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Abstract—Standard practices of decision-making in energy
systems are dynamic, non-linear, complex, and chaotic processes
in nature. Trading the power produced by solar photovoltaic
(PV) plants in electricity markets is an important decision-
making problem which receives increasing attention in the past
few decades. The main objective of this paper is to build
an interpretable data-driven decision aid model for the case
study of a solar power plant with the objective to minimize
imbalance costs and thus maximise the revenue, using Symbolic
Regression (SR) through Genetic Programming. The use of SR
in the experiments and analysis developed in this paper show
numerous advantages. SR evolves linear combinations of non-
linear functions of the input variables. Three penalty metrics are
introduced to enhance the interpretability of the final solutions.
SR shows robust results, especially in the case study.

Index Terms—Artificial Intelligence, Renewables, Inter-
pretability, Trading, Solar, Symbolic Regression, Genetic Pro-
gramming

I. INTRODUCTION

A. AI Applications in the Energy Sector

The Energy System in Europe is on a path of transformation
that should allow it to achieve a net-zero emissions target
by 2050. To achieve this target an increased penetration of
Renewable Energy Sources (RES) is needed. The European
Commission anticipates in its impact assessment a 40% re-
newables share, with 479 GW of solar by 2030 [1]. The
increased capacity of solar production will correspond to
increased importance of the decision making for trading the
energy produced by PVs. Most solar plant trading strategies
rely largely on complex modelling chains to address technical
constraints and integrate numerous sources of uncertainty.

In this context, artificial intelligence (AI) based solutions
are increasingly developed to simplify modelling chains, and
to improve performances due to higher learning capabilities
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compared to state-of-the-art methods. The most important
variable in decision making for trading strategies is the
photovoltaic power forecast. Reviews of photovoltaic power
forecasting methods in [2], [3] conclude that Artificial Neural
Networks (ANNs) are the most used artificial intelligence
technique in solar power forecasting, as they have a proven
track record in terms of accuracy for a variety of situations and
with numerous input variables. Decision-makers of the energy
sector need to understand how decision-aid tools construct
their outputs from the data representing such dynamic multi-
scale systems. ANNs for different management functions of
the energy system are often seen as black-box models and this
penalizes their acceptability by the end-users (traders, power
system operators a.o.). The lack of interpretability of AI tools
is a major challenge for the wider adoption of AI in the energy
sector and a fundamental requirement to better support humans
in the decision-aid process. Agents of energy systems expect
high levels of reliability for the various services provided by
these systems [4] (energy, ancillary services, flexibility, etc.):
this ensures proper sizing of security measures and quality
of service for end-users. Several papers propose AI-based
solutions for trading renewables in a market structure similar
to the one used in our case study [5] [6].

B. Interpretability

The terms interpretability and explainability are sometimes
used interchangably [7]. Most of the time both Interpretable
AI and Explainable AI refer to Artificial Intelligence tools, in
which the process of calculating the output can be understood
by humans. It contrasts with the concept of the black box in
machine learning where there is no explanation of why an AI
arrived at a specific decision. An interpretable model should
consistently estimate what the AI tool will predict given a
specific input, understand how the model came up with the
prediction and how the prediction changes if a change in the
input or algorithmic parameters is made. Interpretability is
mostly needed by experts who are either building, deploying or



using the AI system. In this paper, we focus on an interpretabe
decision-aid tool that uses symbolic expressions. To conclude
we can define interpretability as a description of the model,
which enables us to control the outputs according to the inputs.

C. Symbolic Regression as a Way to Enhance Interpretability
Symbolic Regression (SR) is a form of an evolutionary

algorithm which is inspired by the principles of Darwinian
evolution theory and natural selection [8]. The broader domain
where SR belongs is called Genetic Programming (GP) and
is a domain-independent modelling technique that creates
mathematical models based on data sets that describe complex
problems or processes. The biggest advantage of SR is the
ability to automatically evolve both the structure and the
parameters of the mathematical model. This attribute provides
the flexibility for a data-driven, non-linear model output that
represents an interpretable relation of the input features.

Fig. 1. Example of a tree representation of a Symbolic Equation.

As is illustrated in Fig. 1 the SR models are represented
in a tree-like structure, where nodes represent the functions
and leafs represent the variables which construct the end
solution. In the specific paradigm of Fig.1 the tree represents
the equation:

y = x1 ∗ (x2 + x3) (1)

where x1, x2, x3, are the feature variables and y is the target
variable.

