is by MILP solvers. To
circumvent this, we replace it by the following MILP, in which the strict inequality is
modified to an inclusive inequality, using the same tolerance ε as before:

Problem (P−MILP):

minimize S

over S ∈ [0;S], (oi)i=1:I ∈ [0;T ]I , (ki,j)(i,j)∈L ∈ ZL

subject to

ki,j ≤
L′i,j(S)

T
,
U ′i,j(S)

T
≤ ki,j + 1− ε

T
,∀(i, j) ∈ L

The following theorem establishes that Problem (P−MILP) provides an ε-over-
approximation of the infimum of Problem (P ), as required.

Theorem 4. Let SMILP be the optimum value of S returned by Problem (P−MILP).
It is an ε-over-approximation of the value S returned by Problem (P ), i.e. 0 ≤ SMILP−
S ≤ ε. Furthermore, the values of SMILP and of the offsets returned by SMILP are valid.
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Figure 7: Three simple graphs

Table 4: Parameters used with the three topologies in Figure 7.

Constant values

T E ε

0.001s 6.72 ∗ 10−7s 10−10

Perfect values

P p z ∆ ρ η

0.05ms 0 0 0 1 0

Default values

P p z ∆ ρ η

0.05ms 0.5µs 15µs 1µs 1.0001 2 ns

The proof is in Appendix K.
It follows that we can use a MILP solver with Problem (P−MILP) and obtain

the minimal value of the guard band S at precision ε, together with the values of the
offsets. Specifically, if Problem (P−MILP) is feasible, the returned valued of SMILP

and of the offsets are valid and SMILP is optimal at precision ε. Note that for Problem
(P ) it is not certain that the optimal value S is valid because we don’t know in general
whether the infimum of Problem (P ) is attained; the last statement in the theorem
recalls that such a complication may not happen with Problem (P−MILP).

6 Experiments

In the rest of this section, we apply the two heuristics and the MILP formulation to the
three network topologies in Figure 7 and compare the corresponding optimal values of
guard bands, namely, Snull, Sprop and Smilp.

The parameters are described in Table 4. We vary the propagation time (P ), the
jitter of the propagation (2p), the upper bound of the switching time (z) and the
parameters of the clocks (∆, η, ρ). All nodes have the same parameters (∀i, j, P i,j =

P − p, P i,j = P + p,∆i = ∆, ηi = η, ρi = ρ). The “perfect” values correspond to ideal
clocks and negligible switching time. Except if mentioned otherwise, if a configuration
is said “perfect” [resp. “default”], all parameters have the perfect [resp. default] values
as in Table 4.

The time offsets are defined up to a common time shift, and we set o1 = 0 in all
experiments.
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Figure 8: Exp L.1: Guard bands (upper panels) and optimal offsets (bottom
panel) versus mean propagation time P (Line topology).
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Figure 9: Exp L.2: Guard bands (upper panels) and optimal offsets (bottom
panel) versus propagation jitter parameter p (Line topology).

6.1 Line

We start with the simple line illustrated in Figure 7a. Each experiment considers a
perfect and a default configuration and varies one parameter. Figures 8 to 11 plot Snull

(upper line), Sprop and Smilp (medium line) as well as the optimal offsets computed
by the MILP (bottom line). The left row presents the perfect configuration, and the
right row presents the default configuration.

• Experiment L.1, Figure 8: The propagation time P varies from 0 to 0.1ms by
steps of 10µs.

Observations: For the perfect configuration, the guard band with all null offsets
Snull grows up linearly with the propagation time. In contrast, the guard bands
computed by absorbing the propagation time or using the MILP are quasi null:
the MILP computes null values, and the others return the tolerance ε. The MILP
computes the sames offsets as the heuristics based on propagation absorption,
setting oi+1 = oi + Pi+1,i.

The introduction of non null jitters and imperfect clocks does not change the
trends but increases the guard band values: the MILP computes a guard band
Smilp around 10µs whereas the propagation absorption heuristics computes Sprop

around 18µs. The offsets computed by the MILP are also slightly increased.

• Experiment L.2, Figure 9: The propagation jitter parameter p varies from 0 to
1.5 times E by steps of 0.1.
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Figure 10: Exp L.3: Guard bands (upper panels) and optimal offsets (bottom
panel) versus upper bound on switching delay z (Line topology).
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Figure 11: Exp L.4: Guard bands (upper panels) and optimal offsets (bottom
panel) versus clock nonideality factor x, where ∆ = xµs, η = 2xns, ρ = 1+10−4x
(Line topology).
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Figure 12: Exp F.1: Guard bands (upper panels) and optimal offsets (bottom
panel) versus mean propagation time P (Feed-forward topology).

Observations: In the perfect configuration, Snull and Sprop increase linearly
w.r.t. the semi-variation of the propagation p. When p ≤ E

2
the MILP solver

finds a null guard band by setting oi+1 = oi + Pi+1,i + p. But as shown by
Prop. 1, if p > E

2
which is equivalent to 2p = P − P > E, S cannot be null.

Then the MILP solver finds S = p− E
2

and oi+1 = oi + P + E
2

.

For the default configuration, we also see a linear increase, but starting at higher
values, as in experiment L.1.

• Experiment L.3, Figure 10: The switching time upper-bound z varies from 0 to
1.5 times E by steps of 0.1.

Observations: In the perfect configuration, Snull and Sprop increase linearly
w.r.t. the maximal switching time z. In the perfect configuration, as long as
z < E, the MILP solver finds a null guard, by setting oi+1 = oi +Pi,j + zj . But
as shown by Prop. 1, if z > E, S cannot be null. The choice of the offset still
compensates the propagation, minus a compensation term oi+1 ≈ oi+Pi,j+E+z

2
.

In the default configuration, we also see a linear increase, but starting at higher
values, as in experiment L.1. It appears that the slopes are not the same: the
MILP solver uses the offsets values to absorb a part of the jitter.

• Experiment L.4, Figure 11: The clock quality depends on a parameter x and
ranges from perfect (x = 0) to default (x = 1) by steps of 0.1 (∆ = xµs,
η = 2xns, ρ = 1 + 10−4x).

Observations: Here, too, the guard band value increases linearly with same
slope for all cases. The MILP solver sets oi+1 − oi = P and uses the guard
band value to absorb the clock imprecision. Clock nonideality adds several
microseconds to the guard band but has little effect on the optimal offsets.

6.2 Feed-forward with two paths

We consider next the topology on Figure 7b, which has parallel paths. It follows that
the propagation absorption heuristics cannot be applied: it is no longer possible to
set the downstream offset as the sum of the upstream offset and the propagation time
since SW4 has two upstream offsets. Therefore, in Figures 12 to 15 we compare only
the values of Snull and Smilp. We vary the same factors as with the line topology.

• Experiment F.1, Figure 12: The propagation time P varies from 0 to 0.1ms by
steps of 10µs.

23



0.0 0.2 0.4 0.6 0.8 1.0
50.0

50.5

51.0

S n
ul

l (
s)

Perfect configuration

0.0 0.2 0.4 0.6 0.8 1.0

67.5

68.0

Default configuration

0.0 0.2 0.4 0.6 0.8 1.0

10.0

10.5

S m
ilp

 (
s)

0.0 0.2 0.4 0.6 0.8 1.0

21.0

21.5

0.0 0.2 0.4 0.6 0.8 1.0
p ( s)

0

50

100
o i

 (
s)

o5
o4
o3
o2
o1

0.0 0.2 0.4 0.6 0.8 1.0
p ( s)

0

100
o5
o4
o3
o2
o1

Figure 13: Exp F.2: Guard bands (upper panels) and optimal offsets (bottom
panel) versus propagation jitter parameter p (Feed-forward topology).
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Figure 14: Exp F.3: Guard bands (upper panels) and optimal offsets (bottom
panel) versus upper bound on switching delay z (Feed-forward topology).
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Figure 15: Exp F.4: Guard bands (upper panels) and optimal offsets (bottom
panel) versus clock nonideality factor x, where ∆ = xµs, η = 2xns, ρ = 1+10−4x
(Feed-forward topology).
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Figure 16: Exp R.1: Guard bands (upper panels) and optimal offsets (bottom
panel) versus mean propagation time P (Ring topology).

Observations: In the perfect configuration, as with the line configuration, Snull

increases as a linear function of P , from 0 to 100µs. The optimal solution has
oi+1 = oi + P on the shortest path and distributes the offsets along the longest
path. The guard band Smilp increases to absorb the difference, from 0 to 20µs,
and is 5 times less than with the null heuristic.
The default configuration has similar trends, but must compensate the clock
imperfections.

• Experiment F.2, Figure 13: The propagation jitter parameter p varies from 0 to
1.5 times E by steps of 0.1.

Observations: As with previous cases, Snull increases as a linear function of p.
This is also the case for Smilp: the optimal solution uses the same strategy as in
F.1, namely, the optimal offsets compensate the propagation difference between
the two paths, and S is increased to absorb the propagation jitter.

• Experiment F.3, Figure 14: The switching time upper-bound z varies from 0 to
1.5 times E by steps of 0.1.

