
HAL Id: hal-03772867
https://hal.science/hal-03772867

Preprint submitted on 8 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Looking for equivalences of the services between left and
right continuity in the Network Calculus theory

Damien Guidolin–Pina, Marc Boyer

To cite this version:
Damien Guidolin–Pina, Marc Boyer. Looking for equivalences of the services between left and right
continuity in the Network Calculus theory. 2022. �hal-03772867�

https://hal.science/hal-03772867
https://hal.archives-ouvertes.fr


1

Looking for equivalences of the services
between left and right continuity in the Network

Calculus theory
Damien Guidolin–Pina, RealTime-at-Work, and Marc Boyer, ONERA,
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Abstract—The Network Calculus theory allows to compute upper
bounds on delays and memory usage in data networks. The mathemat-
ical foundations rely on piecewise-continuous functions being, depend-
ing on the authors, either left- or right-continuous. It is then impossible
to use all existing results in a single analysis, since the hypotheses are
incompatibles. This paper shows how, under some reasonable assump-
tions, it is possible to project property from left-continuous word to right-
continuous world, and vice-versa.

Index Terms—Network Calculus, Continuity

1 INTRODUCTION

Nowadays, the Network Calculus theory, based on the Min-
plus algebra, is used since 20 years to analyse the worst-
case performances in data networks [1] and several studies
continue to analyse new networks [2].

The basic objects in the theory are functions represent-
ing the amount of data sent by a source in an interval
of time. Such functions are called cumulative curves (see
Section 3.1). An assumption made to perform most of the
results is that these cumulative curves are left-continuous
functions (cf. [1, Definition 1.1] and the related discussion
for details). Indeed, this assumption provides usefull prop-
erties as it will be presented in Section 6. We will call
the theory developed with the left-continuous cumulative
curves the left world.

However, some notions are more difficult to apprehend
in the left world like the decomposition of the flows into
packets. Thus, some studies are developed considering the
cumulative curves as right-continuous functions [3] where
the idea is to link the Network Calculus theory with
CPA (Compositional Performance Analysis [4]). Contrary to
the left-continuous cumulative curves, the right-continuous
ones make the decomposition of the flows into packets eas-
ier [5]. Also, some results are proven with the two assump-
tions as [6] shows. But, the common properties and theo-
rems of the Network Calculus theory are not proven with
this assumption of right-continuous cumulative curves. The
theory and results developed with the right-continuous
cumulative curves will be regrouped under the right world.

To sum up, most results of the Network Calculus theory
are developed with the assumption of left-continuous cu-
mulative curves but interesting results exist with the right-
continuous assumption. To use both results, two choices are

possible: prove all the results developed in the left world
in the right world and conversly (as in [6] or proving
equivalences between the two worlds to transfer results
from one world to the other.

In the following, the aim is to prove the equivalences
between the two models developed around the two assump-
tions.

To do that, we will work with the set of left-continuous
functions (L) and the set of right-continuous functions (R).
Then, we need to introduce two operators to pass from a set
to another: the left and right extensions represented by (.)l
and (.)r respectivelly, as illustrated in Figure 1.

L R
(.)r

(.)l

Fig. 1: Graph with the set of left-continuous functions (L)
and the set of right-continuous functions (R) and the oper-
ators to pass from one set to another: the left ((.)l) and the
right ((.)r) extension.

The contribution of this paper is to show which prop-
erties are preserved passing from a world to another. To
do that, as the Network Calculus theory is based on the
(min,+) dioid, itself based on the piecewise-continuous
functions from the non negative reals to the reals (F : R+ →
R), we will work on three layers:

1) the properties on the sets of functions (Section 2.3),
2) how the Min-plus convolution supports the left/right

sets (Section 2.4),
3) see the Network Calculus properties which stay to be

valid passing from a world to another as the notions
of cumulative curves (Section 3.1), the arrival curves
(Section 3.2) and the service curves (with the simple,
maximal, shaper and strict service curves) (Section 4).
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2 MATHEMATICAL BACKGROUND

2.1 Notations
First, let R, and respectivelly R+ denote the set of reals
and non-negative reals respectivelly. N denotes the set of
integers. & represents the logical and.

Let b.c, respectivelly d.e denote the floor and ceilling
functions such that ∀x ∈ R, bxc ∈ N, bxc ≤ x < bxc + 1
and dxe ∈ N, dxe − 1 < x ≤ dxe.

Also, we denote by ∧, respectively ∨, the minimum and

the maximum operator i.e. a ∧ b def
= min(a, b) and a ∨ b def

=
max(a, b). [.]+ represents the non-negative closure: ∀f ∈
F , [f ]+ def

= f ∨ 0.
Finally, we will use the limit of functions and note

f(t+)
def
= limε→0 f(t + ε) the right limit at t of the function

f if it exists and f(t−) def
= limε→0 f(t − ε) the left limit at t

of the function f if it exists.

2.2 Sets and operations
After introducing the notations, we will define some specific
sets of functions according to the Min-plus theory (as said
in the introduction) and to work with left and right world,
some operators to pass from one to another: the left and
right extensions.

First, let define what is a piecewise continuous function.

Definition 1 (Piecewise continuous function). A function f
is said to be piecewise continuous if it has a finite number of
discontinuities on any finite interval.

Then, we can introduce the useful sets of functions.

Definition 2 (Function sets: F , R, L and subsets). F is the
set of functions from R+ to R, piecewise-continuous.
R, (respectivelly L) is the set of right-continuous functions,

(respectivelly left-continuous functions).
Let X be a subset of F . Then
X↑ ⊂ X is the subset of the non-decreasing functions of X ,
X0 ⊂ X↑ is the subset of functions of X such that ∀f ∈

X0, f(0) = 0,
X0+ ⊂ X↑0 is the subset of functions of X0 such that ∀f ∈

X0+, f(0+) = 0.
Also, X↑0 = X0 ∩ X↑ is the subset of the non-decreasing

functions of X such that ∀f ∈ X0, f(0) = 0,
X↑0+ = X0+ ∩ X↑ is the subset of the non-decreasing

functions of X such that ∀f ∈ X0+, f(0+) = 0.

Remark 1. Considering the setR↑0, note that a function f ∈ R↑0
can’t be null at a singular point t = 0 because f ∈ R then
f(0+) = f(0) = 0. Consequently, R↑0 = R↑0+. Also, note that
X↑0+ ⊂ X

↑
0 .

The following property is an alternative expression of
the limits for non-decreasing functions.

Property 1 (Alternative expression for the right/left limit).
Let f ∈ F↑. Then

f(t+) = inf
ε>0

f(t+ ε) (1)

f(t−) = sup
ε>0

f(t+ ε) (2)

The proof is given in Appendix 8.1.

Definition 3 (Right and Left extensions). (.)r defines the right
extension operator such that

(.)r : F → R
: f 7→ (fr : t 7→ f(t+))

(3)

Correspondingly, (.)l defines the left extension operator such that

(.)l : F → L
: f 7→ (fl : t 7→ f(t−))

(4)

Also, we can apply these extensions to a set X ⊂ F as

(X)l
def
= {fl | f ∈ X} (5)

(X)r
def
= {fr | f ∈ X} . (6)

Remark 2. when there is no ambiguity, the parenthesis will be
remove in the extensions, i.e. (f)l and fl represent the same: the
left extension of f and (f)r and fr represent the right extension
of f .