D. Objectives & Contribution
Combining the predictive power of Artificial Intelligence

models with interpretable features has attracted a high interest
within the fields of computer vision and natural language
processing as the most common areas of interpretable algo-
rithm applications [9], [10]. The research dedicated to the
interpretability of time series is still understudied [11]. To the
best of our knowledge, SR has not been applied to decision-
making tools for trading strategies for Solar PV power plants.
Our key contributions are summarized as follows:

1) We propose and validate the use of an alternative data-
driven modeling approach that leverages GP to obtain
interpretable trading strategies.

2) We introduce a penalty metric that reduces symbolic
expression complexity by penalizing each expression
with the number of operations occured.

3) We illustrate the applicability of SR in the energy sector
and more precisely to a renewable trading case study of
minimizing imbalance costs.

We believe that the use of this penalty could enhance
interpretability in various sections and applications of SR.

Our methodology performs three different classifications
of the data before applying SR to achieve human-friendly
set of rules according to metrics that are already used by
expert traders to classify the situation of the market. The
classifications are based on the hour of the day, the imbalance
of forecasted prices and the critical quantile.

The rest of the paper is organized as follows. Section
II presents the mathematical background and the proposed
methodology. Section III formulates the trading problem and
the fitness function of our case study. Results are presented
in Section IV. Finally, we draw conclusions and provide
directions for future research in Section V.

II. METHODOLOGY

A. Formulation of Symbolic Regression

Following the formulation proposed by [12] we could define
Symbolic Regression, as the process of learning a mapping
ŷ(x) = Φ̂(X, θ̂) : Rn×m → Rn, using a dataset of paired
examples D = (xi, yi)

m
i=1 , with features X ∈ Rn×m be an

n × m matrix where each column xi ∈ Rn, i = 1, . . . ,m is
an n-dimensional input variable and each row sj ∈ Rm, j =
1, . . . , n is an m-dimensional training sample. For this paper
we define X as the training data for the algorithm and as
y ∈ Rn the target vector for the regression problem.

The GP primitive set is defined as P and as S the syntactic
search space defined by it. We further define Φ as the space of
possible expressions and their parameters. That is, the set of
all tuples (E, θ), where E ∈ S is a symbolic expression and
θ ∈ Rp a parameter vector of length p corresponding to the
hyperparameters of E. Let us call a tuple (E, θ) a symbolic
expression model ME,θ ∈ Φ.

For SR to conclude to an analytical model, we claim that
G : Φ × Rn×m → Rn is a function that evaluates a model
ZE,θ ∈ Φ on training data X and returns an n-dimensional
output vector y ∈ Rn:

ŷ = G(ZE,θ, X) (2)

The goal of the evaluation is to estimate the optimal model
by searching the space of expressions Φ and parameters θ.

Zopt = (Eopt, θopt) (3)

To achieve this goal we need to minimize a predefined
fitness function L:

Zopt = arg min
ZE,θ∈Φ

L(G(ZE,θ, X), y) (4)

B. Genetic Programming

To achieve the optimal model Zopt, SR should iterate
through the GP algorithm. As illustrated in Fig.2, there are
five steps that construct the algorithm.

A predefined function set and a set of features is been
randomly combined and form an initial population of random
symbolic programs, called individuals. Each individual is
characterized by a fitness value, according to it, part of the



Fig. 2. Genetic Programming algorithm.

population is chosen for reproduction in the so called survival
of the fittest mechanism. Reproduction is the core of genetic
programming. Each generation is formulated according to
the results of different genetic operators, including crossover,
mutation and elitism. More details on how those operators
form the next generation can be found in [8]. Finally the GP
algorithm terminates when a defined number of generations or
when a threshold to the fitness value has been reached.

C. Fitness & Penalty Metrics

To perform the second step of the GP algorithm, different
fitness metrics can be used. In this paper we are focusing on
the interpretability of SR outputs, thus we want to heavily
penalise solutions with high complexity (multiple nodes and
leafs of the tree structure).

The fitness function L can be split into two parts, the raw
fitness Lraw of a specific case study and a penalty metric
winterpret.

The penalty metric introduced in this paper is in line with
the main focus of this paper, with a goal to enhance the
interpretability of trading decision aid tools.

L = Lraw + winterpret (5)

The raw fitness Lraw could be a widely used statistical metric
as square mean error when we want to approximate a specific
y target. We could also define a model specific raw fitness
metric, as performed in the case study analyzed in this paper
with the introduction of Imbalance Penalties as Lraw.

As illustrated from the example in ”Fig. 1”, we can calculate
the length of the mathematical model Z as the total number of
nodes and leafs. In the example of (1) we observe a len(Z) =
5. By having a metric of the expression length we can control
the complexity of the SR outcome.