Observations: The results are very similar, except that the Smilp values are
smaller (from 22.25µs to 23µs).

• Experiment F.4, Figure 15: The clock quality depends on a parameter x and
ranges from perfect (x = 0) to default (x = 1) by steps of 0.1 (∆ = xµs,
η = 2xns, ρ = 1 + 10−4x).

Observations : The results are very similar to previous experiments. In particu-
lar, clock nonideality adds several microseconds to the guard band but has little
effect on the optimal offsets.

6.3 Ring

Last, we consider the ring topology in Figure 7c, which is the simplest topology with
cyclic dependencies. Here, too, the propagation absorption heuristics cannot be ap-
plied as it requires to set the downstream offset to the sum of the upstream offsets,
leading to a circular condition that has no solution. Therefore, in Figures 16 to 19 we
compare only the values of Snull and Smilp. We vary the same factors as with the line
topology.
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Figure 17: Exp R.2: Guard bands (upper panels) and optimal offsets (bottom
panel) versus propagation jitter parameter p (Ring topology).
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Figure 18: Exp R.3: Guard bands (upper panels) and optimal offsets (bottom
panel) versus upper bound on switching delay z (Ring topology).).
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Figure 19: Exp R.4: Guard bands (upper panels) and optimal offsets (bottom
panel) versus clock nonideality factor x, where ∆ = xµs, η = 2xns, ρ = 1+10−4x
(Ring topology).
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Figure 20: Ring topology: illustration of optimal offsets and guard band when
the mean propagation time is P = 150µs, with otherwise default configuration.
A frame sent by node 1 is received in the same cycle whereas a frame sent by
node 5 is received in the next cycle.

• Experiment R.1, Figure 16: The propagation time P varies from 0 to 0.4ms
by steps of 10µs. The range, here, is increased to see the specific behaviour of
SMILP.

Observations: As with the previous experiments, the strategy based on null
offsets creates a Snull that increases linearly to compensate the propagation
time. When the propagation time is equal to 40% of the cycle time, 80% of the
bandwidth is lost.

In contrast, the optimal value found by the MILP uses a different strategy. In
the perfect configuration, when P ∈ [0; 100µs], i.e. when 5P ∈ [0;T/2], the null
offset is optimal and Snull = Smilp. This goes until 5P = T/2, where 20% of
the bandwidth is lost due to the guard band at the beginning and the end of
each cycle. However, beyond this point, i.e. when 5P ∈ (T/2;T ], the optimal
solution sets oi+1 = oi +T/5, i.e. the cycle time is uniformly distributed among
the offsets and the guard band value decreases, down to the optimal case, when
the total propagation time 5P is equal to the cycle time T . Then when P
increases beyond this value, the minimal guard band increases again and the
process repeats. The loss of bandwidth oscillates between 0 and 20%, whereas
with the null offset heuristic, it increases linearly well beyond 20% (up to a point
where the null heuristic has no feasible guard band whereas the MILP solver
always finds a solution.)

With the (realistic) default configuration, we see the same pattern but with
some additional margin to account for the other non null parameters. It is
enlightening to analyze the spatial distribution of offsets, as shown in Figure 20.
Here the offsets are used to absorb the cycle time, and there is an index jump
from node 5 to node 1, namely, a frame sent in cycle k5 at node 5 is received in
cycle k1 = k5 + 1 at node 1. A cycle jump does not occur when P ≤ 100µs but
always occurs beyond.

• Experiment R.2, Figure 17: The propagation jitter parameter p varies from 0 to
1.5 times E by steps of 0.1. Observations: Like in previous experiments, Snull

increases linearly to compensate the propagation jitter. The optimal solution
also selects null offsets, because the sum of the propagation time is smaller
than half of the period (5P � T

2
) and consequently Smilp also compensates the

propagation jitter.

• Experiment R.3, Figure 18: The switching time upper-bound z varies from 0 to
1.5 times E by steps of 0.1. and P = 50µs.

Observations: The results are very similar to the experiment R.2, but the guard
bands are smaller in the default configuration.

• Experiment R.4, Figure 19: The clock quality depends on a parameter x and
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ranges from perfect (x = 0) to default (x = 1) by steps of 0.1 (∆ = xµs,
η = 2xns, ρ = 1 + 10−4x).

Observations: The results are very similar to experiments R.2 and R.3. We
also see that clock nonidealities add up to 15 microseconds to the guard band.

Summary of Observations

A few lessons can be learnt from these experiments.

1. The choice of the offsets can dramatically reduce the guard band.

2. The nonideality parameters of clock, switching delay and propagation jitter
affect the guard band; ignoring them leads to too small guard band.

3. In contrast, the values of the offsets are mainly influenced by topology and
propagation latency, not significantly by other parameters.

6.4 Computing the Guard Band in Practice

We have presented 3 methods to compute the guard band:

• either setting null offsets in all nodes, and use the guard band value Snull, defined
in eq. (45),

• or setting offsets in order to absorb the propagation time, and use the guard
band value Sprop, defined in eq. (54),

• or use a MILP solver, presented in Problem (P-MILP).

The use of null offsets is the simplest, and can be used as long as the propagation
time is small w.r.t. the cycle time (cf. (39)), but it will not give the best value since
the guard band must absorb this propagation time (cf. Exp L.1, Exp F.1 and Exp R.1
presented respectively in Fig. 8, 12 and 16).

Setting offsets in order to absorb the propagation time allows to compensate this
effect, but this is not possible for any topology (it is not possible if there exist two
paths with different cumulated propagation times or if there are cyclic dependencies).

The last solution consist in using the MILP. One common drawback of MILP
is the computation time. But thanks to its simplicity, the one presented in Prob-
lem (P-MILP) can be solved in a very short time. Each configuration presented in
the experiment section is solved in less than 10ms (using lp solve on a i5 /2.70GHz
CPU, the time command returns 0.00). To challenge the computation time, we have
enlarged the ring topology to consider rings from 5 to 50 nodes with step 5. Each
MILP was solved in less than 80ms.

Last, there exists a minimal granularity associated with the GCL: TickGranularity
[9, §8.6.9.4.16] and the method may compute a guard band S that is not a multi-
ple of TickGranularity. But thanks to Thm. 2, if S is a solution of Thm. 1, then

ST = TickGranularity
⌈

S
TickGranularity

⌉
also is, as long as ST ≤ S.
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7 Related work

Several extensions of CQF have been proposed, like CQF 3-queues [15], Paternoster
[16], Scalable Deterministic Forwarding (SDF, [17]) and Cycle Specified Queuing and
Forwarding (CSQF, [18]). A global survey can be found in [2].

All these extensions have been designed to overcome some limitations of CQF, but
it seems that all authors consider that all CQF nodes have to align their cycle time,
i.e. have to share the same offset (cf. Section 5.1.1), whereas the standard does not
explicitly state so.

Also note that all these extensions use 3 or even 4 queues, whereas Ethernet/TSN
offers only 8 queues (or even less, depending on the implementation). Since a real-time
network may have many types of traffic, each with specific requirements, the mapping
from traffic types to only 8 TSN classes may become an issue [19].

While CQF offers bounded jitters (2T ), some flows requires very small jitters. For
such flow, TSN allows to configure the GCLs to provide a Time-Triggered forward-
ing, commonly called Time Aware Shaping (TAS) [20, 21]. The Time-Aware Cyclic-
Queuing (TACQ) proposes to integrate both a TAS-like mechanism and CQF on an
output port by closing both CQF queues at start of cycle to allow low jitter flows to
be forwarded [22]. To optimise the bandwidth usage, it would be natural to overlap
this closing time and the guard band.

A comparison between CQF and CBS on an automotive use case is done by sim-
ulation in [23], but without any consideration on the guard band.

The computed bounds assume that each CQF buffer does not receive in one cycle
more than what can be sent in the next cycle. The Injection Time Planning (ITP)
mechanism computes the global cycle time and per-flow offsets for periodic flows in
order to maximise the admissible load while satisfying this constraint [24]. The ap-
proach is generalised in [25] by adding in each End-System an “adapter” in charge
of implementing the injection using a list of queues, and also by providing an online
algorithm. It assumes that all offsets are equal, and the guard band only has to absorb
the clock synchronization precision.

8 Conclusion

The expected behaviour of CQF requires some time alignments between cycles, using
appropriate values of the guard band and the nodal offsets. We provided a mathe-
matically proven method to effectively compute such values, while accounting for clock
nonidealities and jitters. Illustrative case studies indicate that clock nonidealities have
a non-negligible influence and should not be ignored.