A useful property, is the monotony of the extensions as
shown in the following property, Property 2.

Property 2 (Monotony of the extensions). Let f, g ∈ F↑ such
that f ≤ g. Then,

fr ≤ gr (7)
fl ≤ gl (8)

Proof. Let f, g ∈ F↑ such that f ≤ g. Then, according to
Property 1, ∀t ∈ R+,

inf
ε>0

f(t+ ε) ≤ inf
ε>0

g(t+ ε)

and
sup
ε>0

f(t+ ε) ≤ sup
ε>0

g(t+ ε).

2.3 Stability of the subsets of F
Now, after introducing the useful notations, sets and oper-
ators, we will see which properties of the subsets of F are
preserved passing from a world to another.

First, let see the impact of the composition of the exten-
sions.

Property 3 (Composition of the extensions). Let f ∈ F↑0+.
Then

(fr)l = fl (9)

(fl)r = fr (10)

Proof. Let x ∈ R+.
Let (un)n∈N be a decreasing sequence converging to 0.

Then,
(fr)l(x) = lim

n→∞
fr(x− un). (11)

Let (vm)m∈N be a decreasing sequence converging to 0.
Then,

(fr)l(x) = lim
n→∞

( lim
m→∞

f(x− un + vn)). (12)

∀n ∈ N, since (vm) is decreasing, ∃m ∈ N such that
un−vm > 0. Let note φ(n) this number, and define (wk)k∈N
by wk = uk−vφ(k). We have limk→∞ wk = 0, and ∀k : wk >
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0, so limk→∞ f(x − wk) = fl(x). Since any sub-sequence
converges to the same limit as the sequence itself (when it
exists), (fr)l(x) = fl(x).

The same way, we also have (fl)r = fr .

Now, we can work on the stability of the subsets of F .

Property 4 (Stability of non-decreasing subsets of F ). Let
L↑,R↑ defined as in Definition 2 and (.)r, (.)l the left and right
extension as defined in Definition 3. Then

(R↑)l ⊂ L↑ (L↑)r ⊂ R↑ (13)

Proof. ∀f ∈ F↑, ∀x, y ∈ Rp, x < y, f(x) ≤ f(y)

=⇒
{
infε>0 f(x+ ε) ≤ infε>0 f(y + ε)⇔ fl(x) ≤ fl(y),
supε>0 f(x− ε) ≤ supε>0 f(y − ε)⇔ fr(x) ≤ fr(y)

.

(14)

Thus, fr and fl are non-decreasing. As L↑ ⊂ F↑ and R↑ ⊂
F↑ then,

(R↑)l ⊂ L↑ (L↑)r ⊂ R↑ (15)

Property 5 (Stability of the subsets of F ). Let
R↑0,R

↑
0+,L

↑
0,L
↑
0+ defined as in Definition 2 and (.)r, (.)l

the left and right extension as defined in Definition 3. Then

(L↑0+)r ⊂ R
↑
0+ (R↑0+)l ⊂ L

↑
0+ (16)

(R↑0)l ⊂ L
↑
0 (L↑0)r 6⊂ R

↑
0 (17)

((L↑0+)r)l ⊂ L
↑
0+ ((R↑0+)l)r ⊂ R

↑
0+ (18)

Proof. According to Property 4, the non-decreasing aspect
of the subsets is preserved. We only need to see if the other
properties are preserved i.e. if the null point at t = 0 and the
limit at t = 0 are preserved.

• proof of Equation (16): We need to see if the property
such that the limit of the function when t→ 0+ is null
is preserved.
Let f ∈ R↑0+. At t = 0, it is continue so f(0) =
fl(0) = 0 and it exists a vicinity around 0: [0; ε[ such
that ∀t ∈ [0; ε[, f(t) = 0 and it is continuous then
∀t ∈ [0; ε[, fl(t) = 0. Then, fl ∈ L↑0+ and (R↑0+)l ⊂ L

↑
0+

Similarly, we have that (L↑0+)r ⊂ R
↑
0+.

• proof of Equation (17):
First, we can easily note that it is not preserved for the
right extension of the set L↑0 because ∃f ∈ L↑0 | fr /∈ R

↑
0

with, for instance, the function:

f(t) =

{
0 if t = 0,

1 if t > 0
(19)

Indeed, fr(t) = 1,∀t ∈ R+ and fr /∈ R↑0. The prop-
erty f(0) = 0 is not preserved by the right extension
operator. Consequently, (L↑0)r 6⊂ R

↑
0.

However, R↑0 = R↑0+, (R↑0+)l ⊂ L
↑
0+ ⊂ L

↑
0.

• proof of Equation (18): This last property, Property 3,
shows that ((L↑0+)r)l ⊂ L

↑
0+ and ((R↑0+)l)r ⊂ R

↑
0+.

2.4 Stability of the Min-plus convolution
Finally, we want to see the impact of the left and right
extension on the Min-plus convolution.

Let, first, remind the Min-plus convolution according to
the Network Calculus theory.

Definition 4 (Min-plus convolution). ∗ represents the Min-
plus convolution and is defined for two functions f, g ∈ F as

f ∗ g = inf
0≤s≤t

{f(s) + g(t− s)} (20)

= inf
0≤u,s
u+s=t

{f(s) + g(u)} (21)

In the following parts, Min-plus convolution or convo-
lution means the same.

Let introduce a new expression for the convolution
equivalent to the previous ones (Equation (20) and (21)).
This expression will be useful to see the impact of the
extension on the convolution.

Property 6 (Alternative expression of the convolution). Let
f, g ∈ F be two functions. Then

f ∗ g(t) = inf
0≤s

{
g(t ∧ s) + f([t− s]+)

}
(22)

Proof. Let f, g ∈ F be two functions.

inf
0≤s

{
g(t ∧ s) + f([t− s]+)

}
(23)

= min

{
inf0≤s<t {g(t ∧ s) + f([t− s]+)}
infs≤t {g(t ∧ s) + f([t− s]+)}

(24)

Note that

{
0 ≤ s < t =⇒ t ∧ s = s & [t− s]+ = t− s
s ≤ t =⇒ t ∧ s = t & [t− s]+ = 0

, so

= min

{
inf0≤s<t {g(s) + f(t− s)}
infs≤t {g(t) + f(0)}

(25)

= min

{
inf0≤s<t {g(s) + f(t− s)}
(g(t) + f(0))

(26)

= inf
0≤s≤t

{g(s) + f(t− s)} (27)

= f ∗ g(t) (28)

This property can be illustrated with Figure 2 adapted
from [1, Fig. 2.1]. The convolution is commonly illustrated
with this idea of sliding one function over the other, as
represented at top of Figure 2. Property 6 represents exactly
this idea: for each s, let hs : t 7→ g(t∧ s)+ f([t− s]+). Then,
f ∗ g = infs≥0 hs. The relation is illustrated on the bottom
of Figure 2, where hs is plotted with two values of s.