Assuming that each node (function) requires two leafs
(variables), calculating the number of operations used in

each individual symbolic equation of the same population is
performed by the following equation:

op(Z) =
len(Z)− 1

2
(6)

In ”Fig. 1” we observe a total len(Z) = 5 and as expected,
in (1) we observe a total of op(Z) = 5−1

2 = 2 operations.
This paper introduces the number of operations occurred in

a symbolic expression as a penalty metric that enhance model
interpretation. Let’s define k as the index of each individual
model Zk, then each model is penalized with the number of
operations occurred at Zk.

winterpret,k = op(Zk) =
len(Zk)− 1

2
(7)

III. CASE STUDY

In this paper, we do not aim to further improve the revenue
generated from state of the art methods, but rather to improve
the transparency of our models by creating data-driven ad-hoc
interpretable strategies that perform equally well. We derive
to the ad-hoc interpretable strategies by the use of SR with a
custom fitness and a penalty metric introduced in Section II.

We compare the revenues observed during a period of 11
months, which we split in training, 1st of May 2016 - 30th
November 2016, and testing, 1st of December 2016 - 31st of
March 2017, subsets accordingly. The PV plant is located in
France, with a total capacity of 2.7 MW. NWPs are obtained
from the European Center for Mediumrange Weather Forecasts
(ECMWF). We use prices of France from EPEX SPOT.

A. Trading in Day-Ahead Market

We consider trading in a Day-Ahead (DA) market as a
price-taker according to formulations of [13]. The decision
maker submits an energy offer poffer before the closure of
the market. In order to maintain the demand-supply adequacy
and stabilize the system frequency, the system operator acti-
vates balancing reserves during real-time (RT) operation. The
system could be found in two states, either short, i.e., demand
exceeds supply while upward regulation is required, or long,
i.e., supply exceeds demand while downward regulation is
required. According to RT stochastic renewable production
pE, the producer buys back or sells the amount of energy
shortage or surplus in order to balance its trading position. We
define πda as the clearing price of the DA market and π↑/↓

the marginal cost of activating upward/downward regulation
services. We assume that if the system is short, then π↑ ≥ πda

and π↓ = πda; while if the system is long, then π↓ ≤ πda and
π↑ = πda. Let us further define λ↑ = max{0, π↑ − πda}
and λ↓ = max{0, πda − π↓} as the upward and downward
unit regulation costs accordingly. With that being defined, we
conclude that λ↑ · λ↓ = 0, i.e., only one of them assumes a
value greater than zero for a given settlement period t. For a
single period t, the profit is defined as:

ρdual = πdapE −
[
−λ↑(pE − poffer)− + λ↓(pE − poffer)+

]︸ ︷︷ ︸
imbalance cost

(8)



where (·)− = min{·, 0} and (·)+ = max{·, 0}.
The imbalance cost term is always non− negative, which

means that no additional profit can be attained in the balancing
market. Here, {pE , λ↑, λ↓} defines the uncertain problem
parameters. Since profit is affine with respect to the contracted
energy, following [13] we derive energy offer analytically as:

poffer∗ = F̂−1(τ) (9)

with τ being:

τ =
λ̂↓

λ̂↓ + λ̂↑
(10)

and F̂−1 being the predicted inverse cumulative distribution
function (c.d.f.) of pE. This analytical expression of poffer

will be used as the reference for our case study.

B. Fitting the SR for Trading

The goal of the SR fitness function of this case study is to
minimize the imbalance cost term of (8) and can be defined
as:

Gk = −λ↑(pE − poffer)− + λ↓(pE − poffer)+ (11)

where k is the index of the SR model Zk and pE is the target
vector y. We can now define the set of Lraw fitness metric as:

Lraw = argmin{G0, G1, ..., Gn} (12)

Now that the functions L have been defined we could run
the SR to derive to the optimal model Zopt = (Eopt, θopt),
that produces the trading decision yopt = poffer.

C. Trading Strategies Classification

We propose three different classifications of the data before
applying SR in order to achieve human-friendly set of rules
according to metrics that are already used by expert traders
to classify the situation of the market and proceed with the
use of an interpretable model for their decision accordingly.
As illustrated in ”Fig.4”, the classification is based on:

1) h: the hour of the day
2) τ : the critical ratio or quantile
3) λ̂↑ − λ̂↓: delta of Up/Down regulation forecasted prices

Fig. 3. τ and λ̂↑ − λ̂↓ distribution

Hourly data are equally distributed in our dataset and thus
we cluster our data by 14 sub-samples from 06.00 till 19.00.
The subsets for the τ and λ̂↑ − λ̂↓ were created according to
their distribution as illustrated in ”Fig. 3”.