9 Proofs

All the proofs are in the supplementary material. They can also be found in the
appendix of [26].
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Appendix

A Details on implentation of CQF with PSFP
and GCL

When a frame is fully received, it passes through several tests (such as CRC
conformance, VLAN checking), and in particular, based on a stream id, it passes
through some “filters”. The implementation of CQF consists in assigning an
Internal Priority Value (IPV), defining in which queue of the output port it will
be stored. The value depends on a time-driven table (“stream gate control list”).
The table has a length “OperControlListLength” (Ls for short). Each entry i ∈
[0, Ls−1] has a state duration “TimeInterval” (ds(i) for short). The table has a

total duration “OperCycleTime” (Ts for short), related with
∑Ls−1
i=0 ds(i) = Ts,

and a time origin “OperBaseTime” (Os for short). For any i ∈ [0, Ls − 1], let
IPV(i) denotes the IPV of the i-th entry of the table. The time-based decisions
are based on the clock value “CurrentTime”. We denote by c(t) the value
CurrentTime at physical time t. Then, if a frame passes the PSFP filter at
physical time t, it will be forwarded to the queue IPV(i) where i is the current

index, i.e. such that
∑i−1
k=0 ds(k) + kTS ≤ c(t)− Os <

∑i
k=0 ds(k) + kTS , with

k =
⌈
c(t)−Os

Ts

⌉
the current cycle number. Note that there exists some delay

between the output of the filtering and the arrival in this transmission queue,
called in this paper “internal switching delay”, denoted with z.

A valid configuration of CQF consists in having a CQF cycle time T such
that Ts is a multiple of 2T (for sake of simplicity, we assume here that Ts = 2T ),
Ls being even, and two dedicated queues q1, q2 ∈ [0, 7] such that i < n/2 =⇒
IPV(i) = q1 and i ≥ n/2 =⇒ IPV(i) = q2. During time intervals when
c(t)−Os ∈ [2kT, (2k+1)T ), called “even intervals” or “even cycle”, IPV(·) = q1

and otherwise, in “odd intervals”, IPV(·) = q2.
The output port also has a discrete time-driven table, with its own “Op-

erControlListLength”, “TimeInterval”, “OperControlListLength” and “Oper-
BaseTime”, denoted with Lo, do, To and Oo, with the constraint that Ts = To,
based on the same clock c. There is no IPV in this table, but a gate state,
that determines if each queue is either open or closed. The standard states that
“during even numbered cycles, queue 1 accumulates received frames from the
Bridge’s reception Ports and does not transmit them” meaning that during even
cycles, the gate of the queue 1 is closed, whereas the one of queue 2 is open,
and conversely for odd cycles.
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The standard clearly imposes that the input stream gate control list cycles
Ts and the output port control list To are multiple of 2T , and we can assume
without loss of generality that Ts = To = 2T . But it does not state anything
about their respective OperBaseTime, Os and Oo. For simplicity, we will assume
in this paper that all input ports and output ports of a given switch have the
same OperBaseTime.

B Proof of Equation (4)

Proof. The condition (3) can be also written t − ∆ ≤ c(t) ≤ t + ∆, so by
instantiating it twice

t+ d−∆ ≤ c(t+ d) ≤ t+ d+ ∆ (1)

and − t−∆ ≤ −c(t) ≤ −t+ ∆ (2)

it comes d− 2∆ ≤ c(t+ d)− c(t) ≤ d+ 2∆.

C Other Clock properties

Property 1 (Clock properties). Let ρ′ ≥ ρ ≥ 1, η′ ≥ η ≥ 0 and ∆′ ≥ ∆ ≥ 0.
If a clock c respects drift parameters (ρ, η), and synchronization error ∆, it

also respects drift parameters (ρ′, η′), and synchronization error ∆′.
If a clock c respects drift parameters (ρ, η), and synchronization error ∆,

and if 2∆ < η, then it also respects drift parameters (ρ,∆).

The first property ensures that if a clock as a certain quality, it also ensures
a “weaker”quality.

The second property allows to assume without loss of generality that η ≤ 2∆,
in order to simplify the proofs.

Proof. Let ρ′ ≥ ρ ≥ 1, η′ ≥ η ≥ 0 and ∆′ ≥ ∆ ≥ 0.
Assume that the clock c respects drift parameters (ρ, η) and synchronization

error ∆. From the clock synchronization property (Equation 2) we have, ∀t ≥ 0,

|c(t)− t| ≤ ∆ ≤ ∆′. (3)

Then, ∀t, d ≥ 0,

d− η′

ρ′
≤ d− η

ρ
≤ c(t+ d)− c(t) ≤ d · ρ+ η (4)

≤ d · ρ′ + η′ (5)

Consequently, it also respects drift parameters (ρ′, η′), and synchronization error
∆′.
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Now assume that the clock c respects drift parameters (ρ, η), synchronization
error ∆ and η > 2∆. Thus

c(t+ d)− c(t) ≤ t+ d+ ∆− (t−∆) (6)

= d+ 2∆ (7)

≤ ρ · d+ 2∆ (8)

and also

c(t+ d)− c(t) ≥ d− 2∆

ρ
(9)

Set η′ = 2∆, then c respects drift parameters (ρ, η′), synchronization error ∆
and η′ ≤ 2∆.

We will use the following notation in the proofs.

Definition 1. Let u, v, w,M be fours reals. We define

γ
u,v,w

(M) = max(M − 2w;
M − v
u

) (10)

γu,v,w(M) = min(M + 2w;M · u+ v) (11)

Remark 1. Let c a clock with drift parameters (ρ, η,∆) and (t, d) ∈ R+. Then,

γ
ρ,η,∆

(d) ≤ c(t+ d)− c(t) ≤ γρ,η,∆(d) (12)

Property 2. Let c a clock with drift parameters (ρ, η,∆) and M ∈ R+.
If M ≤ c(t+ d)− c(t) then γ

ρ,η,∆
(M) ≤ d.

And if c(t+ d)− c(t) ≤M then d ≤ γρ,η,∆(M).

Proof. Let c a clock with drift parameters (ρ, η,∆) and M ∈ R+. c respects the
properties of the clock as defined in Equation 3 and Equation 2. Consequently,

d− η
ρ
≤ c(t+ d)− c(t) ≤ d · ρ+ η (13)

& (14)

d− 2∆ ≤ c(t+ d)− c(t) ≤ d+ 2∆ (15)

If M ≤ c(t+ d)− c(t), then

M ≤ c(t+ d)− c(t) ≤ d · ρ+ η (16)

=⇒ M − η
ρ

≤ d& (17)

M ≤ c(t+ d)− c(t) ≤ d+ 2∆ (18)

=⇒ M − 2∆ ≤ d (19)

Consequently,

max(
M − η
ρ

;M − 2∆) = γ
ρ,η,∆

(M) ≤ d (20)
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Similary, if c(t+ d)− c(t) ≤M , then

d− η
ρ
≤ c(t+ d)− c(t) ≤M (21)

=⇒ d ≤M · ρ+ η& (22)

d− 2∆ ≤ c(t+ d)− c(t) ≤M (23)

=⇒ d ≤M + 2∆ (24)

Consequently,
d ≤ min(M · ρ+ η;M + 2∆) = γρ,η,∆(M) (25)

D Proof of Theorem 1 (Sufficient condition)

Proof. To ease expression manipulation, let Ė = E + Sb and Ṫ = T − Se. Also,
in this proof, we drop the dependency on i, j in U and L.

Consider two frames F and F ′ sent by a node Ni to Nj , F is sent before F ′.
Assume that (11) holds. We will show that the nodes Ni and Nj satisfy

Definition 1. Let tFcl, t
F
wr, t

F ′

cl , t
F ′

wr be the significant times of F and respectively
F ′ as defined in Section 3, we have to show⌊

cj(t
F
cl)− oj
T

⌋
%2 =

⌊
cj(t

F ′

cl )− oj
T

⌋
%2 (26)

AND

⌊
cj(t

F
wr)− oj
T

⌋
=

⌊
cj(t

F ′

wr)− oj
T

⌋
(27)

At this point, we have⌊
cj(t

F
cl)− oj
T

⌋
≤

⌊
cj(t

F ′

cl )− oj
T

⌋
≤

⌊
cj(t

F ′

wr)− oj
T

⌋
(28)

⌊
cj(t

F
cl)− oj
T

⌋
≤
⌊
cj(t

F
wr)− oj
T

⌋
≤

⌊
cj(t

F ′

wr)− oj
T

⌋
(29)

because F is sent before F ′ and the forwarding time is obviously earlier than

the writing time. Let us first prove that
⌊
cj(tFcl)−oj

T

⌋
=

⌊
cj(tF

′
wr)−oj
T

⌋
.