Property 7 (Non-decreasing stability of convolution). Let
f, g be two non-decreasing functions then f ∗ g is also a non-
decreasing function i.e. ,

∀f, g ∈ F↑ : f ∗ g ∈ F↑. (29)

Proof. This property is proven in [1, Lemma 2.3].

Theorem 1 (Left stability of the convolution). Let f, g be two
non-decreasing left-continuous functions. Then f ∗ g is also a
non-decreasing left-continuous function i.e. ,

∀f, g ∈ L↑ : f ∗ g ∈ L↑ (30)
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s 1
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Fig. 2: Up graphs: Illustration of the convolution (f ∗g: thick)
between f (dashed) and g (plain), from [1, Fig. 2.1].
Down graphs: hs : t 7→ g(t∧s)+f([t−s]+) for two specific
values of s.

Proof. This theorem is proven in [1, Proposition 3.11].

Theorem 2 (Convolution and extensions). Let f, f ′, g ∈ F↑
such that f ′(0+) = f ′(0). Then

(f ∗ g)l = fl ∗ gl (31)
(f ′ ∗ g)r = f ′r ∗ g (32)

Proof. of Equation (31) Let f, g ∈ F↑.
The proof consists in bound the expression fl ∗ gl.
On the one hand, we need to prove that fl ∗ gl ≤ f ∗ g.

Firstly, gl ≤ g =⇒ fl∗gl ≤ fl∗g. Also, fl ≤ f =⇒ fl∗g ≤
f ∗ g. Then, fl ∗ gl ≤ f ∗ g.

On the other hand, we need to prove that (f∗g)l ≤ fl∗gl.
We will use the expression of the convolution and the limit:
∀t ∈ R+,

(f ∗ g)l(t) = sup
ε>0
{f ∗ g(t− ε)} (33)

= sup
ε>0

{
inf

0≤s≤t−ε
{f(s) + g(t− ε− s)}

}
(34)

= sup
η>0

{
inf

η≤u≤t−η
{f(u− η) + g(t− η − u)}

}
(35)

with η = ε/2 and u = s+ η

(f ∗ g)l(t) ≤ sup
η>0

{
inf

0≤u≤t
{f(u− η) + g(t− η − u)}

}
(36)

because ∀η > 0, [η; t− η] ⊂ [0; t].

Continuing from Equation (36): ∀t ∈ R+,∀η > 0,∀u ∈
[0; t],

inf
0≤u≤t

{f(u− η) + g(t− η − u)}

≤ f(u− η) + g(t− η − u)
(37)

=⇒ sup
η>0

{
inf

0≤u≤t
{f(u− η) + g(t− η − u)}

}
≤ sup

η>0
{f(u− η) + g(t− η − u)}

(38)

=⇒ sup
η>0

{
inf

0≤u≤t
{f(u− η) + g(t− η − u)}

}
≤ inf

0≤u≤t

{
sup
η>0
{f(u− η) + g(t− η − u)}}

}
(39)

=⇒ sup
η>0

{
inf

0≤u≤t
{f(u− η) + g(t− η − u)}

}
≤ inf

0≤u≤t
{(f)l(u) + (g)l(t− u)}}

(40)

=⇒ sup
η>0

{
inf

0≤u≤t
{f(u− η) + g(t− η − u)}

}
≤ (f)l ∗ (g)l(t)

(41)

Consequently,

(f∗g)l(t) ≤ sup
η>0

{
inf

0≤u≤t
{f(u− η) + g(t− η − u)}

}
≤ (f)l∗(g)l(t)

(42)
Finally, combining the bounds:

(f ∗ g)l ≤ fl ∗ gl ≤ f ∗ g

and passing to the left limit:

((f ∗ g)l)l = (f ∗ g)l ≤ (fl ∗ gl)l = fl ∗ gl ≤ (f ∗ g)l

. Consequently, Then (f ∗ g)l = fl ∗ gl.

Proof. of Equation (32) Let f ′, g ∈ F↑ be two non-decreasing
functions such that f ′(0+) = f ′(0). The proof consists in
reducing the both terms (the right side and the left side of
the equality) into a common same third term.

Let start from the right side: f ′r ∗ g,

f ′r ∗ g(t)
(22)
= inf

0≤s

{
g(t ∧ s) + (f ′)r([t− s]+)

}
(43)

(3)
= inf

0≤s

{
g(t ∧ s) + inf

ε>0

{
f ′([t− s]+ + ε)

}}
(44)

= min

{
inf0≤s≤t {g(t ∧ s) + infε>0 {f ′([t− s]+ + ε)}}
inft<s {g(t ∧ s) + infε>0 {f ′([t− s]+ + ε)}}

(45)

Note that

{
s ≤ t⇒ [t− s]+ = t− s
t < s⇒ [t− s]+ = 0

so,

f ′r ∗ g(t) = min

{
inf0≤s≤t {g(t ∧ s) + infε>0 {f ′(t− s+ ε)}}
inft<s {g(t ∧ s) + infε>0 {f ′(ε)}}

(46)
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Note that


s ≤ t ⇒ t− s+ ε > 0

⇒ t− s+ ε = [t− s+ ε]+

t < s ⇒ t ∧ s = t

⇒ infε>0 {f ′(ε)} = f ′(0+) = f ′(0)

so,

f ′r ∗ g(t) = min

{
inf0≤s≤t {g(t ∧ s) + infε>0 {f ′([t− s+ ε]+)}}
inft<s {g(t) + f ′(0)}

(47)

f ′r ∗ g(t) = inf

{
infε>0 {inf0≤s≤t {g(t ∧ s) + f ′([t+ ε− s]+)}}
g(t) + f ′(0)

(48)

Note that

inf
ε>0

{
inf

0≤s≤t

{
g(t ∧ s) + f ′([t+ ε− s]+)

}}
≤ inf
ε>0
{g(t) + f ′(ε)} with s = t

= g(t) + f ′(0)

so,

f ′r ∗ g(t) = inf
ε>0

{
inf

0≤s≤t

{
g(t ∧ s) + f ′([t+ ε− s]+)

}}
(49)

Now, let start from the left side: (f ′ ∗ g)r(t) and reduce
it to the same expression, Equation (49).