Fig. 4. Flow Chart

IV. RESULTS

Table I, illustrates the trading strategy A, derived by a SR for
each hour of the day between 06.00 and 19.00. Between 08.00
and 16.00, that solar production peaks, we observe a simple
trading decision of bidding the forecasted power production
pÊ with some fine tuning according to the imbalance prices
(λ̂↑ − λ̂↓) and the temperature (NWPtemp) observed. SR
introduced Load as a variable to be considered during the early
morning and late afternoon ramp up hours. More precisely for
06.00, 07.00 and 17.00, 18.00 o’clock we can observe the
inverse correlation with the Load as well as the introduction
of the WCLS in the symbolic expression, which corresponds
to clear sky metric.

TABLE I
TRADING STRATEGY A

Time Strategy Time Strategy

06.00 pÊ + 0.08
Load2

13.00 pÊ

07.00 3WCLS λ̂↓

Load
14.00 pÊ

08.00 pÊ 15.00 pÊ

09.00 pÊ − 2λ̂↑−λ̂↓
NWPtemp

16.00 0.98pÊ

10.00 pÊ 17.00 λ̂↓2WCLSLoad(λ̂↓+1)+0.38λ̂↓

Load2

11.00 pÊ 18.00 pÊ + 0.07
Load2

12.00 pÊ − 2λ̂↑−λ̂↓
NWPtemp

19.00 0.00

Tables II present in detail the resulted interpretable strategy
for Strategy B. For the Trading Strategy B, SR is applied
according to the value of τ metric. For the majority of the data-
points, τ ∈ [0.4−0.7], we observe an analytical expression that
includes the forecasted power pÊ and Load. SR also introduce
the prediction interval Q90 that corresponds to the difference
between 95th-5th quantile of the forecasted power pÊ. Q90 is
introduced for the market conditions that τ metric is equal to
0.5, in which λ̂↓ ≃ λ̂↑. For extreme values of τ SR concludes
to bid almost 0 MW to avoid any imbalance costs.



TABLE II
TRADING STRATEGY B

τ Strategy

<=0.2 NWPtcc

[0.2 - 0.3] pÊ + 0.017 + λ̂↓
NWPtemp

[0.3 - 0.4] pÊ + 0.017

[0.4 - 0.5] pÊ +
Load(pÊ+Q90)+Q90+0.022

Load2

[0.5 - 0.6] pÊ + 0.08
Load2

[0.6 - 0.7] pÊ + 0.08
Load2

[0.7 - 0.8] pÊλ̂↓λ̂↑+pÊλ̂↓+0.02λ̂↑

λ̂↑2

0.8=< 0.00

Table III illustrates the results of SR trained on different
clusters according to the λ̂↑ − λ̂↓ difference. Despite the
small increase in complexity of those expressions, they follow
the same principles, of bidding a combination of pÊ and
Load with several variations according to the difference of
imbalance prices.

TABLE III
TRADING STRATEGY C

λ̂↑ − λ̂↓ Strategy

<-5 pÊ +
NWPtemp

Load

[-5 - 0] pÊ +
Q90−2(λ̂↑−λ̂↓)

Load

[0 - 5] pÊ + 0.08
Load2

[5 - 10] λ̂↓(WCLS+0.24)
Load

10 =< 0.00

Finally, in table IV we summarize the total revenues ob-
served for each strategy in comparison to bidding with the
referenced strategy presented in (9):

TABLE IV
SUMMARY OF REVENUE FOR EACH TRADING STRATEGY

Trading Strategy Revenue (kC) % of dif. w./
Reference Bidding

Bidding perfect hindsight 55.819 3.60%
Reference Bidding 53.878 0.00%

Strategy A (h) 54.771 1.66%
Strategy B (τ ) 54.039 0.30%

Strategy C (λ̂↑ − λ̂↓) 53.922 0.08%

As illustrated in the above table the data driven interpretable
models, in the testing set, are performing well in comparison
to the referenced analytical quantile strategy.

V. CONCLUSIONS

This paper proposes a novel way to produce interpretable
data-driven models for solar power plant trading strategies.
Such models are important for market players aiming at
reducing their imbalance costs. In this context, we develop
interpretable models through Genetic Programming (GP) and
more precisely Symbolic Regression (SR). In the case study of
trading the power produced by a solar photovoltaic (PV) power
plant, we illustrate that the proposed model is able to perform
as well as the reference analytical optimal bidding. Thus
we can conclude that without compromising their accuracy,
strategies obtained by SR introduce an interpretable analytical
tool for decision makers.

Such models, based on data-driven approach of SR, could
be replicated in other energy sector applications, such as wind
farms, in order to investigate different strategies to optimize
their bidding behaviour with interpretable models.
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