1. Consider F : let tFem denote the instant when the node Ni sends the last
bit of F , EF be the transmission time of F (the first bit being sent at
time tFsem such that ci(t

F
em)− ci(tFsem) = EF ). Let k be the cycle in which
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this frame is sent. This cycle starts at time tk such that ci(tk)− oi = kT
(cf. Section 3). During interval [tk, t

F
sem), other frames can be sent (higher

priority ones, lower priority ones, or other CQF frames, as described in
Section 2.3). But in any case, F starts its emission after the end of the
opening guard band. Then

ci(t
F
em) ≥ EF + Sb + ci(tk) (30)

⇐⇒ ci(t
F
em)− ci(tk) ≥ Ė (31)

According to Property 2,

=⇒ γ
ρi,ηi,∆i

(Ė) ≤ tFem − tk (32)

So,
tFem ≥ tk + γ

ρi,ηi,∆i
(Ė) (33)

and tFcl denotes the instant when the frame is forwarded in the queue in
Nj . So,

tFem + P i,j ≤ tFcl ≤ tFem + P i,j . (34)

2. Consider F ′ : let tF
′

em denote the instant when the node Ni sends the last
bit of F ′. The frame is sent before the closing guard band, so

ci(t
F ′

em)− ci(tk) ≤ T − Se = Ṫ (35)

According to Proposition 2,

tF
′

em − tk ≤ γρi,ηi,∆i
(Ṫ ) (36)

So,
tF

′

em ≤ tk + γρi,ηi,∆i
(Ṫ ) (37)

and tF
′

cl denotes the instant when the frame is forwarded in the queue in
Nj . So,

tF
′

em + P i,j ≤ tF
′

cl ≤ tF
′

em + P i,j (38)

Finally, tF
′

wr denotes the instant when the frame is written in the queue in
Nj ,

tF
′

cl + zj ≤ tF
′

wr ≤ tF
′

cl + zj (39)

We can now combine (33), (34), (37) and (39) and obtain

tFcl ≥ tk + P i,j + γ
ρi,ηi,∆i

(Ė) (40)

tF
′

wr ≤ tk + P i,j + zj + γρi,ηi,∆i
(Ṫ ) (41)

The clock is increasing so

cj(t
F
cl) ≥ cj

(
tk + P i,j + γ

ρi,ηi,∆i
(Ė)
)

(42)

cj(t
F ′

wr) ≤ cj
(
tk + P i,j + zj + γρi,ηi,∆i

(Ṫ )
)

(43)
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Due to clock drift, (4), we have :

γ
ρj ,ηj ,∆j

(d) ≤ cj(t+ d)− cj(t) ≤ γρj ,ηj ,∆j
(d) (44)

cj(tk) + γ
ρj ,ηj ,∆j

(d) ≤ cj(tk + d) ≤ cj(tk) + γρj ,ηj ,∆j
(d) (45)

Also, we have a bound on clock error in (3),

−∆j + tk ≤ cj(tk) ≤ ∆j + tk (46)

−∆i + ci(tk) ≤ tk ≤ ∆i + ci(tk) (47)

−∆j −∆i + ci(tk) ≤ cj(tk) ≤ ∆j + ∆i + ci(tk) (48)

−∆j −∆i + k.T + oi ≤ cj(tk) ≤ ∆j + ∆i + k.T + oi (49)

By (45) and (49)), we have

k.T −∆j −∆i + oi + γ
ρj ,ηj ,∆j

(d) ≤ cj(tk + d)

≤ k.T + ∆j + ∆i + oi + γρj ,ηj ,∆j
(d)

(50)

From (40), tFcl ≥ tk + . . ., so we can apply the previous inequality to cj(t
F
cl)

cj(t
F
cl) ≥ (51)

k · T −∆j −∆i + oi + γ
ρj ,ηj ,∆j

(P i,j + γ
ρi,ηi,∆i

(Ė)) (52)

= k · T −∆j −∆i + oi

+ max


(Ė − ηi) · 1

ρi
+ P i,j − 2.∆j

Ė − 2∆i + P i,j − 2∆j

((Ė − ηi) · 1
ρi

+ P i,j − ηj) · 1
ρj

(Ė − 2∆i + P i,j − ηj) · 1
ρj

(53)

= k · T + Ė + P i,j + oi −∆i −∆j

−min


Ė · (1− 1

ρi
) + ηi

ρi
+ 2∆j ,

2∆i + 2∆j ,

Ė · (1− 1
ρi·ρj ) + P i,j · (1− 1

ρj
) + ηi

ρi·ρj +
ηj
ρj
,

(Ė + P i,j) · (1− 1
ρj

) +
ηj
ρj

+ 2∆i · 1
ρj

(54)

= k · T + L+ oj (55)
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Similarly, tF
′

wr ≤ tk + . . . and

cj(t
F ′

wr) (56)

≤ ∆j + ∆i + k · T + oi

+ γρj ,ηj ,∆j
(P i,j + zj + γρi,ηi,∆i

(Ṫ ))
(57)

= ∆j + ∆i + k · T + oi

+ min


Ṫ · ρi + ηi + P i,j + zj + 2∆j

Ṫ + 2∆i + P i,j + zj + 2∆j

Ṫ · ρi + ηi + P i,j + zj) · ρj + ηj

(Ṫ + 2∆i + P i,j + zj) · ρj + ηj

(58)

= k · T + Ṫ + P i,j + zj + oi + ∆i + ∆j

+ min


Ṫ · (ρi − 1) + ηi + 2∆j

2∆i + 2∆j

Ṫ · (ρi · ρj − 1) + ηi · ρj + (P i,j + zj) · (ρj − 1) + ηj

(Ṫ + P i,j + zj) · (ρj − 1) + ηj + 2∆i · ρj

(59)

= U + oj + k · T (60)

From (28), we have

cj(t
F
cl) ≤ cj(tF

′

wr) (61)

From (51) to (55), we have

L+ k · T + oj ≤ cj(tFcl) (62)

From (56) to (60), we have

cj(t
F ′

wr) ≤ U + k · T + oj (63)

Consequently, as the integer part is also increasing, we have

k +

⌊
L

T

⌋
≤
⌊
cj(t

F
rcl)− oj
T

⌋
(64)

≤

⌊
cj(t

F ′

wr)− oj
T

⌋
≤
⌊
U

T

⌋
+ k (65)

Since (11) is respected by hypothesis, it follows that
⌊
cj(tFcl)−oj

T

⌋
=

⌊
cj(tF

′
wr)−oj
T

⌋
.

Combining with (28) and (29), it follows that (26) and (27) hold, i.e., Defini-
tion 1 is satisfied. the two conditions in and the two nodes Ni and Nj are
enought aligned.

Next, let δi,j =
⌊
L
T

⌋
=
⌊
U
T

⌋
, so that⌊

cj(t
F ′

cl )− oj
T

⌋
=

⌊
cj(t

F ′

wr)− oj
T

⌋
= δk + k (66)
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and the difference between the emission and the reception cycle is constant,
equals to δi,j

E Proof of Property 1

We use the following property.

Property 3. Let (a, b) ∈ R, such that a ≤ b. Then,

(∃k ∈ Z | b < k ≤ a+ 1) ⇐⇒ bac = bbc (67)

Proof. (1) Assume that ∃k ∈ Z | b < k ≤ a + 1. Thus k − 1 ≤ a; also, since
a ≤ b < k it comes a < k; so,

k − 1 ≤ a < k (68)

by definition of the floor function,

bac = k − 1 (69)

Also, we have k − 1 ≤ a ≤ b and b < k So,

k − 1 ≤ b < k (70)

by definition of the floor function,

bbc = k − 1 (71)

Consequently, bac = bbc.
(2) Conversely, assume that bac = bbc and let bac = bbc = m, m ∈ Z. From

the definition of the floor function, it follows that m ≤ a and b < m+ 1. Thus
b < m+ 1 ≤ a+ 1, i.e. ∃k ∈ Z | b < k ≤ a+ 1.

Proof of Property 1. Assume that S satisfies the condition in Theorem 1. Then,
we have

⌊
L
T

⌋
=
⌊
U
T

⌋
. We know that L

T ≤
U
T , so according to the Proposition 3,

we have

∃k ∈ Z : U < k · T ≤ L+ T (72)

It follows that, necessarily, U < L+ T . Therefore

T − S + P i,j + zi,j + oi + oj + ∆i + ∆j + û(S)

< S + E + P i,j + oi + oj −∆i −∆j − l̂(S) + T (73)

and thus

P i,j − P i,j + zi,j − E + 2(∆i + ∆j) + û(S) + l̂(S) < 2S (74)

S >
P i,j − P i,j + zi,j − E + l̂(S) + û(S)

2
+ ∆i + ∆j (75)

≥
P i,j − P i,j + zi,j − E + l̂(0) + û(S)

2
+ ∆i + ∆j (76)

≥
P i,j − P i,j + zi,j − E

2
+ ∆i + ∆j (77)
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because S ∈ [0, S], l̂ is decreasing and û is decreasing.

Note that a slightly better lower bound can be found by using (76) instead
of Si,j . In this paper, we found that this did not bring significant improvements
and was not worth the added complexity.

F Proof of Corollary 1

Proof. In this proof, we drop the dependency on i, j in U and L. l̂ is increasing
and û is decreasing, thus

−l̂(S) ≤ −l̂(S) & û(S) ≤ û(S) (78)

L′(S) ≤ L(S) & U(S) ≤ U ′(S) (79)

L′(S) ≤ L(S) ≤ U(S) ≤ U ′(S) (80)

Consequently, ⌊
L′

T

⌋
=

⌊
U ′

T

⌋
=⇒

⌊
L

T

⌋
=

⌊
U

T

⌋
(81)

G Proof of Theorem 2

Proof. Let S be a solution of Theorem 1 for given parameters (oi, oj , P, p, z, ρ, η,∆).
First, we prove that ∀s ∈ [S ; S], s is also a solution i.e., the set of solution is
an interval.