(f ′ ∗ g)r(t)
(3)
= inf
ε>0
{f ′ ∗ g(t+ ε)} (50)

(22)
= inf

ε>0

{
inf
0≤s

{
g((t+ ε) ∧ s) + f ′([t+ ε− s]+)

}}
(51)

= inf
ε>0

{
inf0≤s≤t {g((t+ ε) ∧ s) + f ′([t+ ε− s]+)}
inft<s {g((t+ ε) ∧ s) + f ′([t+ ε− s]+)}

(52)

Looking for the second of Equation (52):
inft<s {g((t+ ε) ∧ s) + f ′([t+ ε− s]+)}, we have

t < s⇒
{
t ≤ (t+ ε) ∧ s ≤ t+ ε

0 ≤ [t+ ε− s]+ ≤ ε
then, as f ′, g are non-decreasing, we have{

g(t) ≤ g((t+ ε) ∧ s) ≤ g(t+ ε)

f ′(0) ≤ f ′([t+ ε− s]+) ≤ f ′(ε)

Then, by addition and limit, we can surround the term
inft<s {g((t+ ε) ∧ s) + f ′([t+ ε− s]+)}:

inf
ε>0
{g(t) + f ′(0)}

≤ inf
ε>0

{
g((t+ ε) ∧ s) + f ′([t+ ε− s]+)

}
≤ inf
ε>0
{g(t+ ε) + f ′(ε)}

So

g(t) + f ′(0)

≤ inf
ε>0

{
g((t+ ε) ∧ s) + f ′([t+ ε− s]+)

}
≤ g(t+) + f ′(0)

As

inf
ε>0

{
inf

0≤s≤t

{
g((t+ ε) ∧ s) + f ′([t+ ε− s]+)

}}
≤ inf
ε>0
{g(t) + f ′(ε)}with s = t

= g(t) + f ′(0)

Consequently,

(f ′ ∗ g)r = inf
ε>0

{
inf

0≤s≤t

{
g((t+ ε) ∧ s) + f ′([t+ ε− s]+)

}}
(53)

Note that 0 ≤ s ≤ t⇒ (t+ ε) ∧ s = s = t ∧ s, so

= inf
ε>0

{
inf

0≤s≤t

{
g(t ∧ s) + f ′([t+ ε− s]+)

}}
(54)

And, f ′r ∗ g = (f ∗ g)r.

Corollary 1 (Right absorption of the convolution). Let f be
a right-continuous non-decreasing function such that f(0+) =
f(0) = 0 and g be a piece-wise non-decreasing function such that
g(0) = 0. Then f ∗g is right-continuous non-decreasing and such
that f ∗ g(0+) = f ∗ g(0) = 0, i.e.

∀f ∈ R↑0+,∀g ∈ F
↑
0 , f ∗ g ∈ R

↑
0+ (55)

Proof. According to the stability of non decreasing functions
and using the Theorem 2, ∀f ∈ R↑0+(fr = f), then

∀g ∈ F↑, f ∗ g = fr ∗ g
(32)
= (f ∗ g)r ∈ R↑ (56)

Moreover, f ∗ g(0+) = f ∗ g(0) = 0 because f(0) = g(0) =
0.

3 CONTINUITY AND FLOWS

Now, the aim is to see if the Network Calculus preperties
are preserved passing from a world to another. First, we
will see the impact on the cumulative curves. Then, we will
show that the notion of arrival curves is preserved.

3.1 Cumulative curves
In Network Calculus, flows are modelled by cumulative
functions A ∈ F↑0 such that A(t) counts the total amount
of data generated by the flow up to time t. Since a flow is
a cumulative amount of data, it must be a non-decreasing
function. The condition on finite number of discontinuity is
related to the discrete aspect of computer behavior and sim-
plifies the mathematical part. The condition of null value at
0 is related to the fact that all results in network calculus are
based on differences: a bound on A(t) has to be understood
as a bound on A(t)−A(0).

However, according to Section 2.3 and to find equiva-
lence between left and right worlds, we will enforce the
right continuity at the origin, that is to say consider cu-
mulative curves in the set F↑0+ instead of F↑0 . Indeed, we
first have that this set is stable using the right/left extension
operators and secondly, we have results concerning the Min-
plus convolution that tilt the balance in favour of the sets
R↑0+/L

↑
0+. Looking the behavior of the system in the real

world, an interpretation can be that the network is ready
before the applications: the time origin of the network is
strictly smaller than the time origin of the applications.
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3.2 Arrival curves
The notion of arrival curve is used to bound the amount
of data sent by a flow on any interval of time. There are
two notions: the maximal arrival curve and the minumum
arrival curve. By definition, (α, α) ∈ F↑ are maximal and
minimal arrival curve of a cumulative curve A if

∀s, t ∈ R+, s ≤ t, A(t)−A(s) ≤ α(t− s), (57)

∀s, t ∈ R+, s ≤ t, A(t)−A(s) ≥ α(t− s). (58)

Property 8. Let α ∈ F↑ be a maximal arrival curve of a
cumulative curve A ∈ F↑0+. Then, α is a maximal arrival curve
of Ar and Al.

Proof. Let α ∈ F↑ be a maximal arrival curve of a cumu-
lative curve A ∈ F↑0+. According to the definition of the
maximal arrival curve, ∀s, t ∈ R+, s ≤ t,

A(t)−A(s) ≤ α(t− s) (59)

Passing to the left limit, according to Property 2,

Al(t)−Al(s) ≤ αl(t− s) ≤ α(t− s). (60)

Then, α is a maximal arrival curve of Al.
Also, ∀ε > 0,

A(t+ ε)−A(s+ ε) ≤ α(t− s) (61)

Passing to the limit when ε→ 0,

Ar(t)−Ar(s) ≤ α(t− s). (62)

Then, α is a maximal arrival curve of Ar .

Property 9. Let α ∈ F↑ be a minimal arrival curve of a
cumulative curve A ∈ F↑0+. Then, α is a minimal arrival curve
of Ar and Al.

The proof is similar to the previous one.
Consequently, the notion of arrival curves is preserved

passing from a world to another.

4 CONTINUITY AND SERVERS

Now, we will work on the servers and prove that the servers
are preserved passing from a world to another. This section
contains the main contributions of the paper.

4.1 Defining servers in both worlds
A server S describes relationships between input and out-
put flows, S ⊂ F↑0 × F

↑
0 . Then (A,D) ∈ S, denoted as

A
S→ D, means that a server S receives an input flow A(t),

and delivers the output D(t). A system S might be, for
example, a single buffer served at a constant rate, a complex
communication node, or even a complete network.

An important assumption made with servers S is that
D ≤ A, meaning that data goes out after being entered.
Basic network calculus assumes also that there is no loss
neither data creation, compression or deflating, even if some
extensions to that have been defined in [7].

As previously said, most results in the litterature con-
sider only non-decreasing left continuous arrival curves
such that they are null at t = 0 (S ⊂ L↑0 × L

↑
0). In the

following, we want to consider S ⊂ X × X for different

subsets X ⊂ F↑0 . To do that, we need to rewrite the
commom definitions related to the servers parameterized
by X .

Definition 5 (Server). Let X ⊂ F↑0 . A server SX ⊆ X × X
is a right-total relation between flow cumulative functions (∀A ∈
X,∃D, (A,D) ∈ SX ) that satisfies (A,D) ∈ SX =⇒ A ≥
D.

We denote A SX

→ D for (A,D) ∈ SX .

Definition 6 (Min-plus minimal service curve). LetX ⊂ F↑0 .
Let SX be a server and β ∈ F↑. The server SX is said to offer a
min-plus minimal service curve β if

∀A,∀D : A
SX

→ D =⇒ D ≥ A ∗ β. (63)

Let note

SXmp(β) =
{
SX | ∀(A,D) ∈ SX , D ≥ A ∗ β

}
. (64)

Definition 7 (Maximal service curve). Let X ⊂ F↑0 . Let
βM ∈ F↑0 . A server SX offers a maximal service curve βM

if
(A,D) ∈ SX =⇒ D ≤ A ∗ βM . (65)

Let note

SXmax(βM ) =
{
SX | ∀(A,D) ∈ SX , D ≤ A ∗ βM

}
. (66)

Definition 8 (Shaper). Let σ ∈ F↑0 and X ⊂ F↑0 . A server SX

is a σ-shaper (also said offers a shaping service curve σ) if

(A,D) ∈ SX =⇒ D ≤ D ∗ σ. (67)

Let note

SXsh(σ) =
{
SX | ∀(A,D) ∈ SX , D ≤ D ∗ σ

}
. (68)

Definition 9 (Backlogged period (BP)). Let X ⊂ F↑0 . Let SX

be a server and (A,D) ∈ SX . An interval I is a backlogged
period for (A,D) if

∀t ∈ I, A(t)−D(t) > 0. (69)

Definition 10 (Start of backlogged period). Let X ⊂ F↑0 . Let
SX be a server and (A,D) ∈ SX . The start of backlogged period
of time t ∈ R+ is defined by

StartA,D(t)
def
= sup{u ≤ t | D(u) = A(u)}. (70)

Remark 3. Note that with X ⊂ L↑0, ∀t ∈ I , I a backlogged
period for (A,D) ∈ SX , A(StartA,D(t)) = D(StartA,D(t)).
This property is usefull in the proofs of some results in the
Network Calculus theory.

Definition 11 (Strict minimal service curve). Let X ⊂ F↑0 . A
server SX offers a strict service curve β ∈ F↑ if

∀(A,D) ∈ SX ,∀(s, t] backlogged period, D(t)−D(s) ≥ β(t−s).
(71)

Let note

SXst (β) =
{
SX | ∀(A,D) ∈ SX ,∀(s, t] backlogged period,

D(t)−D(s) ≥ β(t− s)

}
.

(72)
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In the previous definitions, the set X is, in most results
of the Network Calculus, the set of left-continuous non-
decreasing functions such that they are null at t = 0 (i.e.
X = L↑0).

Before looking which properties are preserved between
the left and right worlds, we need to define the left/right
extensions of a server.

Definition 12 (Right/Left extension of servers). Let X ⊂ F↑0
and SX be a server. The right extension of a server is defined by

(SX)r =
{
(Ar, Dr) | ∃(A,D) ∈ SX

}
(73)

Reciprocally, the left extension of a server SX , X ⊂ F is

(SX)l =
{
(Al, Dl) | ∃(A,D) ∈ SX

}
(74)

Property 10. The right or left extension of a server is a server.

Proof. Let X ∈ F↑0 and SX be a server. We need to prove
that ∀(A′, D′) ∈ (SX)r, A

′ ≥ D′.
Let (A′, D′) ∈ (SX)r then (A′, D′) =

(Ar, Dr) | ∃(A,D) ∈ SX . But A ≥ D and (A,D) ∈ SX so
(A,D) ∈ F↑0 , according to Property 2,

Ar ≥ Dr.

Then, (SX)r is a server.
The same way, (SX)l is also a server.

Now, we want to see if the other servers (the Min-plus
minimal server, the maximal server, the shaper and the strict
minimal server) are stable under the extensions, i.e. if the
properties associated to them are preserved passing from a
world to another.

4.2 Equivalence of Min-plus minimal services

Let us start with the minimal Min-Plus services. Theo-
rem 3 shows that if a min-plus minimal service with left-
continuous arrival curves offers a service curve then, this
service curve is also one for the right extension of the
server. Reciprocally, if a min-plus minimal service with
right-continuous arrival curves offers a service curve then,
the left extension of this service curve is also one for the left
extension of the server.

Theorem 3 (Equivalence of Min-plus minimal services). Let

S ∈ SL
↑
0+

mp be a server offering a min-plus minimal service curve
β ∈ F↑. Then β is a Min-plus minimal service curve for Sr . That
is to say

∀S ∈ SL
↑
0+

mp (β), Sr ∈ S
R↑

0+
mp (β) (75)

Also, let S′ ∈ SR
↑
0+

mp be a server offering a min-plus minimal
service curve β′ ∈ F↑.

Then β′l is a Min-plus minimal service curve for S′l . That is
to say

∀S′ ∈ SR
↑
0+

mp (β′), S′l ∈ S
L↑

0+
mp (β′l) (76)

Proof. The proof is split into two parts:

1) Proof of Equation (75): Let S ∈ SL
↑
0+

mp be a server
offering a min-plus minimal service curve β ∈ F↑ and
(A,D) ∈ S then, D ≥ A ∗ β.

As A,D ∈ L↑0+, using the limit, we have

D ≥ A ∗ β =⇒ Dr ≥ (A ∗ β)r (77)

According to Theorem 2, we have thatAr∗β = (A∗β)r .
Then,

D ≥ A ∗ β =⇒ Dr ≥ Ar ∗ β (78)

Consequently,

∀S ∈ SL
↑
0+

mp (β), Sr ∈ S
R↑

0+
mp (β) (79)

2) Proof of Equation (76): Let S′ ∈ SR
↑
0+

mp be a server
offering a min-plus minimal service curve β′ ∈ F↑. and
(A,D) ∈ S′ then, D ≥ A ∗ β′.
As A,D ∈ R↑0+, using the limit, we have

D ≥ A ∗ β′ =⇒ Dl ≥ (A ∗ β′)l (80)

According to Theorem 2, (A ∗ β′)l = Al ∗ β′l .
So,

Dl ≥ Al ∗ β′l (81)

Then,

∀S′ ∈ SR
↑
0+

mp (β′), S′l ∈ S
L↑

0+
mp (β′l) (82)

To sum up, we just proved that if β is a Min-plus

minimal service curve for a server S ∈ SL
↑
0+

mp then it is also
for Sr . Reciprocally, if β is a Min-plus minimal service curve

for a server S′ ∈ SR
↑
0+

mp , then (β)l also is for S′l .

4.3 Equivalence of maximal services
Similar to what was done in Section 4.2, we will show the
equivalence between the right and left worlds for the max-
imal services, i.e. the aim is to demonstrate that a maximal
service curve for the left servers is a maximal service curve
for the right extension server and reciprocally.

Theorem 4. Let S ∈ SL
↑
0+

max(βM ) be a server offering a maximal
service curve βM ∈ F↑.

Then βM is a maximal service curve for Sr . That is to say,

∀S ∈ SL
↑
0+

max(β
M ), Sr ∈ S

R↑
0+

max(β
M ) (83)

Also, let S′ ∈ SR
↑
0+

max (β′M ) be a server offering a maximal
service curve β′M ∈ F↑.