According to Property 3, the solution of Theorem 1 are

S | ∃k ∈ Z such that U(S, oi, oj) < k.T ≤ L(S, oi, oj) + T (82)

But, U is an decreasing function of S and L a increasing function of S. Conse-
quently, for all s > S, U(s) ≤ U(s) and L(S) ≤ L(s) and

U(s, oi, oj) ≤ U(S, oi, oj) < k.T

≤ L(S, oi, oj) + T ≤ L(s, oi, oj) + T
(83)

Then, if S is a solution of Theorem 1, then s ≥ S is also a solution and s is
bounded by S.

Then, let Soi,ojthm1 be the set of values of S ∈ [0, S] that satisfy the sufficient
condition (11) in Theorem 1.

• If S satisfies (11), Soi,ojthm1 is obviously not empty because S ∈ Soi,ojthm1.

• If Soi,ojthm1 is not empty, ∃S ∈ Soi,ojthm1 and ∀s ≥ S, S ∈ Soi,ojthm1. S ≥ S, then
S ∈ Soi,ojthm1.
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• If Soi,ojthm1 is not empty, it is an interval. Then, it exists S
oi,oj
thm1, the infimum

value such that
Soi,ojthm1 = |Soi,ojthm1 ; S] (84)

where | means [ or (.

• By binary search, we can find S
∗oi,oj
thm1 the smallest value of S ∈ Soi,ojthm1 with

precision ε. Then,
S
∗oi,oj
thm1 = S

oi,oj
thm1 + ε. (85)

S
∗oi,oj
thm1 is an ε-approximation of S

oi,oj
thm1. Moreover,

|Soi,ojthm1 ; S] = |Soi,ojthm1 ; S
∗oi,oj
thm1 [∪[S

∗oi,oj
thm1 ; S] (86)

= |Soi,ojthm1 ; S
oi,oj
thm1 + ε[∪[S

∗oi,oj
thm1 ; S] (87)

|Soi,ojthm1 ; S
oi,oj
thm1 + ε[ is of length ε hence [S

∗oi,oj
thm1 ; S] is an ε-approximation

of Soi,ojthm1.

H Proof of Property 2

Proof. Let (ρi, ηi,∆i) be the clock quality parameters of a clock c and (ρ′i, η
′
i,∆

′
i)

the clock quality parameters of a clock c′ better than c, where better means
ρ′i ≤ ρi, η

′
i ≤ ηi, ∆′i ≤ ∆i, ρ

′
j ≤ ρj , η

′
j ≤ ηj , ∆′j ≤ ∆j . If c′ respects the better

clock quality parameters then ∀(t, d) ∈ R+,

d− ηi
ρi

≤ d− η′i
ρ′i

≤ c(t+ d)− c(t) ≤ d · ρ′i + η′i ≤ d · ρi + ηi (88)

And ∀t ∈ R+

|c′(t)− t| ≤ ∆′i ≤ ∆i (89)

Consequently, c′ respects also the clock quality parameters of c.

I Proof of Theorem 3 (Necessary condition)

As introduced in the sketch of proof, the principle of the proof is to build a valid
trajectory with a first frame F sent by Ni just after the opening guard band, a
second frame F ′ whose last bit is sent just before the closing guard band, and
two clocks designed to maximize the distance between the values between of
reception of these two frames.

The main complexity is to build the clock trajectories. To this end, we
first build elementary clock patterns, next we combine them into two feasible
adversary clock trajectories.
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I.1 Elementary Clock Patterns

We need the following technical result:

Property 4. Let a, a′ be two positive real numbers and b, b′ be real numbers.
For any x, y ∈ R,

y = min(ax+ b, a′x+ b′) ⇐⇒ x = max

(
y − b
a

,
y − b′

a′

)
(90)

Proof. Let F : R → R, x 7→ ax + b and G : R → R, x 7→ ax + b. F , G and
min(F,G) are increasing, their upper-pseudo inverses are their regular inverses
and, by [26, Theorem 10.3 (a)], the inverse of min(F,G) is max

(
F−1, G−1

)
.

We now introduce two elementary clock patterns, the former is fast then
slow, the latter is slow then fast.

Property 5 (Feasible Clock Patterns). Let ρ ≥ 1, η ≥ 0 and ∆ ≥ 0, such that
η ≤ 2∆: Define the functions eρ,η,∆, e

′
ρ,η,∆ : R→ R by

eρ,η,∆(x) =

{
max{x−∆, ρx+ ∆− η} if x < 0

max{x−∆, xρ + ∆} if x ≥ 0
(91)

e′ρ,η,∆(x) =

{
min{x+ ∆, xρ −∆} if x < 0

min{x+ ∆, ρx−∆ + η} if x ≥ 0
(92)

Then, the functions eρ,η,∆, e′ρ,η,∆ respect the clock properties presented in (2)
and (3).

Moreover, for any y < ∆ − η or y ≥ ∆, there exists a unique x such that
eρ,η,∆(x) = y. In the following, it will be denoted by e−1

ρ,η,∆(y). Also, for any
y ≤ −∆ or y > η −∆, there exists a unique x such that e′ρ,η,∆(x) = y. In the

following, it will be denoted by e
′−1
ρ,η,∆(y). We have:

e−1
ρ,η,∆(y) =

{
min

{
y + ∆, y−∆+η

ρ

}
if y < ∆− η

min {y + ∆, ρ(y −∆)} if y ≥ ∆− η
(93)

e
′−1
ρ,η,∆(y) =

{
min {y −∆, ρ(y + ∆)} if y < −∆

min
{
y −∆, y+∆−η

ρ

}
if y ≥ −∆ + η

(94)

An illustration is provided in Figures 1 and 2.

Proof that patterns respects clock conditions. We need to show that the two clock
patterns satisfy (2) and (3).
(i) Let us start with (3), i.e., we have to show that ∀t ∈ R, |eρ,η,∆(t)− t| ≤ ∆.

42



y

xx1

y1

η
x0

y0

y = x + ∆
y = x− ∆
y = eρ,η,∆(x)

yA

xA

Figure 1: Clock pattern eρ,η,∆ (fast then slow).

y

xx′1

y′1

x′0

y′0

y = x + ∆
y = x− ∆
y = e′(x)

y′A

x′A

Figure 2: Clock pattern e′ρ,η,∆ (slow then fast).
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t ≤ x0 x0 ≤ t ≤ 0 0 ≤ t ≤ x1 x1 ≤ t
t+ d ≤ x0 1 X X X

x0 ≤ t+ d ≤ 0 2 5 X X
0 ≤ t+ d ≤ x1 3 6 8 X
x1 ≤ t+ d 4 7 9 10

Table 1: Cases for item (ii).

1. If t ∈ R+ :

eρ,η,∆(t)− t = max

{
t−∆,

t

ρ
+ ∆

}
− t (95)

= max

{
−∆, (

1

ρ
− 1) · t+ ∆

}
(96)

It follows that eρ,η,∆(t)−t ≥ −∆. But 1
ρ ≤ 1 and t ≥ 0 so ( 1

ρ−1)·t+∆ ≤ ∆

and thus eρ,η,∆(t)− t ≤ ∆.

2. If t ∈ R− :

eρ,η,∆(t)− t = max {t−∆, t · ρ+ ∆− η} − t (97)

= max {−∆, t · (ρ− 1) + ∆− η} (98)

It follows that eρ,η,∆(t) − t ≥ −∆. But, ρ ≥ 1, η ≥ 0 and t ≤ 0 so
:t · (ρ− 1) + ∆− η ≤ ∆ and eρ,η,∆(t)− t ≤ ∆.

Thus ∀t ∈ R, |eρ,η,∆(t)− t| ≤ ∆.
(ii) Let us now show that (3) holds for eρ,η,∆, i.e we have to show that, for all
t, d ≥ 0:

(d− η) · 1

ρ
≤ eρ,η,∆(t+ d)− eρ,η,∆(t) ≤ d · ρ+ η

Let x0 = 2∆−η
1−ρ < 0 and x1 = 2∆ · ρ

ρ−1 > 0 (see Figure 1). We consider all
possible cases, depending on the positions of t and t + d with respect to x0, 0
and x1. Since d ≥ 0, we obtain 10 cases, numbered as in Table 1.

1. if t ∈ [−∞;x0] and t+ d ∈ [−∞;x0] :

eρ,η,∆(t+ d)− eρ,η,∆(t) (99)

= t+ d−∆− (t−∆) = d (100)

Thus, (d− η) · 1
ρ ≤ eρ,η,∆(t+ d)− eρ,η,∆(t) ≤ d · ρ+ η
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2. if t ∈ [−∞;x0] and t+ d ∈ [x0; 0] :

eρ,η,∆(t+ d)− eρ,η,∆(t) (101)

= eρ,η,∆(t+ d)− eρ,η,∆(x0) + eρ,η,∆(x0)− eρ,η,∆(t) (102)

= (t+ d− x0) · ρ− (t− x0) (103)

= (ρ− 1) · t+ d · ρ+ 2∆− η (104)

But (t + d − x0) · ρ − (t − x0) ≥ (t+d−x0)
ρ − (t−x0)

ρ = d
ρ ≥

d−η
ρ because

t− x0 ≤ 0 and ρ ≥ 1, η ≥ 0.