Then β′M is a maximal service curve for S′l . That is to say,

∀S′ ∈ SR
↑
0+

max (β
′M ), S′l ∈ S

L↑
0+

max(β
′M ) (84)

Proof. The proof is split into two parts:

1) Proof of Equation (83): Let S ∈ SL
↑
0+

max(βM ) be a
server offering a maximal service curve βM ∈ F↑ and
(A,D) ∈ S then, D ≤ A ∗ βM . As A,D ∈ L↑0+, using
the limit, we have

D ≤ A ∗ βM =⇒ Dr ≤ (A ∗ βM )r (85)

According to Theorem 2, we have that (A ∗ βM )r =
Ar ∗ βM . Then,

D ≤ A ∗ βM =⇒ Dr ≤ Ar ∗ βM (86)
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Consequently,

∀S ∈ SL
↑
0+

max(β
M ), Sr ∈ S

R↑
0+

max (β
M ) (87)

2) Proof of Equation (84): Let S′ ∈ SR
↑
0+

max (β′M ) be a
server offering a maximal service curve β′M ∈ F↑. and
(A,D) ∈ S′ then, D ≤ A ∗ β′M .
As A,D ∈ R↑0+, using the limit, we have

D ≤ A ∗ β′M =⇒ Dl ≤ (A ∗ β′M )l ≤ Al ∗ β′M (88)

Then,

∀S′ ∈ SR
↑
0+

max (β
′M ), S′l ∈ S

L↑
0+

max(β
′M ) (89)

4.4 Equivalences of shapers

Now, we will look for the equivalence between the right and
left world for the shapers, i.e. the aim is to demonstrate that
a shaping curve for the left servers is a shaping curve for
the right extension server and reciprocally.

Theorem 5. Let S ∈ SL
↑
0+

sh (σ) be a server offering a shaping
service curve σ ∈ F↑.

Then σ is a shaping service curve for Sr. That is to say,

∀S ∈ SL
↑
0+

sh (σ), Sr ∈ S
R↑

0+

sh (σ) (90)

Also, let S′ ∈ SR
↑
0+

sh (σ′) be a server offering a shaping service
curve σ′ ∈ F↑.

Then σ′ is a shaping service curve for S′l . That is to say,

∀S′ ∈ SR
↑
0+

sh (σ′), S′l ∈ S
L↑

0+

sh (σ′) (91)

The proof is similar to the one of Theorem 4 and is given
in Appendix.

4.5 No direct equivalence of strict minimal services

We may expect a similar result to the Min-plus minimal
service for the strict Min-plus service.

As in the definition of the strict minimal service, the
curve is a strict minimal service curve for any (s, t] back-
logged period (Definition 11), we first need to study these
backlogged periods. First, let start with this latter notion:
the backlogged periods and show that it is not preserved
passing from a world to another with an illustration. Thus, it
is not possible to have an equivalence for the strict minimal
services and it is shown with a conter-exmple. Next, pre-
liminary work are suggested to adapt the theory in order to
get an equivalence and also preserved this property of strict
minimal service.

4.5.1 Strict service is not preserved between left/right
worlds

Let take an example to illustrate that the strict minimal
service is not preserved by continuity change. Consider a

system A
S→ B and B S′

→ C and its right extension Ar
Sr→ Br

and Br
S′
r→ Cr with

A(t) = Ar(t) = t ∧ 3 (92)
B(t) = btc ∧ 3 (93)
Br(t) = (dte − 1) ∧ 3 (94)

C(t) = Cr(t) = [(t− 1) ∧ 3]+. (95)

The top side of Figure 3 represents these systems and the
botside of Figure 3 shows the cumulative curves A, B, Br
and C (left side shows the left continuous ones (A, B and
C) and right side shows the right continuous ones (A, Br
and C)).

A
S

Br

B
S ′

C

A Sr
Br S ′r

C

D
at

a

t

A

B

C

1 2 3 4

1

2

3

D
at

a

t

A

Br

C

1 2 3 4

1

2

3

Fig. 3: Illustration of the backlog with the current definition
(Definition 9).

If we study the backlogged periods of (A,B) and his
right extension (A,Br) then, with the current definition of
the backlogged period (Definition 9), we see that [1 ; 4] is a
backlogged period for the left-continuous functions (A,B).
However, [1 ; 4] isn’t one for (A,Br), the right-extension
of (A,B) because e.g. A(2) = B(2). Consequently, the
backlogged period for the left-continuous functions is not
in general one for the right-extensions.

Regarding to this analysis, we show that, with the cur-
rent definition of the backlogged period (Definition 9), there
is no equivalence between left and right worlds. Conse-
quently, we can’t have equivalence between the strict Min-
plus service curve, illustrated by a counter example: let
β(t) = 2.[t− 1]+. Indeed, ∀(s, t] backlogged period of (B,C),
C(t) − C(s) ≥ β(t − s) because ∀(s, t] backlogged period,
t−s < 1 =⇒ β(t−s) = 0. However, (2, 3.9] is a baklogged
period for (Br, C) andC(3.9)−C(2) = 1 ≤ 1.8 = β(3.9−2).
Then, S′ ∈ SL

↑
0+

st (β) but S′r /∈ S
L↑

0+

st (β). Figure 4 illustrates
this service curve β.
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Fig. 4: Graph of a service curve β(t) = 2.[t− 1]+.
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Then, this example shows that, with the current defini-
tion of the backlogged period, we can’t have any equiva-
lence of the strict minimal service between the left and the
right world.

Now going from right to left we can also construct an
similar example showing that the equivalence is not possible
according to the current definition of the backlogged period.

Consequently, the strict minimal service is not preserved
passing from a world to another.

4.5.2 Looking for a stable backlogged period
However, the difference between the backlogged periods
seems to be due to singular points: the discontinuities of
the cumulative curves. Then, the idea is to introduce new
definitions like stable backlogged periods to include these
singular points and preserved these defintions of back-
logged period passing from a world to another. Here, it is
presented some preliminary results concerning the equiva-
lence of the strict minimal service using new definitions of
the backlogged period. Let first suggest new definition of
the backlogged period and some related properties.

Definition 13 (Stable backlogged period 1 (SBP1)). Let SX

be a server and (A,D) ∈ SX . An interval I is a stable backlogged
period 1 (SBP1) for (A,D) if

∀t ∈ I,


A(t)−D(t) > 0

or
∃ε > 0 | {u ∈ [t− ε; t+ ε] | A(u)−D(u) = 0} = {t}

(96)

Definition 14 (Stable backlogged period 2 (SBP2)). Let SX

be a server and (A,D) ∈ SX . An interval I is a stable backlogged
period 2 (SBP2) for (A,D) if

∃n ∈ N, (t1, . . . , tn) ∈ In such as
∀t ∈ I \ {t1, . . . , tn} , A(u)−D(u) > 0

(97)

Property 11 (Equivalence for open intervals of the
SBP1/SBP2). Let (A,D) ∈ SF

↑
0+ . If (s, t) is a stable backlogged

period (SBP1 or SBP2) for (A,D), then so is a stable backlogged
period for (Al, Dl) and for (Ar, Dr).

Proof. Let (A,D) ∈ SF
↑
0+ A and D are piecewise-

continuous, then it exists a finite number of discontinuities
in any bounded interval. Consequently, ∀(a; b) stable back-
logged period (SBP1 or SBP2), it exists a finite number of
points such that Al = Dl or Ar = Dr in any bounded
interval i.e. the discontinuities of (A,D).

Consequently, (a, b) is a stable backlogged period (SBP1
or SBP2) for (Al, Dl) and (Ar, Dr).