Also, (ρ−1) ·t+d ·ρ+2∆−η ≤ (ρ−1) ·x0 +d ·ρ+2∆−η = d ·ρ ≤ d ·ρ+η.

Thus d−η
ρ ≤ eρ,η,∆(t+ d)− eρ,η,∆(t) ≤ d · ρ+ η

3. if t ∈ [−∞;x0] and t+ d ∈ [0, x1] :

eρ,η,∆(t+ d)− eρ,η,∆(t) (105)

= eρ,η,∆(t+ d)− eρ,η,∆(x0) + eρ,η,∆(x0)− eρ,η,∆(t) (106)

= (t+ d− x0) · 1

ρ
− (t− x0) (107)

As previously, (t + d − x0) · ρ − (t − x0) ≥ d−η
ρ because t − x0 ≤ 0 and

ρ ≥ 1, η ≥ 0.

Then, (t+d−x0) ·ρ−(t−x0) ≤ (t+d−x0) ·ρ−(t−x0) ·ρ = d ·ρ ≤ d ·ρ+η
because t− x0 ≤ 0 and ρ ≥ 1, η ≥ 0.

Thus d−η
ρ ≤ eρ,η,∆(t+ d)− eρ,η,∆(t) ≤ d · ρ+ η

4. if t ∈ [−∞;x0] and t+ d ∈ [x1,+∞] :

eρ,η,∆(t+ d)− eρ,η,∆(t) (108)

= t+ d−∆− (t−∆) (109)

= d (110)

Thus (d− η) · 1
ρ ≤ eρ,η,∆(t+ d)− eρ,η,∆(t) ≤ d · ρ+ η

5. if t ∈ [x0; 0] and t+ d ∈ [x0; 0] :

eρ,η,∆(t+ d)− eρ,η,∆(t) (111)

= (t+ d) · ρ+ ∆− η − (t · ρ+ ∆− η) (112)

= d (113)

Thus, (d− η) · 1
ρ ≤ eρ,η,∆(t+ d)− eρ,η,∆(t) ≤ d · ρ+ η
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6. if t ∈ [x0; 0] and t+ d ∈ [0, x1] :

eρ,η,∆(t+ d)− eρ,η,∆(t) (114)

= eρ,η,∆(t+ d)− eρ,η,∆(0) + eρ,η,∆(0)− eρ,η,∆(t) (115)

= (t+ d) · 1

ρ
+ ∆−∆ + ∆− (t · ρ+ ∆− η) (116)

= (t+ d) · 1

ρ
− (t · ρ− η) (117)

= (
1

ρ
− ρ) · t+ d · 1

ρ
+ η (118)

But ( 1
ρ − ρ) · t+ d · 1

ρ + η ≥ d · 1
ρ + η ≥ d−η

ρ because 1
ρ − ρ ≤ 0 and t ≥ x0.

Also, (t+ d) · 1
ρ − (t · ρ− η) ≤ (t+ d) · ρ− (t · ρ− η) = d · ρ+ η.

Thus (d− η) · 1
ρ ≤ eρ,η,∆(t+ d)− eρ,η,∆(t) ≤ d · ρ+ η

7. if t ∈ [x0; 0] and t+ d ∈ [x1,+∞] :

eρ,η,∆(t+ d)− eρ,η,∆(t) (119)

eρ,η,∆(t+ d)− eρ,η,∆(x1) + eρ,η,∆(x1)− eρ,η,∆(t) (120)

= t+ d−∆− (x1 −∆) + (x1 ·
1

ρ
+ ∆)− (t · ρ+ ∆− η) (121)

= t+ d− x1 − (t · ρ− x1 ·
1

ρ
− η) (122)

= (1− ρ) · t+ d− 2∆ + η (123)

But, (1 − ρ) · t + d − 2∆ + η ≤ (1 − ρ) · x0 + d − 2∆ + η = d ≤ d · ρ + η
because t ≥ x1 and 1− ρ ≤ 0.

Also, t+d−x1− (t ·ρ−x1 · 1ρ −η) ≥ (t+d−x1) · 1ρ − (t · 1ρ −x1 · 1ρ −η ·
1
ρ ) =

(d+ η) · 1
ρ ≥ (d− η) · 1

ρ .

Thus (d− η) · 1
ρ ≤ eρ,η,∆(t+ d)− eρ,η,∆(t) ≤ d · ρ+ η

8. if t ∈ [0, x1] and t+ d ∈ [0, x1] :

eρ,η,∆(t+ d)− eρ,η,∆(t) (124)

= (t+ d) · 1

ρ
+ ∆− (t · 1

ρ
+ ∆) (125)

= d (126)

Thus (d− η) · 1
ρ ≤ eρ,η,∆(t+ d)− eρ,η,∆(t) ≤ d · ρ+ η
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9. if t ∈ [0, x1] and t+ d ∈ [x1,+∞] :

eρ,η,∆(t+ d)− eρ,η,∆(t) (127)

= eρ,η,∆(t+ d)− eρ,η,∆(x1) + eρ,η,∆(x1)− eρ,η,∆(t) (128)

= t+ d− x1 − (t− x1) · 1

ρ
(129)

= (1− 1

ρ
) · t+ d− 2∆ (130)

But, t + d − x1 − (t − x1) · 1
ρ ≥

t+d−x1

ρ − t−x1

ρ = d
ρ ≥

d−η
ρ because

t+ d− x1 ≥ 0.

Also, (1− 1
ρ ) · t+ d− 2∆ ≤ (1− 1

ρ ) · x1 + d− 2∆ = d ≤ d · ρ+ η because

t ≤ x1 = 2∆ · ρ
ρ−1 .

Thus (d− η) · 1
ρ ≤ eρ,η,∆(t+ d)− eρ,η,∆(t) ≤ d · ρ+ η

10. if t ∈ [x1,+∞] and t+ d ∈ [x1,+∞] :

eρ,η,∆(t+ d)− eρ,η,∆(t) (131)

= t+ d−∆− (t−∆) (132)

= d (133)

Thus (d− η) · 1
ρ ≤ eρ,η,∆(t+ d)− eρ,η,∆(t) ≤ d · ρ+ η

This shows that the clock pattern eρ,η,∆ satisfies (3).
(iii) The proof is similar for the opposite clock e′ρ,η,∆.
(iv) (93) and (94) follow from Prop. 4.

I.2 Feasible Clock Trajectories

We now show how to use the elementary clock pattern to construct clock pat-
terns with specific constraints. The first ingredient is time shifting.

Property 6 (Shifted Clock). Let c be a clock respecting clock parameters (ρ, η,∆).
The function c′ defined by c′(t) = c(t− t′) + t′ is also a clock and respects clock
parameters (ρ, η,∆).

Proof. Since c′ is obviously wide-sense increasing, all we need to prove is that
c′ respects (2) and (3).
∀t, d ≥ 0,

c′(t+ d)− c′(t) = c(t− t′ + d) + t′ − c(t− t′)− t′ (134)

= c(t− t′ + d)− c(t− t′) = c(x+ d)− c(x) (135)

with x = t− t′ As c respects (2), we have : d−η
ρ ≤ c(x+ d)− c(x) = c′(t+ d)−

c′(t) ≤ d · ρ+ η i.e. c′ respects (2).
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Next, for t ≥ 0,

c′(t)− t = c(t− t′)− (t− t′) ≤ ∆ (136)

by application of (3) to c and t− t′.

We will apply time shifting to the elementary clock patterns in Prop. 5.
More specifically, the application to eρ,η,∆ leads to the following.

Property 7 (Feasible Clock Trajectory). Let ρ ≥ 1 and 2∆ ≥ η ≥ 0. For any
A > η, B, t0 ≥ 0, there exists a clock c that respects parameters ρ, η,∆ in (2)
and (3) and two time instants t1, t2 such that

c(t1)− c(t0) = A (137)

c(t2)− c(t1) = B (138)

Furthermore, we can take

c(t0) = t0 + ∆−A−min

{
2∆−A, (η −A) · 1

ρ

}
(139)

t1 = t0 −min

{
2∆−A, (η −A) · 1

ρ

}
(140)

t2 = t1 + min {2∆ +B,B · ρ} (141)

Proof. We use the clock pattern eρ,η,∆ in Prop. 5 and shift it using using Prop-
erty 6. Let

yA = ∆−A, xA = e−1
ρ,η,∆(yA) (142)

yB = ∆ +B xB = e−1
ρ,η,∆(yB) (143)

t1 = t0 − xA, t2 = t1 + xB (144)

(since A > η, xA exists) and consider the clock defined by

c : t 7→ eρ,η,∆(t− t1) + t1 (145)

Then, c(t0) = eρ,η,∆(t0 − t1) + t1 (146)

= eρ,η,∆(t0 − (t0 − xA)) + (t0 − xA) (147)

= eρ,η,∆(xA) + t0 − xA (148)

and since xA = e−1
ρ,η,∆(yA)

c(t0) = yA + t0 − xA = ∆−A+ t0 − xA (149)

To expand the value of xA, use eq. (93). Since A > η, yA < ∆− η and

xA = min

{
yA + ∆,

yA −∆ + η

ρ

}
(150)

= min

{
2∆−A, −A+ η

ρ

}
(151)
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To expand the value of xB , use also eq. (93), but B ≥ 0 =⇒ yB ≥ ∆ ≥ ∆− η
and

xB = min {yB + ∆, ρ(yB −∆)} (152)

= min {2∆ +B, ρ ·B} (153)

And we can verify

c(t1)− c(t0) = eρ,η,∆(0)− eρ,η,∆(xA) = ∆− yA = A

c(t1) = eρ,η,∆(0) + t0 − xA = ∆ + t1

c(t2)− c(t1) = eρ,η,∆(xB)− eρ,η,∆(0) = ∆ +B −∆ = B

I.3 Proof of Theorem 3

The proof of Theorem 3 consist in building specific clock trajectories. We first
build one pair of clocks designed to catch the worst impact of ρ and η, which
gives (29). Second, we build one pair of clocks for each value of s designed to
catch the worst impact of ∆ and obtain (30). To ease expression manipulation,
let

Ė = E + S, Ṫ = T − S. (154)

Proof of (29). 1. Considering scenarios with two frames sent in the first cy-
cle. Consider the first cycle of node Ni, t0 its beginning, and let F and F ′

being two frames sent by Ni to Nj during this cycle, F being sent before

F ′. Let tFcl, t
F ′

cl be the times when F and F ′ are forwarded to a queue of

Nj and tFwr, t
F ′

wr times when they are written in the queue of Nj . Since
definition 1 is satisfied, F and F ′ are totally received by Nj in one cycle,
denoted δk and ⌊

cj(t
F
wr)− oj
T

⌋
=

⌊
cj(t

F ′

wr)− oj
T

⌋
⌊
cj(t

F
cl)− oj
T

⌋
%2 =

⌊
cj(t

F ′

cl )− oj
T

⌋
%2.

(155)

Let us now spread these values, by building clocks ci,cj on Ni, Nj and
maximizing / minimizing propagation and switching times.

2. Building the trajectory of ci. As Ė ≥ ηi, η ≤ 2∆̇ and Ṫ , t0 ≥ 0, we can
apply Property 7 with A = Ė, B = Ṫ − Ė, and note ci this clock defined
with two instants t1 and t2 such that ci(t1)− ci(t0) = Ė, ci(t2)− ci(t1) =
Ṫ − Ė. These two instants, t1, t2, correspond respectively to the instant
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when the node Ni sends the last bit of the first frame and the instant
when the node Ni sends the last bit of the last frame. Property 7 leads to

tFem = t1
(140)
= t0 −min

{
2∆i − Ė
(ηi − Ė) · 1

ρ

(156)

tF
′

em = t2
(140)
= t1 + min

{
2∆i + (Ṫ − Ė)

ρi(Ṫ − Ė)
(157)

c(t0)
(139)
= t0 + ∆i − Ė −min

{
2∆i − Ė
(ηi − Ė) · 1

ρ

(158)

Since t0 is the start of the first cycle, we have ci(t0)− oi = 0, leading to

t0 = oi −∆i + Ė + min

{
2∆i − Ė
(ηi − Ė) · 1

ρi

(159)

3. Maximizing and minimizing propagation and switching times. Assume
that the propagation time is minimal for F and maximal for F ′, we have
:

tFcl = tFem + P i,j (160)

tF
′

cl = tF
′

em + P i,j (161)

Also assume that the switching time is minimal for F and maximal for
F ′, we have :

tFwr = tFcl + zj (162)

tF
′

wr = tF
′

cl + zj (163)

4. Building the trajectory of cj. By Property 6, we can build cj using
e′ρj ,ηj ,∆j

, set t′ = tFcl and

cj(t) = e′ρj ,ηj ,∆j
(t− tFcl) + tFcl. (164)

5. Expressing tFcl as a function of known parameters

tFcl = P i,j + t0 −min

{
2∆i − Ė
(ηi − Ė) · 1

ρ

(165)

(159)
= Ė + P i,j + oi −∆i (166)

= X + oj (167)
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6. Expressing the value of cj(t
F
cl).

cj(t
F
cl) (168)

(164)
= e′ρj ,ηj ,∆j

(tFcl − tFcl) + tFcl (169)

(167)
= e′ρj ,ηj ,∆j

(tFwr − tFcl) +X + oj (170)

= e′ρj ,ηj ,∆j
(0) +X + oj (171)

(92)
= X −∆j + oj (172)

= L̃% (173)

7. Expressing the value of cj(t
F ′

cl ).

cj(t
F ′

cl ) (174)

(164)
= e′ρj ,ηj ,∆j

(tF
′

cl − tFcl) + tFcl (175)

(167)
= e′ρj ,ηj ,∆j

(tF
′

wr − tFcl) +X + oj (176)

(177)

(163)
= e′ρj ,ηj ,∆j

(tF
′

cl + zj − tFcl) +X + oj (178)

(161)
= e′ρj ,ηj ,∆j

(tF
′

em + P i,j − tFcl) +X + oj (179)

(160)
= e′ρj ,ηj ,∆j

(tF
′

em + P i,j − tFem − P i,j)
+X + oj (180)

(92)
= min

{
(tF

′

em − tFem + P i,j − P i,j) + ∆j

ρj(t
F ′

em − tFem + P i,j − P i,j)−∆j + ηj

+X + oj (181)

= X + oj+ (182)

min

{
P i,j − P i,j + ∆j + (tF

′

em − tFem)

ηj −∆j + ρj(P i,j − P i,j + tF
′

em − tFem)

From eq. (157),

tF
′

em − tFem = t2 − t1 = min

{
2∆i + (Ṫ − Ė)

ρi(Ṫ − Ė)
(183)

(154)
= min

{
2∆i + (T − E − 2S)

ρi(T − E − 2S)
(184)

(185)
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Then, eq. (182) becomes

cj(t
F ′

cl ) = X + oj+ (186)

min


P i,j − P i,j + ∆j + 2.∆i + T − E − 2S

P i,j − P i,j + ∆j + ρi(T − E − 2S)

ηj −∆j + ρj(P i,j − P i,j + 2.∆i + T − E − 2S

ηj −∆j + ρj(P i,j − P i,j + ρi(T − E − 2S)

= X + oj + Ũ% (187)

8. Expressing the value of cj(t
F
wr).

cj(t
F
wr) (188)

(164)
= e′ρj ,ηj ,∆j

(tFwr − tFcl) + tFcl (189)

(167)
= e′ρj ,ηj ,∆j

(tFwr − tFcl) +X + oj (190)

(162)
= e′ρj ,ηj ,∆j

(zj) +X + oj (191)

(92)
= min

{
zj + ∆j

ρj · zj −∆j + ηj
+X + oj (192)

= oj + L̃ (193)

9. Expressing the value of cj(t
F ′

wr).

cj(t
F ′

wr) (194)

(164)
= e′ρj ,ηj ,∆j

(tF
′

wr − tFcl) + tFcl (195)

(167)
= e′ρj ,ηj ,∆j

(tF
′

wr − tFcl) +X + oj (196)

(163)
= e′ρj ,ηj ,∆j

(tF
′

cl + zj − tFcl) +X + oj (197)

(161)
= e′ρj ,ηj ,∆j

(tF
′

em + P i,j + zj − tFcl) +X + oj (198)

(160)
= e′ρj ,ηj ,∆j

(tF
′

em + P i,j + zj − tFem − P i,j)
+X + oj (199)

(92)
= min

{
(tF

′

em − tFem + zj + P i,j − P i,j) + ∆j

ρj(t
F ′

em − tFem + zj + P i,j − P i,j)−∆j + ηj

+X + oj (200)

= X + oj+ (201)

min

{
zj + P i,j − P i,j + ∆j + (tF

′

em − tFem)

ηj −∆j + ρj(zj + P i,j − P i,j + tF
′

em − tFem)
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From eq. (157),

tF
′

em − tFem = t2 − t1 = min

{
2∆i + (Ṫ − Ė)

ρi(Ṫ − Ė)
(202)

(154)
= min

{
2∆i + (T − E − 2S)

ρi(T − E − 2S)
(203)

(204)

Then, eq. (201) becomes

cj(t
F ′

wr) = X + oj+ (205)

min


zj + P i,j − P i,j + ∆j + 2∆i + T − E − 2S

zj + P i,j − P i,j + ∆j + ρi(T − E − 2S)

ηj −∆j + ρj(zj + P i,j − P i,j + 2∆i + T − E − 2S

ηj −∆j + ρj(zj + P i,j − P i,j + ρi(T − E − 2S)

= X + oj + Ũ (206)

10. Concluding from time alignment. Combining with (155) we obtain (29).

Proof of (30). Let s ∈ {−1, 1}.