Remark 4. Note that the SBP2 is more general. Indeed, the
equivalence concerns also the closed and semi-closed intervals.
Let (A,D) ∈ SF

↑
0+ . ∀|s, t| stable backlogged period 2 for (A,D)

(with | denotes either closed or open bound), |s, t| is a backlogged
period for (Al, Dl) and for (Ar, Dr). This is due to the fact that
the stable backlogged period 2 doesn’t take into account the bound
of the interval, i.e. A and D can be equal at the bound even if it
is not an isolated point.

Remark 5. First, we can see a hierarchy with the different
backlogged periods such as

BP =⇒ SBP1 =⇒ SBP2. (98)

Secondly, the idea of the backlogged period is to catch each
time interval where the server needs to work. Does a singular
point t such that A(t) = D(t), (A,D) ∈ SX really mean that
the server stop to work? Indeed can he stop to work during a
null interval of time? If the servers works during |t1 ; t2[ and
]t2 ; t3|, he probably works physically during |t1 ; t3|. This is
why we suggest other definitions for the backlogged period which
include the singularities.

Finally, we suggest two new definitions because the first one
is such that if there is no singularities in the backlogged period,
the current definition and the stable one are equivalent. However,
due to the bound of the intervals, those two definitions are not
equivalent in the left and right models. The last one, the stable
backlogged period 2 owns this property because it can be a closed
interval including the bounds even if A(t) = D(t), t a bound of
the interval.

To illustrate this remark, Figure 5 shows a sample with
three different couples (A,D) and a maximal backlogged
periods bounded by s and t, the cases are:

1) On the first column, A is continuous and D is discon-
tinuous on t,

2) On the second one, A is discontinuous on s and D
continuous,

3) On the last one, A and D are continuous.

Also, the up line of the figure illustrates the left extensions
of these functions and the down line illustrates the right
extensions.

D
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D
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Fig. 5: Illustration of the differences between the backlogged
periods.

This example doesn’t show the singularities because it
is taken into account in the same way for the two stable
backlogged periods. The aim is to see the difference between
them regarding the bounds.

A backlogged period associated to Figure 5 is presented
in Table 1 in the same order for the three definition of the
backlogged periods.

As it is explain in the remark, all the stable backlogged
periods 2 are equal but different from the current back-
logged periods. The stable backlogged periods 1 are equal
to the current backlogged periods but are not equal to each
others.
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TABLE 1: Recapitulative table of the maximal backlogged
periods of Figure 5.

BP: ]s; t] BP: ]s; t[
SBP1: ]s; t] SBP1: ]s; t[
SBP2: [s; t] SBP2: [s; t]

BP: ]s; t[ BP: [s; t[ BP: ]s; t[
SBP1: ]s; t[ SBP1: [s; t[ SBP1: ]s; t[
SBP2: [s; t] SBP2: ]s; t[ SBP2: [s; t]

4.5.3 The strict non nap services

Finally, let use the new definitions of the backlogged periods
to introduce a ’new’ strict Min-plus service called strict non
nap service and then prove the equivalence between the left
and right models with this new definition.

Definition 15 (Strict non nap services). LetX ⊂ F↑0 . A server
S̃X1 offers a strict non nap service of type 1 and curve β̃ ∈ F↑ if

∀(A,D) ∈ S̃X1 | ∀(s, t) stable backlogged period 1 (SBP1),

D(t)−D(s) ≥ β̃(t− s).
(99)

A server S̃X2 offers a strict non nap service of type 2 and curve
β̃ ∈ F↑ if

∀(A,D) ∈ S̃X2 | ∀(s, t| stable backlogged period 2 (SBP2),

D(t)−D(s) ≥ β̃(t− s)
(100)

with | can be ) or ].
For i ∈ {1; 2}, let note

S̃Xnn-i(β̃) =

{
SX | ∀(A,D) ∈ SX ,∀]s, t| SBP i,

D(t)−D(s) ≥ β̃(t− s)

}
.

(101)

Property 12. Let i ∈ {1; 2}. Let S̃ ∈ S̃L
↑
0+

nn-i be a server offering
a strict non nap service curve β̃ ∈ F↑. Then β̃ is a strict non nap
service curve for S̃r . That is to say,

∀S ∈ S̃L
↑
0+

nn-i (β̃), Sr ∈ S̃
R↑

0+

nn-i (β̃) (102)

Also, let S̃′ ∈ S̃R
↑
0+

nn-i be a server offering a strict non nap
service curve β̃′ ∈ F↑. Then β̃′l is a strict non nap service curve
for S̃′l. That is to say,

∀S′ ∈ S̃R
↑
0+

nn-i (β̃
′), S′l ∈ S̃

L↑
0+

nn-i (β̃
′
l) (103)

Remark 6. As explain in [8], there is a choice with the bound of
the interval (s; t|, | can be open or closed.

With the generelized backlogged period 2 (Definition 14), the
choice is still open because for any interval (open, closed are semi-
closed) |s; t|, there is equivalence between left and right models.

However, the bounds are important in the generelized back-
logged period 1 (Definition 13) because only the open intervals
are equivalent. Then, ]s; t[ seems to be the only choice for this
definition of the backlogged periods.

Proof. The proof is split into two parts:
1) proof of Equation (102) Let i ∈ {1; 2}.

Let S ∈ S̃L
↑
0+

nn-i (β) be a server offering a strict
non nap service curve β ∈ F↑. Then, ∀(A,D) ∈
S | ∀(s, t| ⊂ SBP i, D(t) − D(s) ≥ β(t − s) where |
depends on i.
According Properties 11, ∀(s; t| stable backlogged period i
of (A,D) ∈ S then, (s; t| is a stable backlogged period
i of (A,D) ∈ Sr.
Also, ∀(A,D) ∈ S, ∀(s, t| stable backlogged period i,

D(t)−D(s) ≥ β(t−s) =⇒ Dr(t)−Dr(s) ≥ βr(t−s) ≥ β(t−s)
(104)

Then, β is a strict minimal service curve for (Ar, Dr).
Consequently,

∀S ∈ S̃L
↑
0+

nn-i (β), Sr ∈ S̃
R↑

0+

nn-i (β) (105)

2) proof of Equation (103) Let i ∈ {1; 2}.
Let S′ ∈ S̃R

↑
0+

nn-i (β
′) be a server offering a strict

non nap service curve β′ ∈ F↑. Then, ∀(A′, D′) ∈
S′ | ∀(s, t| ⊂ SBP i, D′(t) −D′(s) ≥ β′(t − s) where |
depends on i.
According Properties 11, ∀(s; t| stable backlogged period i
of (A′, D′) ∈ S′ then, (s; t| is a stable backlogged period
i of (A′, D′) ∈ S′l .
Also, ∀(A′, D′) ∈ S′,∀(s, t| stable backlogged period i,

D′(t)−D′(s) ≥ β′(t−s) =⇒ D′l(t)−D′l(s) ≥ β′l(t−s)
(106)

Consequently,

∀S′ ∈ S̃R
↑
0+

nn-i (β), S
′
l ∈ S̃

L↑
0+

nn-i (β
′
l) (107)

5 USAGE OF THE RESULTS

In this section, we will show on an example to see how to
pass from a world to another using the previous results.
Consider a system S shared by two flows A,A′, followed
by a packetizer P , as in Figure 6.