1. Considering scenarios with two frames sent in the first cycle. This step is
the same as the first step of the previous proof. According to Definition 1,
we necessary satisfy⌊

cj(t
F
wr)− oj
T

⌋
=

⌊
cj(t

F ′

wr)− oj
T

⌋
⌊
cj(t

F
cl)− oj
T

⌋
%2 =

⌊
cj(t

F ′

cl )− oj
T

⌋
%2.

(207)

Let now spread these values, by building clocks ci,cj on Ni, Nj and max-
imizing / minimizing propagation and switching times.

2. Building the trajectory of ci Here, we take another clock for ci:

ci(t) = t+ s ·∆i (208)

According to this expression and with c(tk) = k · T + oi, we have

ci(t
F
em)− ci(tk) = Ė = tFem + s ·∆i − (k · T + oi) (209)

ci(t
F ′

em)− ci(tk) = Ṫ = tF
′

em + s ·∆i − (k · T + oi) (210)
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Then,

tFem = Ė − s ·∆i + k · T + oi (211)

tF
′

em = Ṫ − s ·∆i + k · T + oi (212)

3. Maximizing and minimizing propagation and switching times. Assume
that the propagation time is minimal for F and maximal for F ′, we have
:

tFcl = tFem + P = Ė − s ·∆i + k · T + oi + P (213)

tF
′

cl = tF
′

em + P = Ṫ − s ·∆i + k · T + oi + P (214)

Also, assume that the switching time is minimal for F and maximal for
F ′, we have :

tFwr = tFcl + zj = Ė − s ·∆i + k · T + oi + P + z (215)

tF
′

wr = tF
′

cl + zj = Ṫ Ṫ − s ·∆i + k · T + oi + P + z (216)

4. Building the trajectory of cj. Here, we take another clock for cj :

cj(t) = t− s ·∆j (217)

5. Expressing the value of cj(t
F
cl).

cj(t
F
cl) (218)

(217)
= tFcl − s ·∆j (219)

(213)
= Ė − s · (∆i + ∆j) + k · T + oi + P (220)

= L̃%s + oj (221)

6. Expressing the value of cj(t
F ′

cl ).

cj(t
F ′

cl ) (222)

(217)
= tF

′

cl − s ·∆j (223)

(214)
= Ṫ − s · (∆i + ∆j) + k · T + oi + P (224)

= Ũ%s + oj (225)

7. Expressing the value of cj(t
F
wr).

cj(t
F
wr) (226)

(217)
= tFwr − s ·∆j (227)

(215)
= Ė − s · (∆i + ∆j) + k · T + oi + P + z (228)

= L̃s + oj (229)
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8. Expressing the value of cj(t
F ′

wr).

cj(t
F
wr) (230)

(217)
= tF

′

wr − s ·∆j (231)

(215)
= Ṫ − s · (∆i + ∆j) + k · T + oi + P + z (232)

= Ũs + oj (233)

9. Concluding from time alignment. Combining with (155) we obtain (30)

J Null Offset Heuristic, General Case

Proof. Let us start from the equation of the Corollary 1 with null offsets (oi =
oj = 0) and let ki,j ∈ N denote the floor part such that:⌊

Si,j + Ei,j + P i,j − (∆i + ∆j)− l̂i,j(Si,j)
T

⌋

=

⌊
T − Si,j + P i,j + zi,j + ∆i + ∆j + ûi,j(Si,j)

T

⌋
=ki,j

(234)

Then, according to the definition of the floor function, we have
ki,j · T ≤ Si,j + Ei,j + P i,j − (∆i + ∆j)− l̂i,j(Si,j)

< (ki,j + 1) · T
ki,j · T ≤ T − Si,j + P i,j + zi,j + ∆i + ∆j + ûi,j(Si,j)

< (ki,j + 1) · T

(235)

Thus 
ki,j · T − Ei,j − P i,j + ∆i + ∆j + l̂i,j(Si,j) ≤ Si,j
< (ki,j + 1) · T − Ei,j − P i,j + ∆i + ∆j + l̂i,j(Si,j)

−ki,j · T + P i,j + zi,j + ∆i + ∆j + ûi,j(Si,j) < Si,j

≤ −(ki,j − 1) · T + P i,j + zi,j + ∆i + ∆j + ûi,j(Si,j)

(236)

Let

Snull = max
i,j

max


−ki,j · T + P i,j + zi,j

+∆i + ∆j + ûi,j(Si,j) + ε

ki,j · T − Ei,j − P i,j
+∆i + ∆j + l̂i,j(Si,j)

(237)
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Consequently, if it exists ε > 0 such that Snull ≤ S then, Snull is an admissible
value for the guard band.

We now express ki,j from known parameters. From Equation 235, we nec-
essary have:

ki,j · T − Ei,j − P i,j + ∆i + ∆j + l̂i,j(Si,j)

≤ −(ki,j − 1) · T + P i,j + zi,j + ∆i + ∆j + ûi,j(Si,j)

−ki,j · T + P i,j + zi,j + ∆i + ∆j + ûi,j(Si,j)

< (ki,j + 1) · T − Ei,j − P i,j + ∆i + ∆j + l̂i,j(Si,j)

(238)

thus ki,j ≤
Ei,j+P i,j+P i,j+zi,j+ûi,j(S

i,j
)−l̂i,j(Si,j)+T

2T

ki,j >
Ei,j+P i,j+P i,j+zi,j+ûi,j(S

i,j
)−l̂i,j(Si,j)−T

2T

(239)

thus ki,j = Ei,j + P i,j + P i,j + zi,j + ûi,j(Si,j)− l̂i,j(Si,j) + T

2T

 (240)

because bac = k ⇔ k ≤ a < k + 1⇔ a− 1 < k ≤ a.
Note that

ki,j = 0⇔

− T ≤ Ei,j + P i,j + P i,j + zi,j + ûi,j(Si,j)− l̂i,j(Si,j) < T
(241)

Consequently,

0 ≤ Ei,j + P i,j + P i,j + zi,j + ûi,j(Si,j)− l̂i,j(Si,j) < T (242)

thus ki,j = 0.

K Proof of Theorem 4

We start with the following property, which gives Soi,ojcor1 and S
oi,oj
cor1 in closed-

form. Observe that U ′i,j and L′i,j can be written as

U ′i,j(S) = −S + Uoi,j (243)

L′i,j(S) = S + Loi,j (244)

where Uoi,j , L
o
i,j depend on oi, oj but not on S.
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Property 8. Assume that the set Soi,ojcor1 of values of S that are admissible

according to Corollary 1 applied to link (i, j) is not empty. Let k =

⌊
U ′

i,j(S)

T

⌋
,

S′i,j = Uoi,j − (k + 1)T and S′′i,j = Loi,j + kT . Then

• S
oi,oj
cor1 = max(S′i,j , S

′′
i,j),

• If S′i,j < S′′i,j then Soi,ojcor1 = [S′′i,j , S] else Soi,ojcor1 = (S′i,j , S].

Proof. Since Soi,ojcor1 is non-empty, by Theorem 2, we know that S ∈ Soi,ojcor1 . Thus

k =

⌊
U ′i,j(S)

T

⌋
=

⌊
L′i,j(S)

T

⌋
(245)

Combining with (243) and (244) we obtain that, for S ∈ [0, S]:⌊
U ′i,j(S)

T

⌋
= k ⇔ S′i,j < S ≤ S (246)

and ⌊
L′i,j(S)

T

⌋
= k ⇔ S′′i,j ≤ S ≤ S (247)

Furthermore U ′i,j is decreasing and L′i,j is decreasing thus(⌊
L′i,j(S)

T

⌋
=

⌊
L′i,j(S)

T

⌋)
⇔
(⌊

L′i,j(S)

T

⌋
=

⌊
L′i,j(S)

T

⌋
= k

)
(248)

Therefore
Soi,ojcor1 = (S′i,j , S] ∩ [S′′i,j , S] (249)

The two bullets of the property follow immediately.

Proof of Theorem 4. Let Soi,j be the set of S ∈ [0;S] that satisfy the constraints
corresponding to i, j in Problem P −MILP, i.e. such that

∃ki,j ∈ Z, ki,j ≤
L′i,j(S)

T
,
U ′i,j(S)

T
≤ ki,j + 1− ε

T
(250)

and let
Soi,j = min

(
Soi,j
)

(251)

It follows that
SMILP = min

o∈[0;S]L
max

(i,j)∈L
Soi,j (252)

Observe that we also have

S = min
o∈[0;S]L

max
(i,j)∈L

S
oi,oj
cor1 (253)
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We now compare Soi,j to S
oi,oj
cor1 . With the same notation as in the proof of

Lemma 8, we obtain
Soi,j = max

(
S′′i,j , S

′
i,j + ε

)
(254)

Combining with the first bullet of Property 8, it follows that

S
oi,oj
cor1 ≤ Soi,j ≤ S

oi,oj
cor1 + ε (255)

Using (252) and (253) we obtain

S ≤ SMILP ≤ S + ε (256)
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