A
A′ S

B
B′ P

C
C ′

Fig. 6: Illustration of a network N composed of a server (S)
and a packetizer (P ).

Assume that S uses a Static Priority Preemptive policy
(SPP) and offers a strict minimal service of curve β. Using
the most common approach, we assume that the cumu-
lative curves are left continuous and (A,A′) are (L,L′)-
packetized. Also, A has higher priority than A′.

Let do the two first steps in the left world. According to
[1, Theorem 7.6], [β − αA]+↑ is a strict minimal service curve
for A′.

And, according to [9, Prop. 1.3.5], a strict minimal service
implies a minplus minimal service.

Now, using Theorem 3, we can transfer this service from
the left to the right world and state than [β − αA]

+
↑ is a

minplus minimal service curve for (Ar, Br) ∈ Sr .
Now, in the right world, according to [9, Theorem 1.7.1],

βA′ = [[β − αA]+↑ − L′M ]+ (with L′M the maximum packet
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length of A′r) is a minimal service curve for the sequence
S;P that mapsA′r into C ′r . (notice that [[β−αA]+↑ −L′M ]+ =

[β − αA − L′M ]+↑ ).
Finally, using Theorem 3, we can transfer this service

from the right to the left world, i.e. (βA′)l is a minplus
service for S;P . as illustrated in Figure 7.

A′ (S;P )A′

([β−αA−L′M ]+↑ )l
C ′

Fig. 7: Illustration of the network N reduced according to
the flow (A,C).

This is an exemple of the usage of the results presented
in this paper. However, the aim is to use more results to
improve analysis as, for instance, the link with CPA theory
as [3] suggests it.

6 STATE OF THE ART

As we previously said, most of the theory is based on
the assumption of the left-continuous cumulative curves as,
justified in [1, §1.3] and [9, §1.2.1]. In particular, this property
implies that for any backlog instant t, it exists a specific
instant s, the start of the backlog such that A(s) = D(s).
This property is used in most proofs related to the derivation
of the residual services. But, as noted in the previous part,
some notions are difficult in the left world. In fact, it was
already noticed in [9, §1.1.1] that “It would be nice to stick
to either left or right continuous functions. However, de-
pending on the model, there is no best choice”. An example
is the system which waits for the reception of all bits of a
frame before transmitting it: the packetizer. A definition in
the left world is quite complex (e.g. [1, Def. 8.2]) whereas it
is simple in the right world (e.g. [9, Def. 1.7.3] and [3, Def.
10])

By definition, it is right-continuous and that creates some
errors or difficulties as [1] reveals in Section 8.3 bibliographic
notes. As it is naturally right-continuous, it is an advantage
to develop the theory with the right world.

Also, works on the both worlds are know as for instance
[6]. It is demonstrates that the delay and the backlog are
not influenced by the continuity of the cumulative curves.
Moreover, we have the same hierarchy in the server (strict
minimal service implies minPlus minimal services) and the
expression of the FIFO and Static Priority services are almost
identical (’almost’ due to continuity) and lead to the same
numerical results.

Concerning the right world, [10] deals with the right
and left continuity concerning the operators of the Network
Calculus. Focusing on the assumption of right-continuous
cumulative curves, [3] developed the link between the Net-
work Calculus and the Compositional Performance Analy-
sis (CPA) theory. The idea is to pass from the quantity of
data of the network calculus (A) to the number of events in
the CPA theory (E) using the packetization P , and the link
is E = P (A). But, this paper is developed using the right-
continuous assumption and this choice is explained in [11,
§4.4].

All this previous works show a new point of view in the
theory of Network Calculus and other results are develop
changing some assumptions. To continue in this idea, [12]
is another extension to the theory inverting the amount of
data and the time that leads to the max-plus theory and
other results.

7 CONCLUSION

Network calculus represents flow behaviour with piece-
wise continuous functions. For some results, it is easier to
consider left-continuous functions, whereas for other, right-
continuous are more convenient. But using in the same
analysis results developed from incompatible hypotheses
is not sound. Then, to use results developed with different
hypotheses, the only solution was, up to now, to chose one
hypothesis and to redevelop the missing results (as done
in [6]). But this is fastidious and error-prone, whereas the
engineer intuition was that theses continuity problems do
not really matter. This paper shows that, under reasonable
assumptions, the minplus service can ignore continuity
modelling problems.

To do so, this paper has developed some results related
to the minplus convolution, one of the fundamental oper-
ator of the Network Calculus, regarding either the right-
continuous and the left-continuous functions. It also has
given a new expression of the convolution that may be
usefull in other contexts. Also, the main result is that the
properties linked to the convolution are preserved. Thus,
the equivalences between the left and the right world is
proven for the arrival curves, the minplus minimal service
curves, the maximal service curves and the shaping curves.
Conversly, the strict minimal service is not preserved due to
the backlogged periods.

First a counter-example showed that there is no equiva-
lence with the current definition but new definitions of the
backlogged periods (the stable backlogged periods) were
suggested and allow to have an equivalence between the
two worlds. However, we can’t use, currently those new
definition, it is a preliminary work because the start of the
backlogged period need to be adapted and the proofs using
these results need to be checked with the new definitions:
the stable backlogged period and the strict non nap service.

In particular, we would like to use these results to im-
prove the analysis results by combining it with CPA theory,
as proposed in [3], [13].
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8 ANNEXE

8.1 Proof of Property 1
The proof come from https://encyclopediaofmath.org/
wiki/Increasing function.

Proof. A real-valued function f defined on a certain set E of
real numbers such that the condition

x′ < x′′, x′, x′′ ∈ E

implies

f(x′) < f(x′′).

Such functions are sometimes called strictly increasing func-
tions, the term ”increasing functions” being reserved for
functions which, for such given x′ and x′′, merely satisfy
the condition

f(x′) ≤ f(x′′)

(non-decreasing functions). The inverse function of any
strictly increasing function is single-valued and is also
strictly increasing. If x0 is a right-sided (or left-sided) limit
point of the set E (cf. Limit point of a set), if f is a
non-decreasing function and if the set A = {y : y =
f(x), x > x0, x ∈ E} is bounded from below - or if
{y : y = f(x), x < x0, x ∈ E} is bounded from above
- then, as x → x0+ ( or, correspondingly, as x → x0−),
x ∈ E, the values f(x) will have a finite limit; if the set is
not bounded from below (or, correspondingly, from above),
the values f(x) have an infinite limit equal to −∞ ( or,
correspondingly, to +∞).

Comments If f is non-decreasing on E and x0 ∈ E, then
the set A referred to above is automatically bounded from
below by f(x0), unless it is empty. If, in addition, x0 is a
limit point of {x ∈ E : x > x0}, then the right-hand limit of
f at x0 is simply the infimum of A:

lim
x→x0−

f(x) = inf A.

Similar remarks hold for left-hand limits.

https://encyclopediaofmath.org/wiki/Increasing_function
https://encyclopediaofmath.org/wiki/Increasing_function
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